Skip to main content

Constrained Closed and Quotient Cubes

  • Chapter
  • First Online:
Book cover Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 398))

Abstract

In this chapter, we investigate reduced representations for the Constrained Cube. We use the borders, classical in data mining, for the Constrained Cube. These borders are the boundaries of the solution space and can support classification tasks. However, the borders do not make possible to retrieve the measure values and therefore cannot be used to answer Olap queries. This is why we introduce two new and reduced representations without measure loss: the Constrained Closed Cube and Constrained Quotient Cube. The former representation is based on the concept of cube closure. It is one of the smallest possible representations of cubes. Provided with the Constrained Closed Cube and thus by storing the minimal information, it is possible to answer efficiently queries which can be answered from the Constrained Cube itself. The latter representation is supported by the structure of the Quotient Cube which was proposed to summarize data cubes. The Quotient Cube is revisited in order to provide it with a closure-based semantics and thus adapt it to the context of the Constrained Cube. The resulting Constrained Quotient Cube is less reduced than the Constrained Closed Cube but it preserves the “specialization / generalization” property of the Quotient Cube which makes it possible to navigate within the Constrained Cube. We also state the relationship between the two introduced representations and the one based on the borders. Experiments performed on various data sets are intended to measure the size of the three representations. As expected in the most common situations (real data), the space reduction for each representation is significant comparatively to the size of the Constrained Cube. Thus depending on the user future needs, each of the proposed representations supplies a significant space reduction for a specific use: Borders for Olap classification, Constrained Closed Cube for Olap querying and Constrained Quotient Cube for cube navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets. In: CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Conference, pp. 359–370. ACM Press (1999)

    Google Scholar 

  3. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Morik, K., Rastogi, R. (eds.) ICDM, pp. 35–42. IEEE Computer Society (2004)

    Google Scholar 

  4. Casali, A.: Mining Borders of the Difference of Two Datacubes. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 391–400. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Casali, A., Cicchetti, R., Lakhal, L.: Cube lattices: A framework for multidimensional data mining. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM (2003a)

    Google Scholar 

  6. Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes using cube transversals and closures. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 69–78. ACM (2003b)

    Google Scholar 

  7. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Convex Cube: Towards a Unified Structure for Multidimensional Databases. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 572–581. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Closed cube lattices. Annals of Information Systems 3(1), 145–164 (2009a); New Trends in Data Warehousing and Data Analysis

    Google Scholar 

  9. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L., Novelli, N.: Lossless reduction of datacubes using partitions. IJDWM 5(1), 18–35 (2009b)

    Google Scholar 

  10. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst. 8(2), 178–202 (2005)

    Article  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  12. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

    Article  Google Scholar 

  13. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 205–216. ACM Press (1996)

    Google Scholar 

  14. Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: Lochovsky, F.H., Shan, W. (eds.) VLDB, pp. 778–789. Morgan Kaufmann (2002)

    Google Scholar 

  15. Morfonios, K., Ioannidis, Y.E.: Cure for cubes: Cubing using a rolap engine. In: Dayal, U., Whang, K.-Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.-K. (eds.) VLDB, pp. 379–390. ACM (2006)

    Google Scholar 

  16. Nedjar, S.: Cubes Émergents pour l’analyse des renversements de tendances dans les bases de données multidimensionnelles. PhD thesis. Université de Méditerranée (2009)

    Google Scholar 

  17. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Emerging Cubes for Trends Analysis in olap Databases. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 135–144. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Emerging cubes: Borders, size estimations and lossless reductions. Information Systems 34(6), 536–550 (2009)

    Article  Google Scholar 

  19. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Constrained Closed Datacubes. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 177–192. Springer, Heidelberg (2010a)

    Chapter  Google Scholar 

  20. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Cubes fermés / quotients émergents. In: EGC 2010 – Extraction et Gestion des Connaissances. Revue des Nouvelles Technologies de l’Information, vol. RNTI-E-19, pp. 285–296. Cépaduès-Éditions (2010b)

    Google Scholar 

  21. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  22. Pei, J., Han, J., Lakshmanan, L.V.S.: Pushing convertible constraints in frequent itemset mining. Data Min. Knowl. Discov. 8(3), 227–252 (2004)

    Article  MathSciNet  Google Scholar 

  23. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  MATH  Google Scholar 

  24. Xin, D., Han, J., Li, X., Shao, Z., Wah, B.W.: Computing iceberg cubes by top-down and bottom-up integration: The starcubing approach. IEEE Trans. Knowl. Data Eng. 19(1), 111–126 (2007)

    Article  Google Scholar 

  25. Xin, D., Shao, Z., Han, J., Liu, H.: C-cubing: Efficient computation of closed cubes by aggregation-based checking. In: Liu, L., Reuter, A., Whang, K.-Y., Zhang, J. (eds.) ICDE, p. 4. IEEE Computer Society (2006)

    Google Scholar 

  26. Zaki, M.J.: Generating non-redundant association rules. In: KDD, pp. 34–43 (2000)

    Google Scholar 

  27. Zhang, X., Chou, P.L., Dong, G.: Efficient computation of iceberg cubes by bounding aggregate functions. IEEE Trans. Knowl. Data Eng. 19(7), 903–918 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosine Cicchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cicchetti, R., Lakhal, L., Nedjar, S. (2012). Constrained Closed and Quotient Cubes. In: Guillet, F., Ritschard, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 398. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25838-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25838-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25837-4

  • Online ISBN: 978-3-642-25838-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics