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Foreword

Few topics in computational linguistics catch the imagination more than unsuper-
vised language learning. ’Unsupervised’ has a magical ring to it. Who would not
want to have a system do all the work automatically, and knowledge-free? I suspect
it is a common experience of researchers in the field, typically occurring while star-
ing out of a window taking a sip of coffee, to feel a sudden exhilaration: seeing the
possibility of circumventing the vexing bottleneck of annotated data gathering with
an unsupervised learning algorithm and a lot of unannotated data.

Let us pause here for a bit of exegesis. What does it mean for computational
language learning to be unsupervised? As just suggested, it involves learning some
yet unspecified language processing task on the basis of unannotated linguistic data.
This in turn begs the question what it means for linguistic data to be unannotated; a
reasonable answer would be that unannotated data only consists of linguistic surface
elements: sounds or letters, and is devoid of any abstract linguistic elements. This
means that any linguistic theory that assumes abstract linguistic elements, be it part-
of-speech tags, syllabic roots, or syntactic dependencies, will not be playing any
role in unsupervised language learning. This is quite a provocative proposition, and
another cause for the rebellious allure of unsupervised learning.

The word unsupervised, to continue my exegesis, strengthens the anti-authoritar-
ian connotation even more, but also triggers the question what or whose supervision
is thrown overboard. Are we talking about the poor linguist whose wise lessons are
ignored? This indeed seems to be the answer suggested by this book, where within a
few pages you will read that “Unsupervised means that no labelled training material
is provided as input. The machine is exposed to language only, without being told
what its output should look like.” (this book, p. 2). This is linked to the concept
of knowledge-free, which is taken to mean “that no knowledge about the specific
language, such as e.g. word order constraints or a list of personal pronouns, is given
to the system.” (this book, p. 2).

Thus, unsupervised language learning is learning from unlabeled data, where la-
bels denote abstract linguistic notions. This aligns well with the parallel meaning
attributed to unsupervised learning in the field of machine learning: learning with-
out classification labels. But is the distinction between abstract and surface linguistic
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elements always clear-cut? Counter to the usual assumption, I argue it is not. Con-
sider, for example, the function word the. What is the difference of saying this word
carries a syntactic function, and saying that the word is a syntactic function? In the
book, the word the marks the beginning of a noun phrase. In we book, the word we
signals a main verb coming up that refers to the first person plural.

If we accept the proposition that linguistic elements such as letters and words can
be seen as labels themselves, it is easy to see that supervised machine learning algo-
rithms could be applied to classify strings of linguistic elements into other elements
or strings of elements. Learning is still knowledge-free and devoid of linguistic ab-
stractions, but is it unsupervised? If it is not unsupervised in the machine learning
sense, can it still be called unsupervised in the no-linguistic-abstractions sense? I
would like to disagree, and instead call this type of learning autosupervised.

Autosupervised language learning does not occur in an obscure corner of patho-
logical language task definitions. Rather, it is the type of learning that occurs in
most present-day statistical text-to-text processing systems: machine translation,
paraphrasing, and spelling correction. Even n-gram language models with back-off
smoothing can be considered to be the product of a simple self-supervised learn-
ing procedure producing a decision list or tree that predicts the next word given the
previous n−1 words.

Allow me to continue, at least in this Foreword, the use of the word autosuper-
vised where normally you would have read unsupervised.

Our understanding and command of autosupervised language learning, though
as a scientific endeavour still rather young and perhaps just out of its infancy, has
deepened over the past two decades. Its potential has in fact become one of the key
research questions in computational linguistics. We can now build on the shoul-
ders of pioneers such as Hinrich Schütze, Steve Finch and Nick Chater, Ramon
Ferrer-i-Cancho, Chris Manning, Dan Klein, and Alex Clark, and before you lies an
important next step in this increasing body of work.

While in computational linguistics the topic is close to reaching the grail status
that topics such as machine translation have, it is stereotypical for the field to be
largely oblivious to theories from other fields that work with the same idea of data-
driven discovery of models of language. These are not computational models, but
the articles and books in which they are described provide a wealth of inspiration,
also in hindsight, for the development of computational models of autosupervised
language learning. Fortunately, the better work in the area does acknowledge its
roots in 20th-century linguistics, with proponents such as J.R. Firth and Zellig Har-
ris, and occasionally also points to the work of present-day usage-based linguists
such as Robert Langacker, William Croft, and Adele Goldberg, and the develop-
mental psychologist Michael Tomasello.

It is important to realize that the boundary between non-computational models of
autosupervised language learning and their computational counterparts is thin, and
could become void if both sides would work with the same concepts and formal-
izations. Usage-based linguistic theories have been occasionally criticized for not
being entirely formal, but I am convinced it is only a matter of time before this gap
will be bridged, thanks to work from both sides of the divide in overlap areas such
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as corpus linguistics. On the one side one finds studies such as the collostructional
analysis work of Stefanowitsch and Gries [229]. On the other side one finds the type
of work in autosupervised language learning exemplified by this book.

What would be the formal basis that would connect and equalize work from both
sides of the divide? Autosupervised language learning methods have tended to build
on light formalizations that make use of simple spaces and metrics (vector spaces,
bags of words, n-gram models). Despite their sobering simplicity and their complete
implicitness, these models are known to harbour the incredible strength that fuels
the world’s leading search engines, speech recognizers and machine translation sys-
tems. Usage-based linguistics, on the other hand, assumes structures (with names
such as constructions, collostructions, complex lexical items) of mildly higher com-
plexity: they may have gaps, required and optional elements, and relations between
these elements that signal inequality (e.g. dependence). Where bags of words and
the Markovian assumption have no answer to these requirements, graph theory does.
The book you are now reading describes the building of a machine that starts with
this assumption.

This book is built around the concept of an autosupervised structure discovery
machine that discovers structure in language data, and can do so iteratively, so that
it can discover structure in structured data. It is shown to grasp language identifica-
tion, part-of-speech tagging, and lexical substitution to levels that rival supervised
approaches. To leave sufficient suspense, I trust you will be thrilled to read how.

Nijmegen, September 2011 Antal van den Bosch



  



Preface

After 60 years of attempts to implement natural language competence in machines,
there is still no automatic language processing system that comes even close to
human language performance.

The fields of Computational Linguistics and Natural Language Processing predo-
minantly sought to teach machines a variety of subtasks of language understanding
either by explicitly stating processing rules or by providing annotations they should
learn to reproduce. In contrast to this, human language acquisition largely happens
in an unsupervised way — the mere exposure to numerous language samples trig-
gers acquisition processes that imprint the generalisation and abstraction needed for
understanding and speaking that language.

Exactly this strategy is pursued in this work: rather than telling machines how
to process language, one instructs them how to discover structural regularities in
text corpora. Shifting the workload from specifying rule-based systems or manually
annotating text to creating processes that employ and utilise structure in language,
one builds an inventory of mechanisms that — once they have been verified on
a number of datasets and applications — are universal in a way that allows their
application to unseen data with similar structure. This enormous alleviation of what
is called the "acquisition bottleneck of language processing" gives rise to a unified
treatment of language data and provides accelerated access to this part of our cultural
memory.

Now that computing power and storage capacities have reached a sufficient level
for this undertaking, we for the first time find ourselves able to leave the bulk of
the work to machines and to overcome data sparseness by simply processing larger
batches of data.

In Chapter 1, the Structure Discovery paradigm for Natural Language Process-
ing is introduced. This is a framework for learning structural regularities from large
samples of text data, and for making these regularities explicit by introducing them
in the data via self-annotation. In contrast to the predominant paradigms, Struc-
ture Discovery involves neither language-specific knowledge nor supervision and is
therefore independent of language, domain and data representation. Working in this
paradigm instead means establishing procedures that operate on raw language ma-
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terial and iteratively enrich the data by using the annotations of previously applied
Structure Discovery processes. Structure Discovery is motivated and justified by dis-
cussing this paradigm along Chomsky’s levels of adequacy for linguistic theories.
Further, the vision of the complete Structure Discovery Machine is outlined: a series
of processes that make it possible to analyse language data by proceeding from the
generic to the specific. Here, abstractions of previous processes are used to discover
and annotate even higher abstractions. Aiming solely at identifying structure, the
effectiveness of these processes is judged by their utility for other processes that
access their annotations and by measuring their contribution in application-based
settings. A data-driven approach is also advocated on the side of defining these
applications, proposing crowdsourcing and user logs as means to widen the data
acquisition bottleneck.

Since graphs are used as a natural and intuitive representation for language data
in this work, Chapter 2 provides basic definitions of graph theory. As graphs based
on natural language data often exhibit scale-free degree distributions and the Small
World property, a number of random graph models that also produce these char-
acteristics are reviewed and contrasted along global properties of their generated
graphs. These include power-law exponents approximating the degree distributions,
average shortest path length, clustering coefficient and transitivity.

When defining discovery procedures for language data, it is crucial to be aware
of quantitative language universals. In Chapter 3, Zipf’s law and other quantitative
distributions following power laws are measured for text corpora of different lan-
guages. The notion of word co-occurrence leads to co-occurrence graphs, which
belong to the class of scale-free Small World networks. The examination of their
characteristics and their comparison to the random graph models as discussed in
Chapter 2 reveals that none of the existing models can produce graphs with degree
distributions found in word co-occurrence networks.

For this a generative model is needed, which accounts for the property of lan-
guage being a time-linear sequence of symbols, among other things. Since previous
random text models fail to explain a number of characteristics and distributions of
natural language, a new random text model is developed, which introduces the no-
tion of sentences in a random text and generates sequences of words with a higher
probability, the more often they have been generated before. A comparison with
natural language text reveals that this model successfully explains a number of dis-
tributions and local word order restrictions in a fully emergent way. Also, the co-
occurrence graphs of its random corpora comply with the characteristics of their
natural language counterparts. Due to its simplicity, it provides a plausible expla-
nation for the origin of these language universals without assuming any notion of
syntax or semantics.

In order to discover structure in an unsupervised way, language items have to
be related via similarity measures. Clustering methods serve as a means to group
them into clusters, which realises abstraction and generalisation. Chapter 4 reviews
clustering in general and graph clustering in particular. A new algorithm, Chinese
Whispers graph partitioning, is described and evaluated in detail. At the cost of be-
ing non-deterministic and formally not converging, this randomised and parameter-
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free algorithm is very efficient and particularly suited for Small World graphs. This
allows its application to graphs of several million vertices and edges, which is in-
tractable for most other graph clustering algorithms. Chinese Whispers is parameter-
free and finds the number of parts on its own, making brittle tuning obsolete. Modi-
fications for quasi-determinism and possibilities for obtaining a hierarchical cluster-
ing instead of a flat partition are discussed and exemplified. Throughout this work,
Chinese Whispers is used to solve a number of language processing tasks.

Chapters 5–7 constitute the practical part of this work: Structure Discovery pro-
cesses for Natural Language Processing using graph representations.

First, a solution for sorting multilingual corpora into monolingual parts is pre-
sented in Chapter 5, involving the partitioning of a multilingual word co-occurrence
graph. The method has shown to be robust against a skewed distribution of the sizes
of monolingual parts and is able to distinguish between all but the most similar lan-
guage pairs. Performance levels comparable to trained language identification are
obtained without providing training material or a preset number of involved lan-
guages.

In Chapter 6, an unsupervised part-of-speech tagger is constructed, which in-
duces word classes from a text corpus and uses these categories to assign word
classes to all tokens in the text. In contrast to previous attempts, the method in-
troduced here is capable of building significantly larger lexicons, which results in
higher text coverage and therefore more consistent tagging. The tagger is evaluated
against manually tagged corpora and tested in an application-based way. The results
of these experiments suggest that the benefits of using this unsupervised tagger or a
traditional supervised tagger are equal for most applications, rendering unnecessary
the tremendous annotation efforts involved in creating a tagger for a new language
or domain.

The problem of word sense ambiguity is discussed in detail in Chapter 7. A
Structure Discovery process is set up, which is used as a feature to successfully
improve a supervised word sense disambiguation system. On this basis, a high-
precision system for automatically providing lexical substitutions is constructed.

The conclusion in Chapter 8 may be summarised as follows: Unsupervised and
knowledge-free Natural Language Processing in the Structure Discovery paradigm
has proven to be successful and capable of producing a processing quality equal
to that of conventional systems, assuming that sufficient raw text can be provided
for the target language or domain. It is therefore not only a viable alternative for
languages with scarce annotated resources, but also overcomes the acquisition bot-
tleneck of language processing for new tasks and applications.

Darmstadt, November 2011 Chris Biemann
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Acronyms

Lists of abbreviations used frequently in this volume:

BA Barabási-Albert Model: a process to generate scale-free graphs
BNC British National Corpus: a collection of 100 million tokens of British En-

glish from different genres
CL Computational Linguistics: the research area of building linguistic appli-

cations with computers
CRF Conditional Random Field: a supervised machine learning classifier, com-

monly used for sequence tagging
CW Chinese Whispers graph clustering algorithm, introduced in this work
DM Dorogovtsev-Mendes Model: a process to generate scale-free small world

graphs with two power law regimes
EP Entropy Precision: a measure to compare clusterings
ER Erdős-Rényi Model: a random graph model
F F-measure: The harmonic mean between precision P and recall R
LCC Leipzig Corpora Collection: a collection of plain text corpora of standard-

ized size for a large number of languages
LDA Latent Dirichlet Allocation: a generative clustering algorithm of the topic

model family
LSA Latent Semantic Analysis: a vector space transformation method based on

Singular Value Decomposition
MCL Markov Chain Clustering: a graph clustering method based on random

walks
MFS Most Frequent Sense: strategy of assigning the most frequent sense in

WSD, commonly used as a baseline system
MI Mutual Information: a measure for the dependence between random vari-

ables
NER Named Entity Recognition: the task of finding names in natural language

text
NLP Natural Language Processing: the research area of building systems that

can process natural language material
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xx Acronyms

nMI normalised Mutual Information: the normalised variant of MI
OOV Out Of Vocabulary rate: the percentage of tokens in a text not known to

the model
P Precision: the number of correct answers divided by the number of total

answers
POS Parts Of Speech: syntactic word classes like verb, noun, pronoun
R Recall: the number of correct answers given divided by the number of

correct answers possible
SD Structure Discovery: the process of finding regularities in data and anno-

tating them back into the data for later processes
SDM Structure Discovery Machine: a stack of Structure Discovery processes
ST Steyvers-Tenenbaum model: a process to generate scale-free small world

graphs
SVD Singular Value Decomposition: a matrix factorisation
SWG Small World Graph: a graph with a high clustering coefficient and short

average path lengths
TWSI Turk bootstrap Word Sense Inventory: an alternative word sense inventory

based on crowdsourcing
WS Watts-Strogatz-model: a process to generate small world graphs
WSI Word Sense Induction: task of identifying different meanings of a word
WSD Word Sense Disambiguation: the assignment of one out of several possible

word meanings for a word in context
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