
HAL Id: inria-00545253
https://inria.hal.science/inria-00545253

Submitted on 9 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Multi-Agent Simulation Generation and
Validation

Philippe Caillou

To cite this version:
Philippe Caillou. Automated Multi-Agent Simulation Generation and Validation. PRIMA 2010, Nov
2010, Calcutta, India. pp.398-413. �inria-00545253�

https://inria.hal.science/inria-00545253
https://hal.archives-ouvertes.fr

Automated Multi-Agent Simulation Generation and
Validation (Early Innovation)

Philippe Caillou
Laboratoire de Recherche en Informatique (LRI)

Universite Paris Sud
Orsay, France
caillou@lri.fr

ABSTRACT
Multi-agent based simulation (MABS) is increasingly used for so-
cial science studies. However, few methodologies and tools ex-
ist. A strong issue is the choice of the number of simulation runs
and the validation of the results by statistical methods. In this arti-
cle, we propose a model of tool which automatically generates and
runs new simulations until the results are statistically valid using
a chi-square test. The choice of the test configuration allows both
a general overview of the variable links and a more specific inde-
pendence analysis. We present a generic tool for any RePast-based
simulation and apply it on an Academic Labor Market economic
simulation.

Keywords
Multi-Agent Based Simulation, Simulation Validation, Simulation
Tool, Chi-square test, statistical test

1. INTRODUCTION
Multi-Agent Based Simulations (MABS) are increasingly being

considered as flexible and versatile modeling frameworks, enabling
positive and normative investigations of phenomena out of reach
when one uses analytical studies[2, 14]. However, few method-
ologies exist on MABS usage. The main problem of MABS is
validation: since simulations are by definition too complex to be
validated analytically (otherwise they are only useful to inspire an-
alytical analysis), other methods have to be considered. The result
of a simulation is a set of observations (for example a set of evac-
uation times for a simulation of a stadium fire evacuation). As for
empirical observations, statistical tools can be used to validate re-
sults obtained by the simulation1. Their usage is growing, even if
the expert validation is still mainly used [7]. One important con-
dition to be able to apply most statistical tests is to have a large
1We consider here the validation of the results considering the
model is sound. For example, statistical tests can validate the fact
that the most important variable for the evacuation time is the num-
ber of exits in the simulation. However the model in itself - the
agent behaviors, the stadium model - needs to be validated sepa-
rately.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

enough number of observations. Compared to empirical observa-
tions or biological experimentations, MABS has a big advantage:
it is easy and almost free to generate new simulation results. Our
goal here is to use this advantage to generate automatically new
simulations until observed results are statistically valid.

An ideal tool would work with any simulation framework and
would select the best statistical test considering the experimenter
goal. As a first step, we will however begin with a single test and a
single framework. The chosen framework is RePast[9] as one of the
most used framework for MABS. To be generic, we aim to keep the
interaction with the framework minimal: the tool reads and write
parameter files, starts the simulation program and analyzes result
logs.

One of the first results of any MABS is usually the link between
the observed variables and the parameters, which ones are the most
important parameters and which ones have an influence on the fi-
nal result. As our goal is to propose a generic tool, we consider
here a test with a small number of hypotheses on the tested vari-
ables: the Pearson’s Chi-square test. It tests if two observed vari-
ables/parameters are independent or not with a known percentage
of error (by comparing the observed distribution of data with an ex-
pected distribution obtained from the distribution of the two tested
variables considered independently).

Our objective here is to propose a model for a generic tool which
automatically run new simulations from any RePast simulation un-
til the independence results (obtained by chi-square tests) on se-
lected variables are statistically valid. To test and illustrate our
method, we apply a corresponding tool on a simulation of the French
Academic Labor Market (presented - without statistical validation
- in [4, 5]). The main parameters describe the hiring system proper-
ties and the candidates and universities utility functions, while the
observed variables measure the quality of the hiring and the rate of
jobs fulfilled by local candidates.

In the following, we present the state of the art in simulation
methodology and tools in section 2. Then we describe the method,
the chi-square test, propose some heuristics to increase the analy-
sis efficiency and discuss the possible applications of our tool in
section 3. The simulation of the French academic labor market is
introduced in section 4, some results are presented in section 5 and
finally we conclude.

2. RELATED WORK
A variety of social and economic problems have been investi-

gated using multi-agent systems (MAS) [2]. MAS have demon-
strated their ability to represent (cognitive) agents and constrained
interaction rules, and provide insightful pictures of the dynamics of
the system [11]. Several frameworks are available, such as RePast[9],
NetLogo[16] and ModulEco[10] (see a review in [12]). The use of

automated simulation generation and analysis is not yet integrated
in these frameworks. NetLogo has the BehaviorSpace tool (and
its corresponding API), but it is mainly the equivalent of RePast
parameter files: it allows the user to choose parameter ranges to
launch multiple experiments.

The closest approach to our work is the “robot scientist”[13] de-
veloped to achieve biological experiments autonomously. Our ap-
proach represents the equivalent for Multi-Agent Simulation, and
improves it with efficiency heuristics and the statistical tests both
for analysis and as a termination criterion. Another similar ap-
proach is the SimExplorer project [1]. Its goal is to manage simula-
tions parameters and results with a generic framework. It is an on-
going project, with many limitations on parameter values, no pos-
sibility to "program" simulation runs with stopping criteria. Their
work is very complementary to our objective, since they have no
specific analysis tool in their system. An extension of our work
would be to integrate it into SimExplorer to improve its interface
with our goal-oriented statistical analysis.

Calibration and validation have always been a serious issue for
MABS. Few general methodologies have been proposed, due to
the huge variety of simulation types. Some classifications of em-
pirically observed methods have been done ([17][8]). A survey of
methods used from 1998 to 2008 [7] shows that usage of statistical
tools for validation stays marginal (less than 10%) even if it has
increased since 1998. The chi-square test is one of the most used
for simulation analysis since it has very few requirements. A good
introduction to chi-square test can be found in [18] and a more pre-
cise discussion on the test in [6].

3. MODEL
In this section we will first make a general presentation of our

model (3.1), then we will precise the notations (3.2) we use. The
Chi-squared test is described (3.3), then we detail the method algo-
rithms (3.4), we propose some heuristics to improve our tool effi-
ciency (3.5), and finally we discuss the objectives achievable with
our tool (3.6).

3.1 Presentation
The global objective is simple and is summarized Fig.1: on a

simulation model, the user chooses some parameters and observed
variables, and the tool has to run simulations and make statistical
tests until the tests are valid for each couple of parameters/variables.
It finally indicates to the user which couple of variables are not in-
dependent and the error margin.

More precisely, we can distinguish between four main steps:

• Parameters and variables extraction: Starting with an ex-
isting Parameter file and result log, the tool extracts the set
of parameters and variables used by the simulation and their
past values.

• Configuration and objective choice: The user chooses which
observed variables and parameters he wants to test, and gives
eventually more configuration details (specific number of classes,
specific parameter ranges, ...).

• Parameter file generation and simulation run: The tool
generates a new parameter file and starts the simulation.

• Results update: The observed data set is updated from the
result log. For each couple of variables/parameters a Chi-
square test is made. If it is valid for every couple, the results
are presented, otherwise the previous step is executed again.

Figure 1: Model overview: Starting with a configuration and
a result file, the tool extracts the model variables. The user
chooses the configuration. The tool generates, runs and ana-
lyzes new simulations until results are statistically valid, and
finally present the results to the user.

3.2 Notation
The following notations will be used in this article:

• V = {v1..vp+r} for the set of variables, including2:

• v1..vp for the simulation parameters.

• vp+1..vp+r for the observed variables.

• U ⊆ V for the set of selected variables for the independence
tests (an independence test is made for every couple vi × vj

with vi ∈ U and vj ∈ U .

• x1..xp+r for observed values for variables v1..vp+r after a
simulation run.

• ci for the number of classes used for variable vi.

• lit and lit+1 for the lower and upper bounds for class t of
variable vi.

• n· for the total number of observations.

• ni
t for the number of observations for class t of variable vi.

• nij
tt′ for the number of observations simultaneously for class

t of variable vi and class t′ of variable vj .

• eijtt′ for the number of expected observations for class t of
variable vi and class t′ of variable vj .

• Prij is the probability for variable vi and vj for not being
independent according to Chi-square test.

• nbrun for the number of simulation runs between each result
update and statistical test.

2Since the test is identical and we study both parameter/observed
variable and observed variable/observed variable independence, we
use the same notation for parameters and observed variables

Table 1: Assistant professor candidate sex and hiring success,
France, 2007.

n12
tt′ Men Women Total n2

t′

Hired 1081 (11.7%) 725 (7.9%) 1806 (19.6%)
Not Hired 4234 (46.0%) 3173 (34.4%) 7407 (80.4%)
Total n1

t 5315 (57.7%) 3898 (42.3%) 9213 (100%)

Table 2: Expected distribution
e12tt′ Men Women Total e2t′
Hired 1041,9 764,1 1806
Not Hired 4273,1 3133,9 7407
Total n1

t 5315 3898 9213

3.3 Chi-Square test
The Pearson’s Chi-square test of independence applies to two

binned variables (variables put into classes). The tested hypothesis
is H0: Variable v1 is independent from v2. Simply put, it tests if
the lines and the columns of a contingency table are independent.
To test the hypothesis, the observed distribution (the contingency
table) is compared to the expected distribution if the variables were
independent. If H0 is true, then P (v1

∪
v2) = P (v1)× P (v2).

For example, to test if the sex of the candidate (v1) has an impact
on the hiring probability as assistant professor (v2), we consider
the data presented table 1. The two variables v1 and v2 have two
classes: c1 = c2 = 2.

From this observed distribution, we compute in table 2 the ex-

pected distribution (if H0 is true) : e12tt′ =
n1
t∗n

2
t′

n·
The value of the test can be computed from the sum of the squared

differences divided by the expected distribution value:

X2 =
∑
t,t′

(n12
tt′ − e12tt′)

2

e12tt′

Here, X2 = 4, 317. This test value has to be compared to
the Chi-square law value χ2

df,α to know if the hypothesis can be
rejected or not with α% probability (see for example [18] for a
mathematical definition of the χ2

df,α function). The number of de-
gree of freedom is the product of the number of classes minus 1 :
df = (c1−1)(c2−1). Here df=1. With an error margin of 5%, the
value of the Chi-square function is χ2

1,0.95 = 3.84. We can thus re-
ject the hypothesis “The sex of the candidate has no impact on the
hiring” with only a 5% error margin. We could not have done it
with an error margin of only 1%, since χ2

1,0.99 = 6, 63.
One advantage of this test is the absence of hypothesis on the

form of the variable distribution. To apply it on continuous vari-
ables, the only requirement is to sample them by defining automatic
or user-defined classes.

To be valid, the test has 2 requirements: the independence of
the observations and a sufficiently large data set. A usual condi-
tion [15] is that the expected population has to be greater than one
(e12tt′ > 1) for every cell of the contingency table and greater than
5 (e12tt′ > 5) for 80% of the cells. We use this condition, applied
on every analyzed variable couple, to determine when to stop the
simulations.

3.4 Model
The main algorithm of our tool model (Alg. 1) follows the basic

steps presented in section 3.1 :

ExtractV ariables();
ChooseObjective();
ChooseConfig();
ResV alid=false;
while ResV alid=false do

GenerateRunSimulation() → ResFile;
UpdateResults(ResFile);
UpdateClasses();

end
ShowResults();

Algorithm 1: Global simulation analysis algorithm

Figure 2: Variable choice window: for each variable, the user
checks if he wants to select it for the independence test, and
chooses eventually the number of classes and their lower and
upper bound.

ExtractV ariables() is mainly a parsing function that extract
parameters names v1...vp and values from a parameter file and vari-
ables names vp+1...vp+r and values from a result log file.

ChooseObjective() let the user choose the variables that will
be tested (U) and, eventually, to set manually the number and bounds
of the initial classes for each variable (c1...cp+r) - see Fig. 2. By
default, the first simulation run is used to determine cdefault uni-
form classes for each variable. The choice of classes uniform in
size rather than uniform in observation number is made for two
reasons: first, the number of observations is low at the beginning
of the process and the distribution is very likely to change. Second,
it is very common to have very concentrated variables (for exam-
ple, 75% of the observations have an unique value for one of the
observed variable of our application example). To use very small
classes for v around a concentrated value x would influence the re-
sults of the test, because the variables which influence v around x
would have more influence on the independence test than variables
which influence v only for other values than x (because classes will
switch very quickly around x, whereas bigger changes are needed
to switch classes elsewhere). More discussions about user-defined
classes can be found in section 3.6.

ChooseConfig() let the user choose the parameters values for
the simulations (see Fig. 3). RePast parameter files accept sets and
loops (For..step..until). For the test to be valid, experiments have
to be independent, which is not true for loops. For this reason, we
replace loops by random choices between possible values. For each
parameter, the user can choose between a set (containing one or
several values) and a random value with or without steps (a random
value without steps is a continuous uniform random variable). By
default, the values are the ones used in the current parameter file.
More discussion about user-defined parameter values can be found
in section 3.6.

GenerateRunSimulation() creates a new parameter file us-
ing the chosen values for nbrun new simulation runs, creates the

Figure 3: Parameter configuration window: for each parame-
ter, the user chooses between a set of values (set), a continuous
random variable (random) and a set of values with fixed steps
(incr).

adapted script file (to save the results in a new file) and starts the
simulations. To increase the tool efficiency, the random values for
one parameter can be biased (see section 3.5).

while new res x1..xp+r in ResFile do
inc(n·);
for each vi, vj with vi ∈ U and vj ∈ U and i <= j do

for each class cit do
if lit ≤ xi < lit+1 then inc(ni

t)
end
for each cit × cjt′ do

if lit ≤ xi < lit+1 and ljt′ ≤ xj < ljt′+1 then
inc(nij

tt′)

end
end

end
ResV alid = true;
for each vi, vj with vi ∈ U and vj ∈ U and i <= j do

Nb5 = 0;
for each cit × cjt′ do

eijtt′ =
ni
t∗n

j

t′
n·

;
if eijtt′ < 1 then ResV alid = false;
if eijtt′ < 5 then inc(Nb5);

end

Xij =
∑

t,t′
(n

ij

tt′−e
ij

tt′)
2

e
ij

tt′
;

Prij = pr with χ2
(ci−1)(cj−1),pr = Xij ;

if Nb5 > 0.2cicj then ResV alid = false
end

Algorithm 2: UpdateRes(ResFile) algorithm

UpdateRes(ResFile) function is described in Alg. 2. It up-
dates the observation contingency tables (the nij

tt′) in the while loop
and computes the Chi-square value and check the test validity cri-
teria in the For loop. The program stopping criteria (ResV alid)
is the Chi-square validity criteria: each expected distribution value
(eijtt′) has to be greater than 1 and 80% have to be greater than 5
for every selected variable couple. The Prij value is the minimum
error margin to reject the hypothesis H0 (vi and vj are indepen-
dent). This value gives more information than a binary answer in-
dependent/not independent since the user can compare the values
between variables.

UpdateClasses() is used to merge or create new classes in case
the user didn’t define specific classes. Classes are added when an
observed value is out of the lowest/highest bounds, if the user did
not choose infinite boundaries or force fixed classes. Both options
allow the user to keep a fixed number of classes, without losing
any observation (infinite boundaries) or by focusing on a specific
range (fixed classes). A class merging heuristic can also be used to
increase the class definition efficiency (see section 3.5). The reason
why new uniform classes are not redefined at each loop is that it
would suppose to consider all the past results again (since the only
information kept is the contingency tables with the populations in
each class).

ShowResults() finally presents the Prij (which can be inter-
preted as probability of not being independent) for each couple of
selected variable to the user. The user can have the detail of ob-
served/expected observations for every couple by selecting it (see
Fig. 4 and 5).

3.5 Heuristics
The total time required for one simulation run is usually low,

but not negligible, and for some models it can even be relatively
high. Moreover, several thousand simulations may be required to
obtain statistically valid results. For these reasons, we propose two
heuristics to decrease the required number of simulations without
losing the statistical properties:

The class merging heuristics: During the UpdateClasses() step,
one class is merged with its smallest neighbor when its population
is lower than minclass% the average class size. This heuristic is
here to prevent a class existing only because of an exceptional con-
figuration/error to block the test and the program (if a class popu-
lation is very small, expected values will be lower than 1 and the
process will never stop). The main advantage of this heuristic is its
efficiency (see results in section 5.4). Its downside is that it can not
be applied to not orderd/string variables (because it is impossible
to know which classes to merge) or when classes are fixed (when
the user wants to analyze fixed classes).

The biased values heuristic: During the GenerateRunSimula-
tion() step, the idea is to identify the most problematic variable and
class (the one with the lowest number of observations), the param-
eter which will increase its population with the highest probabil-
ity (the one with a high proportion of observations in the selected
class) and to bias its values accordingly. Formally:

• Choose class t and variable i with ni
t = minj,t′ n

j
t′ .

• For each continuous parameter vj , give a score to each of its

classes: sjt′ = (
n
ij

tt′∑
t n

ij

tt′
)2.

• For the next simulations set generation, choose the biased
parameter vj with the highest total score sj =

∑
t′ s

j
t′ .

• For each random value of this parameter, choose the class

t′ of vj with probability
s
j

t′∑
t s

j
t

. The final value is selected

uniformly in class t′.

The main advantage of this heuristic is that it can be applied to
any variable. It can however be applied to only one parameter for
each simulation generation: To apply it to several parameter at the
same time may introduce artificial relations and would invalidate
the statistical validity of the test.

3.6 Discussion
The main objective of our method is to test the independence of

variables. However, several more precise objectives can be achieved:

• The first intuitive objective is to present a global overview of
the variable interactions in the simulations. Simulations can
use hundreds of parameters and variables and a first overview
of the important parameters for each variable is already very
useful and not trivial to obtain with current simulations frame-
work. This is the default objective, with all default parameter
values and all variables selected (see section 5.1 for an illus-
tration).

• To change the parameters values may have a huge impact on
the results. Specific submodels can thus be analyzed, for ex-
ample with a fixed parameter. More interestingly, to limit
the parameter range for all the parameters may give signif-
icantly different results: some variables may be interdepen-
dent only for very specific and unrealistic parameter values.
With these constraints, it is possible to study the variables
relations around a specific point (for example with +/- 10%
variation only - see section 5.2).

• Finally, it is possible to manually define some variable classes
number/range to alter the results. To choose more classes
means a more precise test. But it may be interesting to know
what are the variables which have the highest influence on a
specific variable v1 by decreasing its number of classes. The
effect will be that only the variables which have an important
impact on v1 will influence the observed classes, and thus be
considered as not independent by the test (see section 5.3).

4. APPLICATION EXAMPLE: THE FRENCH
ACADEMIC LABOR MARKET

Our application is a simulation of the French assistant professor
academic labor market. As it is just an illustration for our simu-
lation tool, a precise understanding of the model is not necessary
(interested reader may refer to [4, 5]) and we will just give a brief
overview here.

Let {u1, . . . , uU} and {c1, . . . cC} respectively denote the set of
universities and candidates, listed according to their quality. Uni-
versity ut is characterized from four parameters. The first two pa-
rameters (in [0, 1]) govern his preference ordering: i) elitism et
stands for its bias toward the best candidate; ii) locality t stands
for its bias toward local candidates. Lastly, a random perturbation
modeled as (1 − et)V with V uniformly drawn in [0, 1], accounts
for the “subjective” preferences of university ut. Overall, the qual-
ity r(i, t) of candidate ci for university ut is:

r(i, t) = (rt ×
i

C
+ (1− et)V)(1− t.L(i, t))

where L(i, t) is 1 iff ci is local to ut and 0 otherwise.
University ut uses its risk-adversity parameter rt to decide which

candidates will be interviewed among those applying to ut. Its
strategic ordering is defined as:

s(i, t) = rt × r(i, t) + (1− rt)×
|i− (t)|

C

The candidates parameters, quality function r′(i, t) and strategic
ordering s′(i, t) are symmetrical.

Interaction Rules Every candidate ci applies for positions after
its preference ordering, and to his home university with probability
hi. Every university ut produces a shortlist of 5 candidates. Every
candidate ci thereafter ranks the universities having shortlisted him.
Eventually, the candidate and university ranking are aggregated by
a variant of Stable Marriage algorithm [3], an optimal matching is
derived, and the recruitment decisions are made accordingly.

Figure 4: Result window with default parameters: each cell
value is the probability for the couple of variables not to be
independent. Stars indicate interdependent variables with an
error margin lower than 5%.

Agents parameters are defined as random uniform variables, the
boundaries are the parameters of the simulation. For example:

• Application number NbAppi ∼ U [MinApp,MaxApplication],

• Risk factor rt ∼ U [MinUnivRisk,MaxUnivRisk]

The two main observed variables are the number of positions
fulfilled (NbHire) and the number of positions fulfilled by lo-
cal candidates (NbLocalHire). Two other variables evaluate the
quality of the hiring process: the rank of the last hired candidate
(LastRelACand) and the rank of the first university with no hired
candidate (FirstRelNAJob).

5. RESULTS
To illustrate our tool model, we used it on the simulation appli-

cation with the three possible objectives described in section 3.6.
First, we get a global overview of the simulation, then we try a
more precise test around the equilibrium and we test the influence
of class number on the results. Finally, we test the efficiency of the
proposed heuristics3.

5.1 Global overview
With all default parameters, all parameters and four observed

variables selected for test, we obtain a global view of the simula-
tion (Fig. 4). On the top of the window is indicated the number
of simulations runs completed until all tests were valid (4182)4.
Each line and column corresponds to a variable, with the first four
lines for the observed variables (results of the simulation), and the
next lines for the parameters. Each cell contains the test results.
The meaning of a positive test value (value higher than 0.95 on
the figure, signaled with a star) is that the two variables are not in-
dependent with 5% of error margin. Interestingly, the test values
for parameter/parameter couples (all values except the first four
lines) are not all low. The parameter values are all random vari-
ables (using Java standard Random function - similar results were
obtained with other random number generators). Nevertheless, for
several parameters, the hypothesis that they are independent has
to be rejected for a high enough error margin (15% for the couple
MaxLocalBonus/SendApplicationHome). The lesson here is that
it is important to take a very low error margin to be sure that the
independence is rejected (5%, 1% or less).

For the user, the figure gives a good insight on the simulation
behavior: the parameter MaxApplication has clearly the most
3For each test, we use nbrun = 102 runs for each step and
cdefault = 10 classes by default for each variable.
4The whole analysis, with the 4182 simulations and 250 agents
took approximately 6 minutes with our test configuration.

Figure 5: Detailed view for the independence test of parameter
MaxApplication and observed variable NBHire: each cell
contains the observed and expected observation count.

influence on the observed variables. Interestingly, this was one of
the result of the initial analysis ([4]), but without statistical proof,
only with “clear evidence” on a plot. Here, it is possible to say that
this is the only parameter for which the independence hypothesis
can be rejected for all observed variable with the lowest margin
of error. Other analysis can be maid with statistical proof : for
example, the fact that the candidates are risk-taker or risk-adverse
(MinCandRisk and MaxCandRisk parameters) have very low
influence on the result.

To have more details about the observed values and the test, the
user can select any cell to obtain the contingency table with both
the degree of freedom (DL), Xij value (Dif Sum), observed and
expected values (in each cell). For example, Fig. 5 details the
observations for parameter MaxApplication (maximum number
of applications sent by a candidate) and NbHire (hiring rate). It
is possible to see that the parameter has a negative impact on the
observed variable.

5.2 Parameters influence
The previous analysis was global, every parameter explored its

whole definition space. To know which variables have an influence
around a specific point, it is possible to limit the parameter range.
We have tried here to test all parameters and variables, but to limit
the parameter range to a 10% variation around a specific equilib-
rium (the empirically observed equilibrium, see [4]). Results are
presented Fig. 6. In this situation, some variables (like the first one,
SendApplicationHome) have disappeared because their value is
fixed.

In this situation, the variables influences are clearly different.
The impact of MaxApplication, for example, is very different be-
cause its range dropped from [10,97] to [18,22]. Excessive values
which conduct to a saturation of the hiring process are eliminated.
Interestingly, even without this saturation effect, this parameter has
still influence on some qualitative (FirstRelNAJob) and quan-
titative (NBHire) observed variables. Moreover, with the elimi-
nation of excessive values, some influences which were previously
hidden because they were too small may appear: The influence of
MinCandRisk is low compared to the global influence of other
variables (Fig. 4), so low that the independence hypothesis can not
be rejected. But around the equilibrium this low influence becomes
the strongest (Fig. 6).

5.3 Variables classes influence
Finally, it is possible to study more precisely some variables

by manually choosing the classes used for the analysis. Lower-

Figure 6: Result window for a limited parameter range around
a specific point.

Figure 7: Detailed view for independence test of parame-
ter RankWeight and observed variable NBLocalHire. In
experiment 1 (top window), the number of classes is 10 for
RankWeight and 6 for NBLocalHire. In experiment 2 (bot-
tom window), it is respectively 3 and 2. Each cell contains the
observed and expected observation count.

ing the number of classes decreases the precision of the test, but
this “blurredness” can help to identify the variables which have
the strongest influence. For example, Fig. 7 details the obser-
vations for parameter RankWeight (the importance of the qual-
ity of the university for the candidate) and the observed variable
NBLocalHire (number of hired local candidates) in two experi-
ments: in experiment 1 (corresponding to the experiment of section
5.1, top figure), the default number of classes is 10. For experiment
2 (bottom figure), it is set to 3. Moreover, for each experiment,
some classes where automatically merged because their observed
population was too small. In the experiment 1, even if the variables
are statistically not independent (with a very low error margin, less
than 0.1%), the influence doesn’t appear clearly when looking di-
rectly at the observed and expected population values (Fig. 5 is an
opposite example of apparent interactions between the variables).
The decrease of the observation precision in experiment 2 confirms
this observation: with few classes, the independence hypothesis can
not be rejected anymore.

5.4 Heuristic efficiency
To evaluate the heuristics efficiency, we have applied our tool

on the same configuration with each heuristic enabled/disabled (10
times for each situation). The selected configuration used 10 classes
for each variable, some of these classes were rather rare and thus
difficult to obtain. The average number of required simulations and
the variance are given Table 3. The heuristic efficiency was statisti-
cally tested (with a Chi-Squared test, of course) and every hypothe-
sis “The heuristic HC/HB has no effect on the number of required
simulations” can be rejected with less than 1% of error probability.

Table 3: Average number of simulation runs (and variance)
with/without the Class-merging heuristic (HC) and the biased-
values heuristic (HB)

HC HC
HB 4760(1517) 16442(1943)
HB 6800(1819) 24112(579)

The HC (class merging) heuristic appears to be the most effi-
cient and decreases significantly the number of required simula-
tions. When this heuristic can not be used (for example with string
variables), the HB heuristic may still be useful. Even if its effi-
ciency is lower, it does not require any specific configuration to be
applied.

6. CONCLUSION
In this paper, we have presented a tool model to help the scien-

tist using Multi-Agent Based Simulation to explore its simulation
and obtain statistically valid results. We applied a corresponding
tool on an Academic market simulation, and we have shown that
it successfully generates and runs new simulations until Chi-square
independence tests on selected variables are valid. It presents a
global overview of the simulation results with the most important
variables and the main interactions. It can also be used to obtain
more precise results on the simulation behavior for specific param-
eter ranges, or focus on a specific couple of parameters/variables.
We proposed heuristics to decrease the number of required simula-
tions and tested their efficiency.

The first step to continue this work will be to generalize it to
other statistical tests and simulation frameworks. A complemen-
tary goal would be to integrate this tool in the project of generic
simulation explorer SimExplorer.

7. REFERENCES
[1] Frédéric Amblard, David R. C. Hill, Stéphan Bernard,

Jérome Truffot, and Guillaume Deffuant.
http://www.simexplorer.org/.

[2] R. Axelrod, ‘Advancing the art of simulation in the social
sciences’, Advances in Complex Systems, 7(1), 77–92,
(2004).

[3] Mourad Baiou and Michel Balinski, ‘Student admissions and
faculty recruitment’, Theor. Comput. Sci., 322(2), 245–265,
(2004).

[4] Philippe Caillou and Michèle Sebag, ‘Modelling a
Centralized Academic Labour Market: Efficiency and
Fairness’, in ECCS08, Jerusalem Israel, (2008). Complex
Systems Society.

[5] Philippe Caillou and Michèle Sebag, ‘Pride and Prejudice on
a Centralized Academic Labor Market’, in Artificial
Economics 09, LNEMS, pp. 29–40, Valladolid Espagne,
(2009). Springer-Verlag.

[6] P. E. Greenwood and M. S. Nikulin, A Guide to Chi-Squared
Testing, Wiley, New York, NY, 1996.

[7] Brian Heath, Raymond Hill, and Frank Ciarallo, ‘A survey of
agent-based modeling practices (january 1998 to july 2008)’,
Journal of Artificial Societies and Social Simulation, 12(4),
9, (2009).

[8] Scott Moss, ‘Alternative approaches to the empirical
validation of agent-based models’, Journal of Artificial
Societies and Social Simulation, 11, (2007).

[9] M.J. North, N.T. Collier, and J.R. Vos, ‘Experiences creating
three implementations of the repast agent modeling toolkit’,
ACM Transactions on Modeling and Computer Simulation,
16(1), 1–25, (2006).

[10] D. Phan, ‘From agent-based computational economics
towards cognitive economics’, in Cognitive Economics,
Handbook of Computational Economics, 371–398, Springer
Verlag, (2004).

[11] Denis Phan and Frederic Amblard, Multi-agent Modelling
and Simulation in the Social and Human Sciences, Bardwell
Press, http://www.bardwell-press.co.uk/, septembre 2007.

[12] Steven F. Railsback, Steven L. Lytinen, and Stephen K.
Jackson, ‘Agent-based simulation platforms: Review and
development recommendations’, Simulation, 82(9),
609–623, (2006).

[13] L. Soldatova, A. Clare, A. Sparkes, and R. D. King, ‘An
ontology for a robot scientist’, Bioinformatics, 22, 464–471,
(2006). ISMB06.

[14] Leigh S. Tesfatsion, ‘A constructive approach to economic
theory’, in Handbook of Computational Economics, volume
2 Agent-Based Computational Economics of Handbooks in
Economic Series, North-Holland, (2006).

[15] Cochran WG, ‘Some methods for strengthening the common
chi-square tests’, Biometrics, (10), 10–417, (1954).

[16] Uri Wilensky. http://ccl.northwestern.edu/netlogo/.
[17] Paul Windrum, Giorgio Fagiolo, and Alessio Moneta,

‘Empirical validation of agent-based models: Alternatives
and prospects’, Journal of Artificial Societies and Social
Simulation, 10, (2007).

[18] Thomas H. Wonnacott and Ronald J. Wonnacott,
Introductory statistics [by] Thomas H. Wonnacott [and]
Ronald J. Wonnacott, Wiley New York„ 5th ed. edn., 1990.

