Skip to main content

Deriving Space-Time Variograms from Space-Time Autoregressive (STAR) Model Specifications

  • Conference paper
  • First Online:
Advances in Spatial Data Handling and GIS

Abstract

Many geospatial science subdisciplines analyze variables that vary over both space and time. The space–time autoregressive (STAR) model is one specification formulated to describe such data. This paper summarizes STAR specifications that parallel geostatistical model specifications commonly used to describe space–time variation, with the goal of establishing synergies between these two modeling approaches. Resulting expressions for space–time correlograms derived from 1st-order STAR models are solved numerically, and then linked to appropriate space–time semivariogram models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartlett M (1975) The statistical analysis of spatial pattern. Chapman-Hall, London

    Google Scholar 

  • Basilevsky A (1983) Applied matrix algebra in the statistical sciences. North-Holland, New York

    Google Scholar 

  • Bogaert P (1996) Comparison of kriging techniques in a space–time context. Math Geol 28:73–86

    Article  Google Scholar 

  • Brown P, Diggle P, Lord M, Young P (2001) Space–time calibration of radar rainfall data. Appl Stat 50:221–241

    Google Scholar 

  • Calder C (2007) Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment. Environ Ecol Stat 14:229–247

    Article  Google Scholar 

  • Cliff A, Haggett P, Ord J, Bassett K, Davies R (1975) Elements of spatial structure. Cambridge University Press, Cambridge

    Google Scholar 

  • De Cesare L, Myers DE, Posa D (2001) Product-sum covariance for space–time modeling: an environmental application. Environmetrics 12:11–23

    Article  Google Scholar 

  • De Iaco S, Myers DE, Posa D (2003) The linear coregionalization model and the product-sum space–time variogram. Math Geol 35:25–38

    Article  Google Scholar 

  • Dimitrakopoulos R, Luo X (1994) Spatiotemporal modeling: covariances and ordinary kriging systems. In: Dimitrakopoulos R (ed) Geostatistics for the next century. Kluwer, Dordrecht, pp 88–93

    Chapter  Google Scholar 

  • Fuentes M, Chen L, Davis J (2008) A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19:487–507

    Article  Google Scholar 

  • Gasim A (1988) First-order autoregressive models: a method for obtaining eigenvalues for weighting matrices. J Stat Plan Inference 18:391–398

    Article  Google Scholar 

  • Gething PW, Atkinson PM, Noor AM, Gikandi PW, Hay SI, Nixon MS (2007) A local space–time kriging approach applied to a national outpatient malaria data set. Comput Geosci 33:1337–1350

    Article  Google Scholar 

  • Gneiting T, Genton M, Guttorp P (2006). Chapter 4 – Statistical methods of Spatio-Temporal systems. In: Finkenstaedt B, Held L, Isham V (eds) Statistics of Spatio-temporal Systems. Chapman-Hall, Boca Raton, pp 151–175

  • Griffith D (1996) Spatial statistical analysis and GIS: exploring computational simplifications for estimating the neighborhood spatial forecasting model. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. Longman GeoInform, London, pp 255–268

    Google Scholar 

  • Griffith D, Csillag F (1993) Exploring relationships between semi-variogram and spatial autoregressive models. Pap Reg Sci 72:283–295

    Article  Google Scholar 

  • Griffith D, Layne L (1997) Uncovering relationships between geo-statistical and spatial autoregressive models. In: 1996 proceedings on the section on statistics and the environment. American Statistical Association, Washington, DC, pp 91–96

    Google Scholar 

  • Haining R (1978) Specification and estimation problems in models of spatial dependence. Department of Geography, Northwestern University, Evanston

    Google Scholar 

  • Kolovos A, Christakos G, Hristopulos D, Serre M (2004) Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Resour 27:815–830

    Article  Google Scholar 

  • Ma C (2003) Families of spatio-temporal stationary covariance models. J Stat Plan Inference 116:489–501

    Article  Google Scholar 

  • Ma C (2008) Recent developments on the construction of spatio-temporal covariance models. Stoc Environ Res Risk Assess 22:S39–S47

    Article  Google Scholar 

  • Mitchell M, Genton M, Gumpertz M (2005) Testing for separability of space–time covariances. Environmetrics 16:819–831

    Article  Google Scholar 

  • Ord J (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70:120–126

    Article  Google Scholar 

  • Stein M (2005) Space–time covariance functions. J Am Stat Assoc 100:310–321

    Article  Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41:434–449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Griffith, D.A., Heuvelink, G.B.M. (2012). Deriving Space-Time Variograms from Space-Time Autoregressive (STAR) Model Specifications. In: Yeh, A., Shi, W., Leung, Y., Zhou, C. (eds) Advances in Spatial Data Handling and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25926-5_1

Download citation

Publish with us

Policies and ethics