
A Dynamic Elimination-Combining Stack Algorithm

Gal Bar-Nissan, Danny Hendler and Adi Suissa
Department of Computer Science

Ben-Gurion University

June 9, 2021

Abstract

Two key synchronization paradigms for the construction of scalable concurrent data-structures are
software combining and elimination. Elimination-based concurrent data-structures allow operations with
reverse semantics (such as push and pop stack operations) to “collide” and exchange values without hav-
ing to access a central location. Software combining, on the other hand, is effective when colliding
operations have identical semantics: when a pair of threads performing operations with identical seman-
tics collide, the task of performing the combined set of operations is delegated to one of the threads
and the other thread waits for its operation(s) to be performed. Applying this mechanism iteratively can
reduce memory contention and increase throughput.

The most highly scalable prior concurrent stack algorithm is the elimination-backoff stack [5]. The
elimination-backoff stack provides high parallelism for symmetric workloads in which the numbers of
push and pop operations are roughly equal, but its performance deteriorates when workloads are asym-
metric.

We present DECS, a novel Dynamic Elimination-Combining Stack algorithm, that scales well for all
workload types. While maintaining the simplicity and low-overhead of the elimination-bakcoff stack,
DECS manages to benefit from collisions of both identical- and reverse-semantics operations. Our em-
pirical evaluation shows that DECS scales significantly better than both blocking and non-blocking best
prior stack algorithms.

ar
X

iv
:1

10
6.

63
04

v1
 [

cs
.D

C
]

 3
0

Ju
n

20
11

1 Introduction

Concurrent stacks are widely used in parallel applications and operating systems. As shown in [11], LIFO-
based scheduling reduces excessive task creation and prevents threads from attempting to dequeue and
execute a task which depends on the results of other tasks. A concurrent stack supports the push and pop
operations with linearizable LIFO semantics. Linearizability [7], which is the most widely used correctness
condition for concurrent objects, guarantees that each operation appears to have an atomic effect at some
point between its invocation and response and that operations can be combined in a modular way.

Two key synchronization paradigms for the construction of scalable concurrent data-structures in gen-
eral, and concurrent stacks in particular, are software combining [13, 3, 4] and elimination [1, 10]. Elimination-
based concurrent data-structures allow operations with reverse semantics (such as push and pop stack opera-
tions) to “collide” and exchange values without having to access a central location. Software combining, on
the other hand, is effective when colliding operations have identical semantics: when a pair of threads per-
forming operations with identical semantics collide, the task of performing the combined set of operations
is delegated to one of the threads and the other thread waits for its operation(s) to be performed. Applying
this mechanism iteratively can reduce memory contention and increase throughput.

The design of efficient stack algorithms poses several challenges. Threads sharing the stack implemen-
tation must synchronize to ensure correct linearizable executions. To provide scalability, a stack algorithm
must be highly parallel; this means that, under high load, threads must be able to synchronize their opera-
tions without accessing a central location in order to avoid sequential bottlenecks. Scalability at high loads
should not, however, come at the price of good performance in the more common low contention cases.
Hence, another challenge faced by stack algorithms is to ensure low latency of stack operations when only
a few threads access the stack simultaneously.

The most highly scalable concurrent stack algorithm known to date is the lock-free elimination-backoff
stack of Hendler, Shavit and Yerushalmi [5] (henceforth referred to as the HSY stack). It uses a single
elimination array as a backoff scheme on a simple lock-free central stack (such as Treiber’s stack algorithm
[12]1). If the threads fail on the central stack, they attempt to eliminate on the array, and if they fail in
eliminating, they attempt to access the central stack once again and so on. As shown by Michael and Scott
[9], the central stack of [12] is highly efficient under low contention. Since threads use the elimination
array only when they fail on the central stack, the elimination-backoff stack algorithm enjoys similar low
contention efficiency.

The HSY stack scales well under high contention if the workload is symmetric (that is, the numbers
of push and pop operations are roughly equal), since multiple pairs of operations with reverse semantics
succeed in exchanging values without having to access the central stack. Unfortunately, when workloads are
asymmetric, most collisions on the elimination array are between operations with identical semantics. For
such workloads, the performance of the HSY stack deteriorates and falls back to the sequential performance
of a central stack.

Recent work by Hendler et al. introduced flat-combining [2], a synchronization mechanism based
on coarse-grained locking in which a single thread holding a lock performs the combined work of other
threads. They presented flat-combining based implementations of several concurrent objects, including a
flat-combining stack (FC stack). Due to the very low synchronization overhead of flat-combining, the FC

1Treiber’s algorithm is a variant of an algorithm previously introduced by IBM [8].

1

stack significantly outperforms other stack implementations (including the elimination-backoff stack) in low
and medium concurrency levels. However, since the FC stack is essentially sequential, its performance does
not scale and even deteriorates when concurrency levels are high.

Our Contributions:

This paper presents DECS, a novel Dynamic Elimination-Combining Stack algorithm, that scales well for
all workload types. While maintaining the simplicity and low-overhead of the HSY stack, DECS manages
to benefit from collisions of both identical- and reverse-semantics operations.

The idea underlying DECS is simple. Similarly to the HSY stack, DECS uses a contention-reduction
layer as a backoff scheme for a central stack. However, whereas the HSY algorithm uses an elimination
layer, DECS uses an elimination-combining layer on which concurrent operations can dynamically either
eliminate or combine, depending on whether their operations have reverse or identical semantics, respec-
tively. As illustrated by Figure 1-(a), when two identical-semantics operations executing the HSY algorithm
collide, both have to retry their operations on the central stack. With DECS (Figure 1-(b)), every collision,
regardless of the types of the colliding operations, reduces contention on the central stack and increases
parallelism by using either elimination or combining. Since combining is applied iteratively, each collid-
ing operation may attempt to apply the combined operations (multiple push or multiple pop operations) of
multiple threads - its own and (possibly) the operations delegated to it by threads with which it previously
collided, threads that are awaiting their response.

We compared DECS with a few prior stack algorithm, including the HSY and the FC stacks. DECS
outperforms the HSY stack on all workload types and all concurrency levels; specifically, for asymmetric
workloads, DECS provides up to 3 times the throughput of the HSY stack.

The FC stack outperforms DECS in low and medium levels of concurrency. The performance of the
FC stack deteriorates quickly, however, as the level of concurrency increases. DECS, on the other hand,
continues to scale on all workload types and outperforms the FC stack in high concurrency levels by a wide
margin, providing up to 10 times its throughput.

(a)

Central
Stack

Object

Elimination
array

POPPUSH

X

PUSHPUSH

X

POPPOP

(b)

Central
Stack

Object

Elimination/
Combining
array

POPPUSH

X

PUSHPUSH

X

POPPOP

X X

Figure 1: Collision-attempt scenarios: (a) Collision scenarios in the elimination-backoff stack; (b) Collision
scenarios in DECS.

2

For some applications, a nonblocking [6] stack may be preferable to a blocking one because lock-
freedom is more robust in the face of thread failures. Whereas the elimination-backoff stack is lock-free,
both the FC and the DECS stacks are blocking. We present NB-DECS, a lock-free [6] variant of DECS that
allows threads that delegated their operations to a combining thread and have waited for too long to cancel
their “combining contracts” and retry their operations. The performance of NB-DECS is slightly better than
that of the HSY stack when workloads are symmetric and for pop-dominated workloads, but it provides
significantly higher throughput for push-dominated asymmetric workloads.

The remainder of this paper is organized as follows. We describe the DECS algorithm in Section 2
and report on its performance evaluation in Section 3. A high-level description of the NB-DECS algorithm
and its performance evaluation are provided in Section 4. We conclude the paper in Section 5 with a short
discussion of our results. Detailed correctness proof sketches and pseudo-codes of some functions that were
omitted from the body of the paper are presented in the appendix.

2 The Dynamic Elimination-Combining Algorithm

In this section we describe the DECS algorithm. Figure 2-(a) presents the data-structures and shared vari-
ables used by DECS. Similarly to the HSY stack, DECS uses two global arrays - location and collision -
which comprise its elimination-combining layer. Each entry of the location array corresponds to a thread
t ∈ {1..N} and is either NULL or stores a pointer to a multiOp structure described shortly. Each non-empty
entry of the collision array stores the ID of a thread waiting for another thread to collide with it. DECS also
uses a CentralStack structure, which is a singly-linked-list of Cell structures - each comprising an opaque
data field and a next pointer. Threads iteratively do the following: first, they try to apply their operation to
the CentralStack structure and, if they fail, they access the elimination-combining layer (see Figure 6 in the
appendix2).

Push or pop operations that access the elimination-combining layer may be combined. Thus, in general,
operations that are applied to the central stack or to the elimination-combining layer are multi-ops; that
is, they are either multi-pop or multi-push operations which represent the combination of multiple pop or
push operations, respectively. A multi-op is performed by a delegate thread, attempting to perform its own
operation and (possibly) also those of one or more waiting threads. The length of a multi-op is the number
of operations it consists of (which is the number of corresponding waiting threads plus 1). Each multi-op is
represented by a multiOp structure (see Figure 2-(a)), consisting of a thread identifier id, the operations type
(PUSH or POP) and a Cell structure (containing the thread data in case of a multi-push or empty in case
of a multi-pop). The next field points to the structure of the next operation of the multiOp (if any). Thus,
each multiOp is represented by a multiOp list of structures, the first of which represents the operation of the
delegate thread. The last field points to the last structure in the multiOp list and the length field stores the
multi-op’s length. The cStatus field is used for synchronization between a delegate thread and the threads
awaiting it and is described later in this section.

2For lack of space, some of the more straightforward pseudo-code is presented in the appendix.

3

Central Stack Functions

Figures 2-(b) and 2-(c) respectively present the pseudo-code of the cMultiPop and cMultiPush func-
tions applied to the central stack.

The cMultiPop function receives as its input a pointer to the first multiOp record in a multi-op list of
pop operations to be applied to the central stack. It first reads the central stack pointer (line 6). If the stack
is empty, then all the pop operations in the list are linearized in line 6 and will return an empty indication. In
lines 9–14, an EMPTY CELL is assigned as the response of all these operations and the cStatus fields of all
the multiOp structures is set to FINISHED in order to signal all waiting threads that their response is ready.
The cMultiPop function then returns true indicating to the delegate thread that its operation was applied.

If the stack is not empty, the number m of items that should be popped from the central stack is computed
(lines 15–19); this is the minimum between the length of the multi-pop operation and the central stack’s size.
The nTop pointer is set accordingly and a CAS is applied to the central stack attempting to atomically pop
m items (line 20). If the CAS fails, false is returned (line 34) indicating that cMultiPop failed and that
the multi-pop should be next applied to the elimination-combining layer.

If the CAS succeeds, then all the multi-pop operations are linearized when it occurs. The cMultiPop
function proceeds by iterating over the multi-op list (lines 23–32). It assigns the m cells that were popped
from the central stack to the first m pop operations (line 27) and assigns an EMPTY CELL to the rest of
the pop operations, if any (line 25). It then sets the cStatus of all these operations to FINISHED (line 30),
signalling all waiting threads that their response is ready. The cMultiPop function then returns true,
indicating that it was successful (line 33).

The cMultiPush function receives as its input a pointer to the first multiOp record in a multi-op list
of push operations to be applied to the central stack. It sets the next pointer of the last cell to point to the
top of the central stack (line 36) and applies a CAS operation in an attempt to atomically chain the list to
the central stack (line 37). If the CAS succeeds, then all the push operations in the list are linearized when
it occurs. In this case, the cMultiPush function proceeds by iterating over the multi-op list and setting
the cStatus of the push operations to FINISHED (lines 38–41). It then returns true in line 42, indicating its
success. If the CAS fails, cMultiPush returns false (line 44) indicating that the multi-push should now
be applied to the elimination-combining layer.

Elimination-Combining Layer Functions

The collide function, presented in Figure 2-(d), implements the elimination-combining backoff algorithm
performed after a multi-op fails on the central stack.3 It receives as its input a pointer to the first multiOp
record in a multi-op list. A delegate thread executing the function first registers by writing to its entry in the
location array (line 46) a pointer to its multiOp structure, thus advertising itself to other threads that may
access the elimination-combining layer . It then chooses randomly and uniformly an index into the collision
array (line 47) and repeatedly attempts to swap the value in the corresponding entry with its own ID by using
CAS (lines 48–50).

3This function is similar to the LesOP function of the HSY stack and is described for the sake of presentation completeness.

4

Figure 2: (a): Data structures, (b), (c): central stack operations, (d): the collide function.

(a) Data Structures and Shared Variables
define Cell: struct {data: Data, next: Cell };1

define multiOp: struct2

{id,op,length,cStatus:int, cell: Cell, next,last:
multiOp };
global CentralStack: Cell;3

global collision: array of [1,. . . ,N] of int init4

EMPTY;
global location: array of [1,. . . ,N] of multiOp5

init null;

(b) boolean cMultiPop(multiOp: mOp)
top = CentralStack;6

if top = null then7

repeat8

mOp.cell = EMPTY CELL;9

mOp.cStatus = FINISHED;10

mOp=mOp.next;11

until mOp = null ;12

return true;13

end14

nTop = top.next;15

m = 1;16

while nTop 6= null ∧ m < mOp.length do17

nTop = nTop.next, m++;18

end19

if CAS(&CentralStack, top, nTop) then20

mOp.cell = top;21

top = top.next;22

while mOp.next 6= null do23

if top = null then24

mOp.next.cell = EMPTY CELL;25

else26

mOp.next.cell = top;27

top = top.next;28

end29

mOp.next.cStatus = FINISHED;30

mOp.next = mOp.next.next;31

end32

return true;33

else return false;34

(c) boolean cMultiPush(multiOp: mOp)
top = CentralStack;35

mOp.last.cell.next=top;36

if CAS(&CentralStack, top, mOp.cell) then37

while mOp.next 6= null do38

mOp.next.cStatus = FINISHED;39

mOp.next = mOp.next.next;40

end41

return true;42

else43

return false;44

end45

(d) boolean collide(multiOp: mOp)
location[id] = mOp;46

index = randomIndex();47

him = collision[index];48

while CAS(&collision[index], him, id)=false49

do
him = collision[index];50

end51

if him 6= EMPTY then52

oInfo = location[him];53

if oInfo 6= NULL ∧ oInfo.id 6= id ∧54

oInfo.id=him then
if CAS(&location[id], mOp,55

NULL)=true then
return activeCollide(mOp,56

oInfo);
else57

return58

passiveCollide(mOp);
end59

end60

end61

wait();62

if CAS(&location[id], mOp, NULL)=false63

then
return passiveCollide(mOp);64

end65

return false;66

5

A thread that initiates a collision is called an active collider and a thread that discovers it was collided
with is called a passive collider. If the value read from the collision array entry is not null (line 52), then it is
a value written there by another registered thread that may await a collision. The delegate thread (now acting
as an active collider) proceeds by reading a pointer to the other thread’s multiOp structure oInfo (line 53)
and then verifies that the other thread may still be collided with (line 54).4

If the tests of line 54 succeed, the delegate thread attempts to deregister by CAS-ing its location entry
back to NULL (line 55). If the CAS is successful, the thread calls the activeCollide function (line 56)
in an attempt to either combine or eliminate its operations with those of the other thread. If the CAS fails,
however, this indicates that some other thread was quicker and already collided with the current thread;
in this case, the current thread becomes a passive thread and executes the passiveCollide function
(line 58).

If the tests of line 54 fail, the thread attempts to become a passive collider and waits for a short period of
time in line 62 to allow other threads to collide with it. It then tries to deregister by CAS-ing its entry in the
location array to NULL. If the CAS fails - implying that an active collider succeeded in initiating a collision
with the delegate thread - the delegate thread, now a passive collider, calls the passiveCollide (line 64)
function in an attempt to finalize the collision. If the CAS succeeds, the thread returns false indicating that
the operation failed on the elimination-combining layer and should be retried on the central stack.

The activeCollide function (figure 3-(a)) is called by an active collider in order to attempt to
combine or eliminate its operations with those of a passive collider. It receives as its input pointers to
the multiOp structures of both threads. The active collider first attempts to swap the passive collider’s
multiOp pointer with a pointer to its own multiOp structure by performing a CAS on the location array
in line 67. If the CAS fails then the passive collider is no longer eligible for collision and the function
returns false (line 76), indicating that the executing thread must retry its multi-op on the central stack. If
the CAS succeeds, then the collision took place. The active collider now compares the type of its multi-op
with that of the passive collider (line 68) and calls either the combine or the multiEliminate function,
depending on whether the multi-ops have identical or reverse semantics, respectively (lines 68–73). Observe
that activeCollide returns true in case of elimination and false in case of combining. The reason is
the following: in the first case it is guaranteed that the executing thread’s operation was matched with a
reverse-semantics operation and so was completed, whereas in the latter case the operations of the passive
collider are delegated to the active collider which must now access the central stack again.

The passiveCollide function (figure 3-(b)) is called by a passive collider after it identifies that it
was collided with. The passive collider first reads the multi-op pointer written to its entry in the location
array by the active collider and initializes its entry in preparation for future operations (lines 84–85). If
the multi-ops of the colliding threads-pair are of reverse semantics (line 86) then the function returns true in
line 90 because, in this case, it is guaranteed that the colliding delegate threads exchange values. Specifically,
if the passive thread’s multi-op type is pop, the thread copies the cell communicated to it by the active collider
(line 88).

If both multi-ops are of identical semantics, then the passive collider’s operations were delegated to the
active thread and the executing thread ceases to be a delegate thread. In this case, the thread waits until it is
signalled (by writing to the cStatus field of its multiOp structure) how to proceed. There are two possibilities:

4Some of the tests of line 54 are required because location array entries are not re-initialized when operations terminate (for
optimization reasons) and thus may contain outdated values.

6

Figure 3: (a) The activeCollide, (b) passiveCollide and, (c) combine functions.

(a) boolean activeCollide(multiOp:aInf,pInf)
if CAS(&location[pInf.id], pInf, aInf) then67

if aInf.op = pInf.op then68

combine(aInf,pInf);69

return false;70

else71

multiEliminate(aInf,pInf);72

return true;73

end74

else75

return false;76

end77

(c) combine(multiOp: aInf, pInf)
if aInf.op = PUSH then78

aInf.last.cell.next = pInf.cell;79

end80

aInf.last.next = pInf ;81

aInf.last = pInf.last;82

aInf.length = aInf.length + pInf.length;83

(b) boolean passiveCollide(multiOp:pInf)
aInf = location[pInf.id];84

location[pInf.id] = null;85

if pInf.op 6= aInf.op then86

if pInf.op = POP then87

pInf.cell = aInf.cell;88

end89

return true;90

else91

await(pInf.cStatus 6= INIT);92

if pInf.cStatus = FINISHED then93

return true;94

else95

pInf.cStatus = INIT;96

return false;97

end98

end99

(1) cStatus = FINISHED holds in line 93. In this case, the thread’s operation response is ready and it returns
true in line 94. (2) cStatus = RETRY holds (line 95) indicating that the executing thread became a delegate
thread once again. This occurs if a thread to which the current thread’s operation was delegated eliminated
with a multi-op that had a shorter list than its own and the first operation in the “residue” is the current
thread’s operation. In this case, the thread changes the value of its cStatus back to INIT (line 96) and
returns false, indicating that the operation should be retried on the central stack.

The combine function (figure 3-(c)) is called by an active collider when the operations of both colliders
have identical semantics. It receives as its input pointers to the multiOp structures of the two colliders. It
delegates the operations of the passive collider to the active one by concatenating the multiOp list of the
passive collider to that of the active collider, and by updating the last and length fields of its multiOp record
accordingly (lines 81–83). In addition, if the type of both multi-ops is push, then their cell-lists are also
concatenated (line 79); this allows the delegate thread to push all its operations to the central stack by using
a single CAS operation.

The multiEliminate function is called by an active collider when the operations of both colliders have
reverse semantics. It matches as many pairs of reverse-semantics operations as possible. If there is a residue
of push or pop operations, it signals the first waiting thread in the residue list by writing the value RETRY
to the cStatus field of its multiOp structure. The signaled thread becomes a delegate thread again and retries

7

its multi-op on the central stack. The full pseudo-code of the multiEliminate function and its description are
deferred to the appendix.

3 DECS Performance Evaluation

We conducted our performance evaluation on a Sun SPARC T5240 machine, comprising two UltraSPARC
T2 plus (Niagara II) chips, running the Solaris 10 operating system. Each chip contains 8 cores and each
core multiplexes 8 hardware threads, for a total of 64 hardware threads per chip. We ran our experiments
on a single chip to avoid communication via the L2 cache. The algorithms we evaluated are implemented in
C++ and the code was compiled using GCC with the -O3 flag for all algorithms.

We compare DECS with the Treiber stack5 and with the most effective known stack implementations:
the HSY elimination-backoff stack, and a flat-combining based stack.6 7

In our experiments, threads repeatedly apply operations to the stack for a fixed duration of one second
and we measure the resulting throughput - the total number of operations applied to the stack - varying the
level of concurrency from 1 to 128. Each data point is the average of three runs. We measure throughput
on both symmetric (push and pop operations are equally likely) and asymmetric workloads. Stacks are pre-
populated with enough cells so that pop operations do not operate on an empty stack also in asymmetric
workloads.

Figures 4-(a) through (c) compare the throughput of the algorithms we evaluate in symmetric (50%
push, 50% pop), moderately-asymmetric (25%push, 75% pop) and fully-asymmetric (0% push, 100% pop)
workloads, respectively. It can be seen that the DECS stack outperforms both the Treiber stack and the HSY
stack for all workload types and all concurrency levels.

Symmetric workloads
We first analyze performance on a symmetric workload, which is the optimal workload for the HSY stack.
As shown in Figure 4-(a), even here the HSY stack is outperformed by DECS by a margin of up to 31%
(when the number of HW threads is 64). This is because, even in symmetric workloads, there is a non-
negligible fraction of collisions between operations of identical semantics from which DECS benefits but
the HSY stack does not. Both DECS and the HSY stack scale up until concurrency level 64 - the number
of hardware threads. When the number of software threads exceeds the number of hardware threads, the
HSY stack more-or-less maintains its throughput whereas DECS slightly declines but remains significantly
superior to the HSY stack.

The FC stack incurs the highest overhead in the lack of contention (concurrency level 1) because the
single running thread still needs to capture the FC lock. Due to its low synchronization overhead it then
exhibits a steep increase in its throughput and reaches its peak throughput at 24 threads, where it outperforms
DECS by approximately 33%. The FC stack does not continue to scale beyond this point, however, and its

5We evaluated two variants of the Treiber algorithm - with and without exponential backoff. The variant using exponential
backoff performed consistently better and is the version we compare with.

6We downloaded the most updated flat-combining code from https://github.com/mit-carbon/Flat-Combining.
7The Treiber, HSY and DECS algorithms need to cope with the ”ABA problem” [8], since they use dynamic-memory structures

that may need to be recycled and perform CAS operations on pointers to these structures. We implemented the simplest and most
common ABA-prevention technique that includes a tag with the target memory locations so that both the memory location and the
tag are manipulated together atomically, and the tag is incremented with each update of the target memory location [8].

8

throughput rapidly deteriorates as the level of concurrency rises. For concurrency levels higher than 40,
its performance falls below that of DECS and it is increasingly outperformed by DECS as the level of
concurrency is increased: for 64 threads, DECS provides roughly 33% higher throughput, and for 128
threads DECS outperforms FC by a factor of 4. For concurrency levels higher than 96, the throughput of the
FC stack is even lower than that of the Treiber algorithm. The reason for this performance deterioration is
clear: the FC algorithm is essentially sequential, since a single thread performs the combined work of other
threads. The Treiber algorithm exhibits the worst performance since it is sequential and incurs significant
synchronization overhead. It scales moderately until concurrency level 16 and then more-or-less maintains
its throughput.

Figure 4-(d) provides more insights into the behavior of the DECS and HSY stacks in symmetric work-
loads. The HSY curve shows the percentage of operations completed by elimination. The DECS curve
shows the percentage of operations not applied directly to the central stack. These are the operations com-
pleted by either elimination or combining.8 The curves titled “Elimination only” and “Combining only”
show a finer partition of the DECS operations according to whether they completed through elimination or
combining. It can be seen that the overall percentage of operations not completed on the central stack is
higher for DECS than for the HSY stack by up to 30% (for 64 threads), thus reducing the load on the central
stack and allowing DECS to perform better than the HSY stack.

Asymmetric workloads
Figures 4-(b) and 4-(c) compare throughput on moderately- and fully-asymmetric workloads, respectively.
The relative performance of DECS, the FC and the Treiber stacks is roughly the same as for the symmetric
workload; nevertheless, DECS performance decreases because, as can be seen in Figures 4-(e) and 4-(f), the
ratio of DECS operations that complete via elimination is significantly reduced for the 25% push workload
and is 0 for the 0% push workload. This reduction in elimination is mostly compensated by a corresponding
increase in the ratio of DECS operations that complete by combining.

The performance of the HSY stack, however, deteriorates for asymmetric workloads because, unlike
DECS, it cannot benefit from collisions between operations with identical semantics. When the workload
is moderately asymmetric (Figure 4-(b)), the HSY stack scales up to 32 threads but then its performance
deteriorates and falls even below that of the Treiber algorithm for 48 threads or more. In these levels of
concurrency, the low percentage of successful collisions makes the elimination layer counter-effective. The
throughput of the DECS algorithm exceeds that of the HSY stack by a factor of up to 3. The picture
is even worse for the HSY algorithm for fully asymmetric workloads (Figure 4-(c)), where it performs
almost consistently worse than the Treiber algorithm. In these workloads, DECS’ throughput exceeds that
of the HSY algorithm significantly in all concurrency levels 8 or higher; the performance gap increases with
concurrency up until 64 threads and DECS provides about 3 times the throughput for all concurrency levels
64 or higher.

8Whenever a muli-op is applied to the central stack, the operation of the delegate thread is regarded as applied directly to the
central stack and those of the waiting threads are counted as completed by combining. Similarly, when two multi-ops of reverse
semantics collide, the operations of the delegate threads are counted as completed by elimination and those of the waiting threads
as completed by combining.

9

0 20 40 60 80 100 120

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

●

Treiber
HSY
DECS
Flat Combining

●●

●

●

●

●

●

●
●

● ●
● ●

●

● ●

(a) Throughput: 50% push, 50% pop
0 20 40 60 80 100 120

0
20

40
60

80
10

0

●

HSY
DECS − Elimination only
DECS − Combining only
DECS

●●●

●

●

●

●

●
●

●
●

●
● ● ● ●

(d) Collision success (%): 50% push, 50% pop

0 20 40 60 80 100 120

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

●

Treiber
HSY
DECS
Flat Combining

●●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Throughput: 25% push, 75% pop
0 20 40 60 80 100 120

0
20

40
60

80
10

0

●

HSY
DECS − Elimination only
DECS − Combining only
DECS

●●●

●
●

●
●

●
● ● ● ● ● ● ● ●

(e) Collision success (%): 25% push, 75% pop

0 20 40 60 80 100 120

5.
0e

+
06

1.
5e

+
07

2.
5e

+
07

●

Treiber
HSY
DECS
Flat Combining

●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

(c) Throughput: 0% push, 100% pop
0 20 40 60 80 100 120

0
20

40
60

80
10

0

●

HSY
DECS − Elimination only
DECS − Combining only
DECS

●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

(f) Collision success (%): 0% push, 100% pop

Figure 4: Throughput and collision success rates. X-axis: threads #; Y-axis in (a)-(c): throughput.
10

4 The Nonblocking DECS Algorithm

For some applications, a nonblocking stack may be preferable to a blocking one because it is more robust in
the face of thread failures. The HSY stack is nonblocking - specifically lock-free [6] - and hence guarantees
global progress as long as some threads do not fail-stop. In contrast, both the FC and the DECS stacks
are blocking. In this section, we provide a high-level description of NB-DECS, a lock-free variant of our
DECS algorithm that allows threads that delegated their operations to another thread and have waited for
too long to cancel their “combining contracts” and retry their operations. A full description of the algorithm
is deferred to the appendix. We also present a comparative evaluation of the new algorithm.

Recall that waiting threads await a signal from their delegate thread in the passiveCollide function
(line 92 in Figure 3). In the DECS algorithm, a thread awaits until the delegate thread writes to the cStatus
field of its multiOp structure but may wait indefinitely. In NB-DECS, when a thread concludes that it waited
“long enough” it attempts to invalidate its multiOp structure. To prevent race conditions, invalidation is
done by applying test-and-set to a new invalid field added to the multiOp structure. A delegate thread, on
the other hand, must take care not to assign a cell of a valid push operation to an invalid multi-op structure
of a pop operation. This raises the following complications which NB-DECS must handle.

1. A delegate thread may pop invalid cells from the central stack. Therefore, in order not to assign an
invalid cell to a pop operation, the delegate thread must apply test-and-set to each popped cell to
verify that it is still valid (and if so to ensure it remains valid), which hurts performance.

2. A delegate thread performing a pop multi-op must deal with situations in which some of its waiting
threads invalidated their multi-op structures. If the delegate thread were to pop from the central stack
more cells than can be assigned to valid multi-op structures in its list, linearizability would be violated.
Consequently, unlike in DECS, the delegate thread must pop items from the central stack one by one,
which also hurts the performance of NB-DECS as compared with DECS.

3. The multiEliminate function, called by an active delegate thread when it collides with a thread
with reverse semantics, must also verify that valid cells are only assigned to valid pop multi-ops. Once
again, test-and-set is used to prevent race conditions.

NB-DECS performance evaluation.
Due to the extra synchronization introduced in NB-DECS for allowing threads to invalidate operations that
are pending for too long, the throughput of NB-DECS is, in general, significantly lower than that of the
(blocking) DECS stack. We compare NB-DECS with two other lock-free algorithms: Treiber and the HSY
stack. As shown in Figure 5, the performance of the NB-DECS and HSY stacks on symmetric workloads is
almost identical (Figure 5-(a)), with a slight advantage to NB-DECS for concurrency levels of 36 or more,
and they both scale significantly better than the Treiber stack.

For moderately-asymmetric workloads, NB-DECS performs much better than the HSY stack but its
advantage is much greater when there is a majority of push operations. The reason for this difference is that
the extra synchronization added to NB-DECS (as compared with DECS) hurts pop operations more than it
does push operations. Specifically, complication 2. above hurts the performance of multi-pop operations
applied to the central stack (since they need to pop cells one by one) but multi-push operations to the central

11

stack may still push their entire list atomically. For workloads with 75% push operations (Figure 5-(b)), NB-
DECS outperforms the HSY stack significantly and the margin increases with concurrency. Specifically, for
56 threads or more, NB-DECS outperforms HSY by more than 70%. For workloads with 25% push (Figure
5-(b)), the difference is smaller but still significant and NB-DECS outperforms HSY by about 35% for
concurrency levels 24 or higher.

The state of affairs is similar for fully-asymmetric workloads. When the workload consists of push
operations only (Figure 5-(d)), NB-DECS scales nicely up to 56 threads and then more-or-less retains its
throughput, delivering performance of up to 2 times that of the HSY stack. On the other hand, when the
workload consists of only pop operations the extra synchronization hurts NB-DECS and the difference in
performance is much smaller.

0 20 40 60 80 100 120

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

●

Treiber
HSY
Non Blocking DECS

●●

●

●

●

●

●

●

●
● ●

● ●

●

● ●

(a) Throughput: 50% push, 50% pop
0 20 40 60 80 100 120

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

●

Treiber
HSY
Non Blocking DECS

●●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

(c) Throughput: 25% push, 75% pop

0 20 40 60 80 100 120

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

●

Treiber
HSY
Non Blocking DECS

●●

●

●
●

●
●

● ● ● ● ● ● ● ● ●

(b) Throughput: 75% push, 25% pop
0 20 40 60 80 100 120

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

●

Treiber
HSY
Non Blocking DECS

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

(d) Throughput: 100% push, 0% pop

Figure 5: Throughput of lock-free algorithms. X-axis: threads #; Y-axis: throughput.

12

5 Discussion

We present DECS, a novel Dynamic Elimination-Combining Stack algorithm. Our empirical evaluation
shows that DECS scales significantly better than (both blocking and nonblocking) best known stack al-
gorithms for all workload types, providing throughput that is significantly superior to that of both the
elimination-backoff stack and the flat-combining stack for high concurrency levels. We also present NB-
DECS - a lock-free variant of DECS. NB-DECS provides lower throughput than (the blocking) DECS due
to the extra synchronization required for satisfying lock-freedom but may be preferable for some applica-
tions since it is more robust to thread failures. NB-DECS significantly outperforms the elimination-backoff
stack, the most scalable prior lock-free stack on almost all workload types. The key feature that makes
DECS highly effective is the use of a dynamic elimination-combining layer as a backoff scheme for a cen-
tral data-structure. We believe that this idea may be useful for obtaining high-performance implementations
of additional concurrent data-structures.

Acknowledgements: We thank Yehuda Afek and Nir Shavit for allowing us to use their Sun SPARC T5240
machine.

13

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based on
elimination-diffraction trees. In Euro-Par (2), pages 151–162, 2010.

[2] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In SPAA, pages 355–364, 2010.

[3] D. Hendler and S. Kutten. Bounded-wait combining: constructing robust and high-throughput shared
objects. Distributed Computing, 21(6):405–431, 2009.

[4] D. Hendler, S. Kutten, and E. Michalak. An adaptive technique for constructing robust and high-
throughput shared objects. In OPODIS, pages 318–332, 2010.

[5] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. J. Parallel Distrib.
Comput., 70(1):1–12, 2010.

[6] M. Herlihy. Wait-free synchronization. ACM Transactions On Programming Languages and Systems,
13(1):123–149, Jan. 1991.

[7] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[8] IBM. IBM System/370 Extended Architecture, Principles of Operation, publication no. SA22-7085.
1983.

[9] M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-safe locking on multi-
programmed shared — memory multiprocessors. Journal of Parallel and Distributed Computing,
51(1):1–26, 1998.

[10] N. Shavit and D. Touitou. Elimination trees and the construction of pools and stacks. Theory of
Computing Systems, (30):645–670, 1997.

[11] K. Taura, S. Matsuoka, and A. Yonezawa. An efficient implementation scheme of concurrent object-
oriented languages on stock multicomputers. In Principles Practice of Parallel Programming, pages
218–228, 1993.

[12] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM
Almaden Research Center, April 1986.

[13] P. Yew, N. Tzeng, and D. Lawrie. Distributing hot-spot addressing in large-scale multiprocessors.
IEEE Transactions on Computers, C-36(4):388–395, April 1987.

14

Appendix A: DECS Pseudo-Code Omitted From Paper Body

Figure 6 presents the code performed by a thread when it applies a push or a pop operation to the DECS
stack. A pop (push) operation starts by initializing a multiOp record in line 100 (line 108). It then attempts
to apply the pop (push) operation to the central stack in line 102 (line 110). If this attempt fails, the thread
then attempts to apply its operation to the elimination-combining layer in line 104 (line 112). A delegate
thread continues these attempts repeatedly until it succeeds. A pop operation returns the data stored at the
cell that it received either from the central stack (line 103) or by way of elimination (line 105).

Figure 6: DECS Push and Pop functions.

Data pop()
multiOp mOp = initMultiOp();100

while true do101

if cMultiPop(mOp) then102

return mOp.cell.data;103

else if collide(mOp) then104

return mOp.cell.data;105

end106

end107

push(data)
multiOp mOp = initMultiOp(data);108

while true do109

if cMultiPush(mOp) then110

return;111

else if collide(mOp) then112

return;113

end114

end115

Figure 7 presents the pseudo-code of the multiEliminate function, which is called by an active collider
when the operations of both colliders have reverse semantics. It receives as input pointers to the multiOp
records of the active and passive colliders. In the loop of lines 118–130, as many pairs of reverse-semantics
operations as possible are matched until at least one of the operation lists is exhausted. All matched opera-
tions are signalled by writing the value FINISHED to the cStatus field of their multiOp structure, indicating
that they can terminate (lines 124–125). Note that both lists contain at least one operation, thus at least a
single pair of operations are matched. If the lengths of the multi-ops are unequal, then a “residue” sublist
remains. In this case, the length and last fields of the multiOp structure belonging to the first waiting thread
in the residue sub-list are set. Then that thread is signalled by writing the value RETRY to the cStatus field of
its multiOp structure (in line 134 or line 138). This makes the signaled thread a delegate thread once again
and it will retry its multi-op on the central stack.

15

Figure 7: The multiEliminate function.

multiEliminate(multiOp: aInf, pInf)
aCurr = aInf ;116

pCurr = pInf ;117

repeat118

if aInf.op = POP then119

aCurr.cell = pCurr.cell;120

else121

pCurr.cell = aCurr.cell;122

end123

aCurr.cStatus = FINISHED;124

pCurr.cStatus = FINISHED;125

aInf.length = aInf.length - 1;126

pInf.length = pInf.length - 1;127

aCurr = aCurr.next;128

pCurr = pCurr.next;129

until aCurr = null ∨ pCurr = null ;130

if aCurr 6= null then131

aCurr.length = aInf.length;132

aCurr.last = aInf.last;133

aCurr.cStatus = RETRY;134

else if pCurr 6= null then135

pCurr.length = pInf.length;136

pCurr.last = pInf.last;137

pCurr.cStatus = RETRY;138

end139

Appendix B: DECS Correctness Proof Sketch

A concurrent stack is a data structure whose operations are linearizable to those of the sequential stack.

Definition 1 A Stack S is an object that supports two operation types: pop and push. The state of the stack
is a sequence of items S = <v0,,vn>.
The stack is initially empty. The pop and push operations induce the following state transitions to S with
appropriate return values.

• pop(): if S is not empty, returns vn and changes S to <v0,,vn−1>, otherwise returns empty and S
remains unchanged.

• push(vnew): changes S to <v0,....,vn, vnew>.

A pool is a relaxation of a stack that does not require LIFO ordering. Similarly to the proofs in [5], we
start by proving that DECS has correct pool semantics and then prove that it is linearizable to a sequential

16

stack. Finally we prove that DECS is deadlock-free.

Correct pool semantics

Definition 2 A stack algorithm has correct pool semantics if the following requirements are met for all stack
operations:

1. Let Op be a pop operation, then if the number of push operations preceding Op is larger than the
number of pop operations preceding it, Op returns an item (a non-empty value).

2. Let Op be a pop operation that returns an item i, then i was previously pushed by a push operation.

3. Let Op be a push operation that pushed an item i to the stack, then there is at most a single pop
operation that returns it.

An operation that complies with the above requirements is called a correct pool operation.

Definition 3 We say that a multi-operation is a colliding multi-op if it returns in line 56, line 58 or line 64
(after executing activeCollide or passiveCollide).

Definition 4 Let op1 and op2 two multi-operations. We say that op1 and op2 have collided if one of the
following conditions hold:

• op1 performs a successful CAS in line 67 of activeCollide and pInf points to the multiOp of op2
at that time.

• op2 performs a CAS in line 63 of collide and the CAS fails because the entry corresponding to op2
in the location array points to the multiOp of op1.

Definition 5 If op is a colliding multi-op that executes a successful CAS in line 67 we say it is an active
colliding multi-op. If it performs an unsuccessful CAS operation in line 55 or line 63 we say it is a passive
colliding multi-op.

Lemma 1 Every colliding multi-op is either passive or active, but not both.

Proof sketch: First, a multi-op cannot collide with itself since it verifies in line 54 that the other multi-op
has a different id. If op is an active colliding multi-op, then from Definition 5 it executes a successful CAS in
line 67. It follows from the code that an active colliding multi-op executes the activeCollide function,
implying that it executed a successful CAS in line 55 and by Definition 5 that means op is not a passive
colliding multi-op.

A similar argument proves that if op is a passive colliding multi-op then it is not an active colliding
multi-op.

Lemma 2 Every passive colliding multi-op collides with exactly one active colliding multi-op and vice
versa.

17

Proof sketch: Let op1 be an active colliding multi-op. According to Lemma 1, op1 cannot be a passive
colliding multi-op. From Definition 5, op1 performed a successful CAS in line 67. Let op2 denote the
multiOp that op1 sets in its corresponding location array entry on line 67. Only op2 could have written its
multiOp in its corresponding entry in the location array on line 46. Hence, op2 is executing collide and
has not yet finished its execution because the CAS on line 63 was not performed. Since op1 performed
a successful CAS in line 67, the CAS performed by op2 on line 55 or on line 63 fails. It follows from
Definition 5 that op2 is a passive colliding multi-op. Finally, any other operation trying to perform the
CAS operation in line 67 on the location of the process executing op2 will fail, hence op1 is the only active
colliding multi-op that collides with op2.

Lemma 3 Let op2 be a passive colliding multi-op and let op1 be the active colliding multi-op it collided
with. Then when op2 enters passiveCollide, a pointer to the multiOp of op1 is written in location[op2].

Proof sketch: op2 enters passiveCollide after an unsuccessful CAS on line 55 or line 63. This could
have happened only if op1 performed a successful CAS on line 67 and set location[op2] to pInf, pointing to
op2’s multiOp and setting location[op2].

Definition 6 let op1 be an active colliding multi-op and op2 be the passive colliding multi-op it collided
with. If both operations have the same operation semantics, we say the collision is a combining collision
and we call op1 and op2 combining multi-ops. Otherwise we say the collision is an eliminating collision
and we call op1 and op2 eliminating multi-ops.

Definition 7 We say that a multi-op is a waiting multi-op if it executes line 92.

Lemma 4 A waiting multi-op is a passive colliding multi-op that collided with an active multi-op of the
same semantics.

Proof sketch: From the collide function and Definition 5 it follows that an operation executes passiveCollide
iff it is a passive colliding multi-op. From Lemma 3 and the passiveCollide function it follows that a pas-
sive colliding multi-op executes line 92 only if the active colliding multi-op it collided with has the same
semantics.

Definition 8 We say that a multi-op is a delegate multi-op if it is not a waiting multi-op.
We call the singly linked list of the multiOp structures that starts in the multiOp of the delegate multi-op,
the multiOp list of the delegate multi-op. If op1 is a delegate multi-op and op2 is another multi-op whose
multiOp structure is in the multiOp list of op1 then we say that op2 is in the multiOp list of op1.
If the delegate multi-op is push, we call the singly linked list of cells that starts with the cell of the delegate
operation the cells list of the delegate operation.

Lemma 5 Let op1 be a delegate multi-op, then all multi-ops in its multiOp list except for op1 itself are
waiting multi-ops and all the multi-ops in the multiOp list of op1 have identical operation semantics.

Proof sketch: Let op1 be a delegate multi-op. Upon the first invocation of op1, the only multi-op in op1’s
multiOp list is op1 so the claim holds. In addition, note that the last field in op1’s multiOp points to itself,
which is the last multiOp in op1’s multiOp list.

18

Multi-ops are added to the multiOp list of op1 only during the execution of the combine function which is
called during the execution of activeCollide and only if some other op2 is a passive colliding multi-op
that collided with op1 and has identical semantics. According to Lemma 4, a waiting multi-op is a passive
colliding multi-op with the same operation semantics as the active colliding multi-op it collided with. Let
op2 denote the waiting multi-op that is added to op1’s multiOp list. Note that, op1 adds op2’s multiOp to its
multiOp list at its end and then updates the last field of its multiOp structure to point to the last element in
op2’s multiOp list. As op2 is a waiting multi-op with the same operation semantics as op1, the claim holds.

Definition 9 Let op1 and op2 be two multi-ops. We say that op1 signals SIGNAL to op2 if op1 writes SIGNAL
to the cStatus field of the multiOp structure of op2.

Definition 10 Let op1 and op2 be two multi-ops. We say that op1 is the delegate multi-op of op2 in time t, if
op1 was not yet eliminated (in the multiEliminate function) and one of the following cases holds:

1. op2 is op1 (that is, every delegate operation is the delegate operation of itself).

2. op1 is an active colliding multi-op, op2 is the passive colliding multi-op it collided with and op1 and
op2 have the same operation semantics. In this case, op1 becomes the delegate multi-op of op2 when
they collide (at which time op2 ceases to be the delegate multi-op of itself).

3. op3 is the delegate multi-op of op2 and, in time t, op1 becomes the delegate multi-op of op3. In
this case, we say that op1 becomes the delegate multi-op of op2 instead of op3 (op3 ceases to be the
delegate multi-op of op2).

4. Assume that op3 is the delegate multi-op of both op1 and op2, the multiOps of both of them are in the
multiOp list of op3 and the multiOp of op1 appears before the multiOp of op2 in the multiOp list of
op3. If op3 signals RETRY to op1, then op1 becomes the delegate multi-op of op2. In this case we
say that op3 ceases being the delegate multi-op of op2 and that op1 starts being the delegate multi-op
of op2 (note that in this case op1 stops executing line 92 and by Definition 7 ceases being a waiting
multi-op and starts being a delegate multi-op).

Lemma 6 Every waiting multi-op has exactly a single delegate multi-op.

Proof sketch: Let op2 be a waiting multi-op. By Lemma 4, op2 is a passive colliding multi-op that collided
with an active colliding multi-op with identical semantics, which we denote as op1. By Definition 10, op1
is a delegate multi-op of op2 at the time both of them collide. Also from Definition 10, a multi-op ceases to
be the delegate multi-op of op2 only if it is replaced by a single new delegate multi-op.

Lemma 7 Let op be a delegate multi-op and let opInfo be its multiOp structure, then the following proper-
ties hold when op begins executing cMultiPop, cMultiPush or collide:

• The multiOp list of op is comprised of op’s multiOp and of its waiting multi-ops.

• opInfo.length is the length of the multiOp list of op.

19

• opInfo.last points to the last multiOp in op’s multiOp.

• If op is a push operation, then the order of its cells list corresponds to its multiOp list.

Proof sketch: Upon an invocation of op, it is a delegate multi-op with a single multi-op (op itself). The
multiOp’s length field is initialized to 1, and last points to op’s multiOp. If the multi-op is a push, its cell
field contains the data with which op was invoked and the cell’s next field points to null. We still need to
consider the following two cases in which the multiOp list is modified:

1. op is the aInf parameter of the combine function.

2. op’s multiOp list was set on lines 132–134 or lines 136–138 of multiEliminate function.

In the first case, op is the active colliding multi-op which collides with some other passive colliding multi-op
op′. The combine function sets the next element of the last element in op’s multiOp list to point to op′

multiOp list’s first element. It then sets op’s last pointer to point to the last element in op′’s multiOp list,
and adds the number of entries of op′’s multiOp list to the length field of op. In case both operations are of a
push semantics, the function concatenates op′’s cells list to the end of op’s cells list. In the second case, op
is a delegate multi-op because some other operation, op′′, signaled op with RETRY in multiEliminate.
Prior to that signal, the last and length fields of op were updated by op′′. The last field was set to op′′’s last
element in its multiOp list, and length was set to the number of multi-ops which were not eliminated from
op′′ multiOp list.

Lemma 8 Let op be a multi-op returning true in line 42 of cMultiPush, then the following properties
hold:

1. Each multi-op in op’s multiOp list is a waiting push multi-op except for the first multi-op which is the
delegate’s multi-op.

2. Before returning true on line 42, op signaled FINISHED to each waiting multi-op in its multiOp list.

3. All cells in the cells list of op were pushed to the central stack in the reverse order of the cells list.

Proof sketch: 1. If op returns true in line 42 then op is a push multi-op and, from Lemma 5, all the
multi-ops in the delegate multiOp list are waiting push multi-ops except for the first multi-op, which
is the delegate multi-op.

2. Clear from the code of the cMultiPush function.

3. From Lemma 7, the length field of op’s multiOp is equal to the length of op’s multiOp list, and the
order of the cells list corresponds to the multiOp list. From the code on lines 36–37, after a successful
CAS operation, CentralStack points to the first cell of op’s cells list, and the last cell of op’s cells list
points to the previous top item of the central stack. It is easy to see that the reversed order of the
cells list implicates an execution of op’s multiOp list push multi-ops starting from its last multi-op
and ending with the delegate multi-op.

20

Lemma 9 Let op be a delegate multi-op that returns true in line 13 or line 33 of cMultiPop, then the
following properties hold:

1. Each multi-op in op’s multiOp list is a waiting pop multi-op except for the first multi-op which is the
delegate multi-op.

2. Before returning true on line 13 or line 33, op signals FINISHED to each waiting multi-op in its
multiOp list.

3. The number of cells op has popped from the central stack in cMultiPop is equal to the minimum
between the number of multiOp elements in op’s multiOp list and the number of cells in the stack.

4. If op writes EMPTY CELL in the cell field of some multiOp in its multiOp list, then the number of
elements in the central stack was smaller than the number of elements in op’s multiOp list.

5. If op writes a cell in the cell field of a multiOp from its multiOp list, then that cell was previously
pushed to the stack by some push operation and that multiOp is the only multiOp of a pop operation
pointing to that cell.

Proof sketch: 1. If op returns true in line 13 or line 33 then op is a pop multi-op and from Lemma 5
all the multi-ops in the delegate multiOp list are waiting pop multi-ops except the first multi-op which
is the delegate multi-op.

2. Clear from the code of the cMultiPop function.

3. From Lemma 7, the length field of the multiOp of op is the length of the multiOp list of op. Assume
that the length of the multiOp list of op1 is N . If the stack is not empty, on line 20 CentralStack points
to the N + 1’th cell in the stack and if the stack has N items or less, CentralStack points to null.

4. Immediate from the code on lines 23–32.

5. Lines 21–32 imply that each cell that is assigned to a multi-op is a cell which was taken from the
central stack. According to Lemma 8, all cells in the central stack were inserted by a successful push
multi-op using cMultiPush.

Lemma 10 Let op be a delegate push multi-op returning true in line 42 of cMultiPush, then each of the
cells it inserts to the central stack will be assigned to at most a single pop operation.

Proof sketch: Assume by way of contradiction that more than two pop operations, op1 and op2, were
assigned the same cell which was pushed to the central stack. Without loss of generality we assume that op1
performed the successful CAS on line 20 before op2. According to Lemma 9 and the code, op1 assigns this
cell to one of the operations in its multiOp list, and accordingly CentralStack then points to a cell which is
not one of the removed cells. When op2 performs the successful CAS on line 20, all the cells removed by
op2 are different from the cells removed by op1, in contradiction to the assumption.

Definition 11 We say that an operation is an eliminated multi-op if it returns true on line 73 or on line 90
or some other thread signals it FINISHED on line 124 or on line 125.

21

Lemma 11 Let op be an eliminated multi-op, then the following properties hold:

• If op is a pop, it obtains the value of a single eliminated push operation.

• If op is a push, its value is obtained by a single eliminated pop operation.

Proof sketch: Let op1 and op2 be two delegate multi-ops where WLOG op1 is an active colliding multi-
op and op2 is the passive colliding multi-op it collided with, and the two multi-ops have reverse operation
semantics. We will begin by proving the lemma for the delegate operations themselves. If op1 returns true
on line 73, then it is after it executed multiEliminate between multiOps’ list of op1 and op2. In case
op1 is a push multi-op, op2 executes passiveCollide and obtains the cell of op1 on line 88. If, however,
op1 is a pop multi-op, it obtains the cell of op2 while executing the first iteration on lines 119–123. Note
that op2 will return true on line 90.
We now prove the elimination of the waiting multi-ops of op1 and op2. Let op′1 be the M ’th operation in
op1’s multiOp list and op′2 be the M ’th operation in op2’s multiOp list. If op′1 is a push operation then its
value is obtained by op′2 on line 122. However, if op′1 is a pop operation then it obtains op′2’s value on
line 120. Note that op1 then signals both op′1 and op′2 FINISHED on lines 124–125.

Lemma 12 Let op2 be an operation returning true in line 94 and let op1 be the operation that signaled
FINISHED to op2, then:

• If op1 is a pop operation then it obtains the value of a push operation or EMPTY CELL if the stack
was empty when its operation was performed.

• If op1 is a push operation then at most a single pop operation returns its item.

Proof sketch: Clearly from the code, op1 could have signaled op2 FINISHED only in line 10, line 30,
line 39, line 124 or line 125. If op1 signaled FINISHED in line 10 or line 30, then op1 is a pop operation
bound to return true in line 13 or line 33 and by Lemma 9 it follows that op2 is a pop operation obtaining
the value of a single push operation.
If op1 signaled FINISHED in line 39, than op1 is a push operation bound to return true in line 42. By
Lemma 5 op2 is also a push operation and by Lemma 10 its item will be returned by at most one pop
operation. Finally, if op1 signals op2 FINISHED in line 124 or line 125, then by Lemma 11 the proof holds.

Theorem 1 The Dynamic Elimination-Combining Stack has correct pool semantics.

Proof sketch: A thread can finish its operation by returning true in one of the following lines: line 13,
line 33, line 42, line 56, line 58 or line 64. If a thread finishes its operation in line 13 or line 33, then it is a
pop operation performed on the central stack and, by Lemma 9, the operation is a correct pool operation. If
a thread finishes its operation in line 42, then it is a push operation performed on the central stack and, by
Lemma 10, the operation is a correct pool operation.

If a thread finishes its operation in line 56, then it is an active colliding multi-op that performed an
elimination and, by Lemma 11, the operation is a correct pool operation. If a thread finishes its operation in

22

line 58 or line 64, then it is a passive colliding multi-op that returned true either from line 90 or from line 94
in passiveCollide. If the thread return true in line 90 then its operation was performed by elimination
and, by Lemma 11, it is a correct pool operation. On the other hand, if the thread returned true from line 94
then its operation was performed by combining and, by Lemma 12, it is also a correct pool operation. It
follows from Definition 2 that DECS has correct pool semantics.

Linearizability

Lemma 13 The linearization points of the DECS algorithm are as follows:
All active operations are linearized in the following lines, executed in their last iteration of the push

(lines 110–113) or pop (lines 102–105) operation:

• Delegate thread pop operations are linearized in line 7, line 20 and in line 67 when the collision is an
eliminating collision.

• Delegate thread push operations are linearized in line 37 and line 67 when the collision is an elimi-
nating collision.

Eliminating passive operations are linearized in the linearization point of their single matching active col-
liding multi-op, where push colliding multi-op are linearized before the pop operation.
Waiting operations (combining passive operations) are linearized in the linearization point of their single
delegate operation, where:

• If their delegate operation is a pop operation and its linearization point is line 7 or line 20, then all the
corresponding waiting operations are linearized at that point, according to their order in the multiOp
list.

• If their delegate operation is a push operation and its linearization point is line 37, then all the
corresponding waiting operation are linearized at that point, in reverse order of the multiOp list.

• If their delegate operation linearization point is line 67, then the linearization point of each waiting
operation occurs at the linearization point of corresponding delegate operation and push colliding
multi-op are linearized before pop colliding multi-ops.

Proof sketch: Line 7, line 20, line 37 and line 67 complete by modifying the central stack; in this case, the
claim follows by a simple extension of the Treiber [12] algorithm correctness argument for multi-ops.

Next, we consider the linearization points for passive eliminating operations. In order to prove the
claim for these operations, we need to prove that the linearization as defined in the lemma statement occurs
during the operation’s time interval. Let op2 be a passive colliding multi-op and let op1 be its matching
active colliding multi-op. Assume by way of contradiction that op2 terminated before the linearization point
defined in the lemma statement. From Definitions 5 and 11, op2 executed lines 84–90. Specifically, op2
writes null to its entry in the location array and finishes its operation whereas op1 performs line 67 only
later. From the condition of line 54, it follows that the multiOp of op2 must be non-null for op1 to succeed
in colliding with it. It follows that op1 fails in the CAS performed in line 67, in contradiction to Definition
5.

23

We now consider the linearization points defined for waiting operations. By Lemma 6, every waiting
operation has exactly one delegate operation at any point of time, thus the linearization points are well-
defined. By the definition of waiting operations, these operation did not yet terminate at their linearization
times.

Finally, we consider the linearization points for operations that complete by elimination (these may be
active colliding operations, passive colliding operations, or waiting operations). We already showed above
that the linearization points for passive colliding operations and waiting operations are well defined. We are
left to prove that correct LIFO ordering is maintained between any two linearized colliding operations and
between these operations and operations that complete by modifying the central stack.

When linearizing a passive collider in the linearization point of its single active matching operation,
no other operations can be linearized between these two operations. Moreover, since the push operation
is linearized immediately before the pop operation, this is a legal LIFO ordering that cannot interfere with
LIFO matchings of other collisions or with operations completed on the central stack. From Lemma 11, a
pop operation obtains the value of the push operation it collides with.

Similar arguments establish the linearizability of the waiting operations in the combining lists of a pair
of delegate operations that eliminate with each other. In this case, from Lemma 12, a waiting pop operation
returns the value it obtained from the matching push operation.

Theorem 2 The Dynamic Elimination-Combining Stack is a correct linearizable implementation of a stack
object.

Proof sketch: Immediate from Lemma 13.

Deadlock Freedom

Theorem 3 The dynamic elimination-Combining stack algorithm is deadlock-free.

Proof sketch: Let op be an operation. We show that if each thread is scheduled infinitely often, then in
every iteration made by op, some operation is linearized.

If op is an active delegate operation, then it first tries to apply the operations in its multiOp list (which
includes its own operation) to the central stack. If op succeeds, then its linearization point has occurred.
Otherwise, it must be that op fails the CAS in line 20 or line 37 and this can only occur if another operation
applied a successful CAS – and was therefore linearized – in the course of op’s iteration.

If op is an active or a passive eliminating operation that succeeds in colliding, then its linearization point
has already occurred and in line 90 it returns true and finishes its operation.

Otherwise, op is a waiting operation. Let op1 be the single delegate multi-op such that when op1 is
linearized, it is the delegate multi-op of op. From Lemmma 13, op is linearized at the same time as op1.
More specifically, the linearization point of op1 is followed by a release of all the waiting operations in its
multiOp list. This is done by signaling them a FINISHED value. From Lemma 7, when op1 is linearized,
op is in its multiOp list. Thus, as op1 continues taking steps after performing its linearization point, op is
eventually released from its waiting at line 92 and finishes its operation. To conclude the proof, observe
that in every iteration of op, either op’s delegate thread or another delegate thread is linearized and will then
release all of its waiting operation.

24

Appendix C: The Non-Blocking DECS algorithm

In Section 4, we provided a high-level description of the NB-DECS algorithm. In this section we provide a
more detailed description of the differences in the pseudo-codes of DECS and NB-DECS. We only describe
the modifications that need to be incorporated into the blocking DECS algorithm presented in Section 2.

In order to highlight the differences between the two algorithms, we marked modified or new pseudo-
code lines with red color, and kept the original code written in black color. The headers of new functions
and functions that were extensively modified are also marked by red color.

New structure fields added for NB-DECS are shown in Figure 8. An invalid flag was added to each
Cell, indicating whether or not the cell was invalidated by a thread that stopped waiting. Two fields were
added to to the multiOp structure: (1) other - which points to a multiOp structure of a thread with reverse
semantics to indicate that an elimination between the two operations occurred; and (2) invalid - indicating
whether the multiOp structure is still valid (was not invalidated by the waiting thread). invalid flags are set
using test-and-set to avoid race conditions.

A key change as compared to DECS is that a waiting thread (i.e., a thread that delegates its operation to
another thread) stops waiting for its operation to be executed after some period of time. That is, a waiting
thread “gives-up” waiting for the delegate thread and retries its operation.

Each thread invokes a push or pop operation by executing the push and pop functions respectively
(Figure 9). As in DECS, the threads iteratively attempt to apply their operation on the CentralStack structure
and, if they fail, they access the elimination-combining layer. After accessing the elimination-combining
layer, each thread verifies that its multiOp is still valid to use. If the multiOp is marked as invalid (and
therefore cannot be used), the thread initializes a new multiOp record and re-attempts its operation on the
CentralStack.

The code of the cMultiPush function is identical to that of the blocking version (Figure 2-(c)). The
code of cMultiPop changed, however, and is presented in figure 10. A delegate thread which executes the
cMultiPop operation attempts to execute M (where M is the length of its multiOp list) pop operations,
one after the other. If the stack is empty, the delegate thread iterates over its multiOp list, sets the cStatus
of the threads that are still waiting to FINISHED and their cell to an EMPTY CELL (lines 167–173). If the
stack is non-empty, the delegate thread removes a single cell from the stack (line 176) and verifies that this
cell is a valid cell (line 177). When the delegate thread successfully removes a cell from the top of the stack,
it searches for a thread in its multiOp list that is still waiting (using the delegatePop function). This is
required, since, at least theoretically, it is possible that all waiting processes ’gave up’ and stopped waiting. If
a waiting thread is not found, the removed cell is assigned to the delegate thread itself (lines 179–180). If the
CAS on line 176 fails or the cell is invalid (line 177), the delegate thread continues and performs additional

Figure 8: Non Blocking DECS Data Structures - modifications

define Cell: struct { data: Data, next: Cell,140

invalid: boolean init false };141

define multiOp: struct { id, op, length, cStatus: int, cell: Cell, next, last: multiOp;142

other: multiOp init null, invalid: boolean init false };143

25

Figure 9: Non Blocking push and pop operations

Data pop()
multiOp mOp = initMultiOp();144

while true do145

if cMultiPop(mOp) then146

return mOp.cell.data;147

else if collide(mOp) then148

return mOp.cell.data;149

else if mOp.invalid=true then150

mOp = initMultiOp();151

end152

end153

push(Data: data)
multiOp mOp = initMultiOp(data);154

while true do155

if cMultiPush(mOp) then156

return;157

else if collide(mOp) then158

return;159

else if mOp.invalid=true then160

mOp = initMultiOp(data);161

end162

end163

pop operation if required. If no cell was obtained by the delegate thread for itself, the function returns false,
and the delegate thread enters the elimination-collision layer (as described in the pop function).

The delegatePop function described in figure 11 receives a delegate thread’s pop multiOp and a
valid cell that was removed from the stack. The function searches for a waiting thread in the multiOp list
and, if such a thread is found, assigns the cell to that waiting thread. The function starts by iterating over
the multiOp list, one multiOp at a time, as long as no waiting multiOp is found. Once a waiting thread is
found, the cell is assigned to it and the multiOp is removed from the delegate’s multiOp list (lines 188–191).
In line 193, the waiting thread’s multiOp is checked. If it is still valid (i.e., the thread is still waiting), the
delegatePop function returns true, indicating that a waiting thread which obtained the cell was found.
Otherwise, if no waiting thread is found, the function returns false.

As in DECS, the passiveColide function (presented in figure 12) is invoked by a passive collider
after it identifies that it was collided with. The passive collider first reads the multi-op pointer written
to its entry in the location array by the active collider and initializes its entry in preparation for future
operations (lines 198–199). If the multi-ops of the colliding threads-pair are of reverse semantics (line 200)
then the function returns true in line 204 because, in this case, it is guaranteed that the colliding delegate
threads exchange values. Specifically, if the passive thread’s multi-op type is pop, the thread copies the cell
communicated to it by the active collider (line 202).

The algorithm in the non blocking version is different for the case where both multi-ops are of identical
semantics (lines 205–226). In this case, the passive collider’s operations were delegated to the active thread
until some time limit expires or the executing thread’s cStatus is modified, as shown in line 206. Upon
terminating the bounded waiting, the passive collider’s operation is either performed by the active thread or
has yet to be performed. In the latter case, the cStatus field of the passive operation is still INIT, and the
function calls the wakeup function in line 225 so that the passive thread will retry executing its operation
while avoiding a race condition with the active collider.

If, on the other hand, the active collider updated the cStatus field, then the executing thread’s operation

26

Figure 10: Non-Blocking central stack operations

boolean cMultiPop(multiOp: mOp)
for i = 1 to mOp.length do164

top = CentralStack;165

if top = null then166

repeat167

mOp.cell = EMPTY CELL;168

mOp.cStatus = FINISHED;169

testAndSet(mOp.invalid);170

mOp = mOp.next;171

until mOp = null ;172

return true;173

end174

next = top.next;175

if CAS(&CentralStack, top, next) then176

if testAndSet(top.invalid)=false then177

if delegatePop(mOp, top)=false then178

mOp.cell = top;179

return true;180

end181

end182

end183

end184

return false;185

is either: (1) executed on the central stack and finished, (2) eliminated with another operation, or (3) an
eliminating operation was not found. In the first case, the operation was successfully executed on the central
stack by a thread that invoked the cMultiPush or the cMultiPop functions, and the function returns true
indicating the operation is terminated (line 210). The second case, where the operation was eliminated with
another operation is dealt with in lines 211–219, The executing thread invokes a test-and-set operation on
the invalid flag of the operation that was assigned to it. If the test-and-set succeeds, then the other operation
is a valid operation, an elimination occurs and the function return true in line 214. (Note that if the passive
collider’s operation is a pop, the passive collider obtains the cell of the other operation on line 213.) If,
on the other hand, the test-and-set fails – implying that the other thread stopped waiting (line 215) – the
executing thread resets its multiOp record fields and returns false. The third case, where cStatus is set to
RETRY, is similar to the corresponding case in the DECS algorithm: The passive operation is notified that
an eliminating operation was not found, and so it clears its invalid flag, resets its cStatus to INIT and returns
false indicating that the operation was not executed yet.

Figure 13 shows the multiEliminate function which is called by an active collider with two mul-
tiOp operations of reverse semantics. As in DECS, the function iterates over the two lists of the given

27

Figure 11: A pop operation delegation assignment to a waiting thread

boolean delegatePop(multiOp: mOp, Cell: cell)
next = mOp.next;186

while next 6= null do187

next.cell = cell;188

mOp.next = next.next;189

if mOp.next = null then mOp.last = mOp;190

mOp.length = mOp.length-1;191

next.cStatus = FINISHED;192

if testAndSet(next.invalid) = false then193

return true;194

else next = mOp.next;195

end196

return false;197

multi-ops on lines 227–238 until one of the lists has no more elements. Note that contrary to the blocking
multiEliminate function, the cStatus of the operations is set to EXCHANGE (instead of FINISHED),
and the cell is not obtained by the pop operation; instead, the other field is set to the matching operation’s
multiOp record. Setting the cStatus to EXCHANGE allows passive threads, upon terminating their bounded
await (line 206), to observe that their operation was eliminated and that the cell of the push operation can be
obtained by the pop operation.

After iterating over both lists, one of the lists may contain more elements (recall the “residue” of a
multiOp list described in section 2). If the active (passive) collider’s multiOp list is longer than the list of
the passive (active) collider, lines 239–250 (lines 250–260) are executed on the residue list of the active
(passive) collider. The delegate thread executing the multiEliminate function iterates over the active
(passive) residue list, searching for the first operation of a waiting thread, setting its cStatus to RETRY after
updating its multi-op list on lines 252–254 (lines 252–254). Contrary to the blocking algorithm, in this
case a thread may no longer be waiting. To cope with such a scenario, after setting cStatus to RETRY and
updating the multiOp operations list, the delegate thread attempts to test-and-set the multiOp’s invalid flag.
If the test-and-set operation succeeds, the multiOp is of a thread that is still waiting and the function returns
on line 244 (line 255). If the test-and-set fails, then the thread has stopped waiting and resumed its operation,
and the delegate thread updates the length of the multiOp list, and continues to the delegate thread’s next
multi-op of the active (passive) residue list on lines 246–247 (lines 257–258).

The wakeup function presented in figure 14 is invoked by a passive collider thread after it gives up
waiting. The function is given a pointer to the passive collider’s multiOp record and resolves a possible race
condition with the active collider. If the operation is a pop (lines 262–273), the invalid flag of the operation
is checked. If it is 0, indicating that the active collider did not perform the passive collider’s operation,
the function returns false. If the flag is set, however, then the cStatus of the passive collider is now set to
another value by the active thread, and the executing thread continues similarly to the code of lines 208–224
of passiveCollide.

28

Figure 12: Non blocking passive collide

boolean passiveCollide(multiOp: pInf)
aInf = location[pInf.id];198

location[pInf.id] = null;199

if pInf.op 6= aInf.op then200

if pInf.op = POP then201

pInf.cell = aInf.cell;202

end203

return true;204

else205

bounded-await (pInf.cStatus 6= INIT);206

if pInf.cStatus 6= INIT then207

switch pInf.cStatus do208

case FINISHED209

return true;210

case EXCHANGE211

if testAndSet(pInf.other.invalid) = false then212

if pInf.op = POP then pInf.cell = pInf.other.cell;213

return true;214

else215

initFields(pInf);216

return false;217

end218

case RETRY219

pInf.invalid = false;220

pInf.cStatus = INIT;221

return false;222

end223

end224

else return wakeup(pInf);225

end226

Lines 274–283 are executed in case the operation is a push. In line 275, two test-and-set operations are
performed, one on the invalid flag of the passive operation’s cell, and the other on the invalid flag of the
operation structure itself. If both invalid flags are 0 (i.e., the cell and the multiOp record are both valid,
and no other operation needs them), the function returns false (line 283) indicating that the push operation
should be restarted. Note that the invalid flag of the cell can only be set by another pop operation, after
popping the cell from the central stack (line 177 in cMultiPop), and the operation’s invalid flag is set
when an elimination with another pop operation is done (line 212 in passiveCollide). In both cases,
it is an indication that the push operation was executed (and its cStatus was updated). If the cStatus field is

29

Figure 13: Non blocking elimination of multi operations

multiEliminate(multiOp: aInf, pInf)
aCurr = aInf;227

pCurr = pInf;228

repeat229

aCurr.other = pCurr;230

pCurr.other = aCurr;231

aCurr.cStatus = EXCHANGE;232

pCurr.cStatus = EXCHANGE;233

aInf.length = aInf.length - 1;234

pInf.length = pInf.length - 1;235

aCurr = aCurr.next;236

pCurr = pCurr.next;237

until aCurr 6= null ∧ pCurr 6= null ;238

if aCurr 6= null then239

while aCurr 6= null do240

aCurr.length = aInf.length;241

aCurr.last = aInf.last;242

aCurr.cStatus = RETRY;243

if testAndSet(aCurr.invalid)=false then return;244

else245

aInf.length = aInf.length - 1;246

aCurr = aCurr.next;247

end248

end249

else if pCurr 6= null then250

while pCurr 6= null do251

pCurr.length = pInf.length;252

pCurr.last = pInf.last;253

pCurr.cStatus = RETRY;254

if testAndSet(pCurr.invalid)=false then return;255

else256

pInf.length = pInf.length - 1;257

pCurr = pCurr.next;258

end259

end260

end261

set to RETRY, an elimination attempt was unsuccessful, and the executing thread resets its cStatus, clears
its invalid flag and returns false to retry its push operation (lines 277–279). Otherwise (the value of cStatus

30

Figure 14: A passive thread wakeup function

wakeup(multiOp: mOp)
if mOp.op = POP then262

if testAndSet(mOp.invalid) = true then263

if mOp.cStatus = RETRY then264

mOp.invalid = false;265

mOp.cStatus = INIT;266

return false;267

else268

if mOp.cStatus 6= null then269

mOp.cell = mOp.other.cell;270

return true;271

end272

else return false;273

else /* PUSH operation */274

if testAndSet(mOp.cell.invalid) = true ∨ testAndSet(mOp.invalid) = true then275

if mOp.cStatus = RETRY then276

mOp.cStatus = INIT;277

mOp.invalid = false;278

return false;279

else280

return true;281

end282

else return false;283

end284

field is either EXCHANGE or FINISHED), the push operation was executed either by elimination or by
inserting the element to the central stack, and true is returned in line 281.

31

	1 Introduction
	2 The Dynamic Elimination-Combining Algorithm
	3 DECS Performance Evaluation
	4 The Nonblocking DECS Algorithm
	5 Discussion

