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ABSTRACT: 
 
This paper presents an improved cellular automata (CA) model optimized using an adaptive genetic algorithm (AGA) to simulate the 
spatio-temporal process of urban growth. The AGA technique can be used to optimize the transition rules of the CA model defined 
through conventional methods such as logistic regression approach, resulting in higher simulation efficiency and improved results. 
Application of the AGA-CA model in Shanghai’s Jiading District, Eastern China demonstrates that the model was able to generate 
reasonable representation of urban growth even with limited input data in defining its transition rules. The research shows that AGA 
technique can be integrated within a conventional CA based urban simulation model to improve human understanding on urban 
dynamics.  
 

1. INTRODUCTION 

There is a long-standing interest in understanding urban 
dynamics though development and application of geographical 
models (Batty and Xie 1994; Batty, Xie, and Sun 1999; 
Couclelis 1997; He, et al. 2006; Li and Yeh 2002a, b; Liu and 
Phinn 2003; Muzy et al. 2008; Wu 1998, 2002). Compared to 
many modelling approaches that were developed based on 
exclusive use of certain mathematical formula, models based on 
cellular automata (CA) have strong power to capture the non-
linear, spatial and stochastic processes of urban growth in more 
realistic ways (Liu 2008; Stevens, Dragicevic and Rothley 2007; 
White and Engelen 1993). 
 
Conventionally, CA based urban models require strict definition 
of various spatial variables and parameters representing 
different spatial and non-spatial factors driving the development 
of urban growth (Li, He and Liu 2009). Many CA models have 
been developed using a diverse range of methods to define such 
variables and parameters; these methods include multi-criteria 
evaluation, logistic regression, principal component analysis, 
and partial least squares regression methods, to name a few. 
However, limitations of such methods in defining suitable 
transition rules, or the values of relevant parameters of the 
transition rules, or in constructing the architecture of the models 
have been identified and reported in the literature (Al-kheder, 
Wang and Shan 2008; Li and Yeh 2002a). As a result, there are 
significant differences between the simulation results and the 
actual patterns of urban growth, making such models less 
effective in simulating the actual process of urban growth (Li 
and Yeh 2002b; Liu and Phinn 2003). 
 
The development of genetic algorithm (GA) and adaptive 
genetic algorithm (AGA) methods have provided researchers 
with new ways to identify and search for suitable transition 
rules and their defining parameters in urban modelling (Bies, et 
al. 2006; Srinivas and Patnaik 1994). This method has been 
used in satellite imagery classification (Huang et al. 2007), site 
selection (Li, He and Liu 2009), and problem clustering (Lorena 
and Furtado 2001).  
 

This paper presents a method applying an adaptive genetic 
algorithm to define and search for transition rules and 
parameters of a cellular automata model to simulate the spatio-
temporal processes of urban growth. The following section 
presents a generic CA model based on logistic regression 
method first, followed by the adaptive genetic algorithm 
method to optimize CA parameters based on minimizing 
differences between the simulated results and the actual urban 
development. Section 3 applies the AGA-CA model to simulate 
the urban growth of Shanghai’s Jiading District, Eastern China. 
Results from the model are also presented and discussed in this 
section, followed by conclusions in the last section. 
 

2. THE ADAPTIVE GENETIC ALGORITHM BASED 
CA MODEL (AGA-CA) 

2.1 A generic CA model based on logistic regression 

Generally, CA defines the state of a cell at one time as a 
function of the state of the cell and its neighbourhoods at a 
previous time in accordance with a set of transition rules, which 
can be generalized as follows (Wu 1998): 
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Assume that a cell can take one of only two states, urban or 
non-urban. A square neighbourhood is defined with u×u cells 
and all cells within the neighbourhood have equal opportunity 
for development. Thus, the probability a cell changes its state 
from non-urban to urban can be defined as: 
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where  is the probability a cell can change from one state to 
another; represents the total number of urban 

cells within the u×u cells neighbourhood. 
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However, in practice, not all cells have equal opportunity for 
development. For instance, some non-urban areas such as large-
scale water bodies or areas with critical physical constraints 
such as very steep slope may not be able to develop into urban 
areas. Other areas such as the primary farmland may be 
prevented from urban development through institutional control, 
i.e., land use planning regulation.  
 
In order to represent the unequal opportunity of cells for urban 
development, a stochastic factor can be introduced into the CA 
based urban models (Wu 2002). With a stochastic control factor, 
the probability a cell converts from non-urban to urban state can 
be defined as: 
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where  

t
GP  is the probability of the cell converting from one state 

to another at time t; 
)( suitablecellcon t

ij =  is a constraint function, the value of 
which ranges from 0 to 1, with 0 meaning the cell is 
constrained from changing its current state, and 1 
meaning the cell is able to change its state at the 
following time step;   

βγ )ln(1 −+ represents a stochastic factor, where γ  is a 
random real number ranging from 0 to 1, and is a 
parameter controlling the effect of the stochastic 
factor. The value of  ranges from 0 to 10; 

β

β

ix  ( i  = 1, 2, … , ) are various spatial driving factors to 
urban growth, which can be represented by the 
distances from a cell to urban centres, town centres, 
main roads, and so on. These distance factors are also 
called spatial variables or independent variables; and 

m

1a , ,…, are used to assign different weight to each 
of the distance variables. 
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One of the common challenges in developing a logistic 
regression based CA model is how to choose the distance 
variables and configure the relevant parameters defining the 
impact of such distance factors on urban growth. Consequently, 
results generated by a logistic based CA model may show poor 
match for the actual patterns of urban growth. This indicates 
that there is a need to search for other techniques in identifying 
and defining the model’s transition rules. Such a challenge in 
model development can be addressed by incorporating the 
adaptive genetic algorithm approach to randomly search for an 
optimized conversion probability for each cell, and 
subsequently minimize the differences between simulated 
results and actual urban growth patterns.     
 
 

2.2 Adaptive Genetic Algorithm (AGA) based CA 
Modelling 

A genetic algorithm (GA) is a search technique used in 
computing to find solutions to optimization and search 
problems. Inspired by evolutionary biology, genetic algorithms 
work in computer simulations to search for an exact or 
approximate solution from a population of solutions (Liao et al. 
2008). This search and optimization process is achieved 
according to natural selection, including inheritance, selection, 
crossover and mutation.  
 
There are two elements of a genetic algorithm, including a 
genetic representation of the solution domain, such as an array 
of cells in a cellular urban space, and a fitness function to 
evaluate and quantify the optimality of a solution.  
 
The efficiency of a standard GA depends largely on the setting 
of its parameters such as the selection, crossover and mutation 
rates, which are difficult to adjust manually. Such difficulties 
can be overcome by the adaptive genetic algorithm (AGA) as 
the AGA could dynamically modify the parameters of the 
genetic algorithm (Espinoza, Minsker and Goldberg 2001; Kee 
Airey and Cye 2001). AGAs not only keep population diversity 
effectively but also improve the performance of local and 
premature convergences. Such genetic diversity is important to 
ensure the existence of all possible solutions in the solution 
domain and the identification of optimized solution. In addition, 
the adaptive genetic algorithm also enhances the search speed 
and precision of the genetic algorithm. Hence, the searching 
and optimization process for problem solutions can be 
accelerated. 
 
2.2.1 Fitness function: A fitness function is an objective 
function to quantify the optimality of a solution. This function 
was created by selecting sample of cells within the cellular 
urban space to minimise the differences between the simulation 
results produced by a logistic regression based CA model and 
the actual urban growth patterns identified from remotely 
sensed images. The fitness function is defined and optimised 
through the modelling process as: 
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where  

)(xf  is a fitness function; 
 n is the number of samples selected from the cell space 

which were used to retrieve the CA transition rules; 
if  is the conversion probability of the state of cell i 

based on the logistic regression model, i.e., 
as defined in Equation (3); and Gi Pf =

0
if  is the actual conversion decision of cell i. can 

only take one of the two values, 0 or 1, with  
meaning the state of the cell i remains as non-urban 
and meaning the state of the cell has changed 
from non-urban to urban. 

0
if
0 =if 0
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The process of urban growth can be affected by many factors, 
including socio-economic, physical and environmental, as well 
as institutional control factors. These factors can be built into 
the cellular automata model through a set of transition rules. 
With the fitness function, the simulation process of urban 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

46



growth can be calibrated by dynamically updating the various 
parameters of the transition rules to minimise the value of the 
fitness function so the simulated urban patterns can better match 
with observed patterns of urban growth. The model calibration 
process is completed once the fitness function reaches a stable 
value over time and the model’s transition rules and parameters 
can be considered suitable for operation to the whole cell space.  
 
2.2.2 Coding of chromosomes: Chromosomes are the 
abstract representations of candidate solutions, which can also 
be called individuals. A chromosome is a set of parameters 
which define a proposed solution to the problem that the GA is 
trying to solve. In the CA based urban modeling practice, all 
possible CA transition rules factors affecting urban growth are 
considered as chromosomes. Each chromosome is coded as a 
simple string like:  
 
 ]     (5) ,...,,[ 21
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where C represents a string of candidate solutions; m is the 
number of spatial driving factors (as in Equation (3)); k means 
the kth individual (candidate solution).  to  represent the 
weight of each spatial driving factor in the kth candidate 
solution. In fact, the values  to  in the optimized 
candidate solution are the parameter values required by the CA 
model as defined in Equation (3).  

k
1α

k
mα

k
mα

k
1α

 
Initially a number of chromosomes were randomly generated to 
form the possible solutions for the adaptive genetic algorithm to 
begin its searching process. After many generations of selection, 
crossover and mutation operations, only those chromosomes 
which acquire lower fitness values will remain, resulting in the 
emergence of a good chromosome structure. 
 
2.2.3 Selection operator: Selection is the key operation of 
the AGA method in which individual genomes are chosen from 
a population of candidate solutions for later breeding, including 
recombination and crossover. During each successive 
generation, individual solutions are selected through a fitness-
based process, where solutions with lower fitness values are 
typically more likely to be selected. Using the Hamming 
distance that measures the minimum number of substitutions 
required to change one string into the other as a selection 
criterion, one chromosome is selected from every randomly 
selected pair of chromosomes on a competitive selection 
process. The selection process ensures that the diversity of 
chromosomes is reserved during the selection process.  
 
2.2.4 Crossover operator: Crossover is an exchange of 
genetic material between homologous individuals for final 
genetic recombination. While many crossover operators 
available in genetic algorithm, this research employs the 
adaptive genetic operator proposed by Srinvias and Patnaik 
(1994). The crossover probability Pc is used to allow the 
crossover between chromosomes. This probability value 
changes continuously with the change of fitness value during 
the search process. This crossover probability is defined as: 
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where  
1cP  is the maximum crossover probability, the value is 

0.95; 
2cP  is the minimum crossover probability, the value is 

0.45; 
f ′  is the fitness value; 

maxf  is the maximum fitness value; and 

avgf  is the minimum fitness value. 
 
Mutation operator: In genetic algorithms, mutation is used to 
maintain genetic diversity from one generation of a population 
of chromosomes to the next. Similar to the crossover operators, 
the mutation operator proposed by Srinivas and Patnaik (1994) 
was adopted in this research. The mutation probability Pm, is 
defined as: 
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where 

1mP  = maximum mutation probability, 0.1 
           = minimum mutation probability, 0.001 2mP

           = maximum fitness value maxf

avgf  = minimum fitness value 
f  = fitness value 

 
2.2.5 Threshold of conversion probability: The AGA 
technique was used to minimize the fitness function  
corresponding to the selected spatial samples. With the 
minimum value of )(xf , a set of optimized chromosome can be 
achieved together with its defining parameters. This leads to the 
generation of the conversion probability of each cell from non-
urban to urban in the urban growth process. Hence, by 
comparing the conversion probability of a cell at time t with a 
pre-defined threshold value (Wu 1998; Wu 2002; Li and Yeh 
2002b), if the conversion probability of the cell at time t is 
larger than the pre-defined threshold value the cell will be 
converted to an urban state at the following step. Otherwise, the 
state of the cell will remain unchanged.  
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3. APPLICATION AND RESULTS 

3.1 Study area and data 

The proposed AGA-CA model was applied to simulate the 
urban growth in Shanghai’s Jiading District, which is located in 
the Yangtze River Delta of Eastern China. The study region 
consists of eleven blocks (towns) with a total area of 463.6 km2. 
Rapid urban expansion had occurred in the 1990s due to the fast 
economic development and population growth. Urban growth of 
this region from 1989 to 2006 was mapped out using data from 
various sources, including two Landsat-5 Thematic Mapper 
(TM) images acquired on August 6, 1989 and April 30, 2006 
respectively to obtain spectrum information of the study area. In 
addition, essential ancillary data include a 1:50,000 topographic 
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map, cadastre and transportation maps which were collected 
from the local government. 
 
3.2 Model configuration and implementation 

While many spatial factors can make an impact on urban 
development, in practice, not all factors can be quantified into a 
simulation model, especially when data reflecting such factors 
are either not available or not accessible. Considering the 
process of Jiading urban growth historically, urban 
development in this district is largely related to the distribution 
of existing urban and towns, accessibility to transport as well as 
preservation of primary agriculture land. Therefore, five spatial 
factors were selected, including distance to urban centre (x1), 
distance to town centre (x2), distance to main roads (x3), 
distance to cropland (x4), and distance to orchard field (x5). The 
impact of each factor on urban development may be different, 
hence, different weights were assigned to each of this factors 
which were represented by , , , , , respectively. 1a 2a 3a 4a 5a

 

 
A total of 5000 sample cells were randomly selected from the 
Landsat TM images for the AGA model to commence the 
searching process. The distances of each of these samples to the 
urban centre, town centre, main road, cropland and orchard 
field were computed in GIS. These distance values were 
normalized to have a standard value ranging from 0 to 1.   
 
A modelling framework was developed within ESRI’s ArcGIS 
environment based on Microsoft Visual Basic .NET and 
ArcGIS Engine 9.2 technologies. This modelling framework 
incorporates the AGA-CA model as well as a number of other 
CA based modelling approaches. The user-friendly graphical 
user interface makes ease the sophisticated computation process 
of the model (Figure 1).   

 

 
Figure 1.  GUI of the modelling framework 

 
Moreover, the strong coupling of the model within a GIS 
framework makes it possible to use the various display and 
analysis functions of GIS in raster based data integration and 
modelling. Hence, this modelling framework becomes an 
important component of the AGA-CA program for modelling 
urban growth.  
 
3.3 Results and Discussion 

Using the adaptive genetic algorithm proposed in this research, 
the model was executed to start the search and optimization 
process with the sample data selected from the 1989 Landsat 

TM imagery. Figure 2 shows the fitness track in the 
evolutionary computation of the AGA model, which 
demonstrates a rapid convergence rate after over 30,000 times 
of iteration, with a convergence fitness value of 391.9855 
(Figure 2). 
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Figure 2. Fitness track of the AGA model 
 
The convergence of the fitness track leads to the identification 
of a set of optimized chromosome or solution as:  
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In fact, this optimized solution becomes the initial input data for 
the CA model to compute the conversion probability of cells 
from non-urban to urban state. Hence, Equation (3) can be re-
written as:  
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The optimized chromosome displayed in Equation 9 shows 
different effect of the spatial factors on urban growth in 
Shanghai’s Jiading District. According to Equation 9, a 

negative  will lead to a larger value, i.e., a 
higher possibility for a cell to convert from non-urban to urban 

state. Likewise, a positive  will result in a lower  value, 
hence, a lower possibility for the cell to be converted into an 
urban state in the next time step. The optimised result generated 
from the AGA approach shows that the distance to town centres 
has the most significant impact on the development of cells 
within its neighbourhood. This is reflected by the smallest value 

of ( ). Likewise, the spatial proximity of a cell 
to urban centre and main road also positive roles to its urban 

development (with and  
respectively). On the other hand, factors such as distances to 
cropland and orchard field have negative impact on urban 

development (with and ). Hence, the 
close a cell is to cropland and orchard field, the less opportunity 
the cell is to be developed into an urban state. This is largely in 
consistent with the conservation of primary agricultural land 
policies in practice.  
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Using the urban distribution pattern defined from the 1989 
satellite image classification as the initial input data for the 
urban CA model (Figure 3a), and the transition rules generated 
from the AGA approach, the CA model was operated to 
generate a series of urban scenarios. Each iteration of the model 

represents one year. After 16 iterations the model generates a 
map representing urban growth patterns of Jiading District in 
2006 (Figure 3c). This simulated urban scenario was compared 
with the actual urban distribution as defined by classifying the 
2006 Landsat TM image (Figure 3b). 

 

 
Figure 3.  Actual and simulated urban scenarios of Jiading District using the AGA-CA model 

 
 Figure 3 b and c show high similarity even by visual inspection 

and comparison. By comparing the two maps on a cell-by-cell 
basis, an error matrix analysis was carried out (Table 1). The 
results show that the producer’s accuracy for non-urban and 
urban areas were 85.7 and 76.3 per cent respectively, while the 
user’s accuracy for the non-urban and urban categories were 
81.1 and 86.7 per cent, respectively. Consequently, the model 
generated an overall accuracy of 82.7 per cent and a Kappa 
coefficient of 60.9 per cent. These simulation accuracies are 
considered good given that only five spatial distance variables 
were considered in the model. Should other factors such as the 
social demographic controls, institutional policy effects 
concerning sustainable urban development as well as other 
economic constraints included into the model, the AGA-CA 
model would also be able to can be used to generate and 
evaluate various urban growth scenarios. 

 
Simulation Results 

 Non-urban Urban Row 
 Total 

Non-
urban 31556 5261 36817 

Urban 4115 13211 17326 

Satellite-
based 

Land Use 
Classification Column 

Total 38901 15242 54143 

 Producer’s Accuracy Omission Error 
Non-urban 85.7% 14.3% 

Urban 76.3% 23.8% 

 User’s Accuracy Commission 
Error 

Non-urban 81.1% 18.9% 

Urban 86.7% 13.3% 

Overall Accuracy 82.7% 

Kappa Coefficient 60.9% 
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Table.1 The confusion matrix between remote sensing-based 
land use classification and the simulated urban categories using 

the AGA-CA model of Jiading District in 2006 
4. CONCLUSION 

This paper presents an improved CA model optimized by 
adaptive genetic algorithm technique, which has been widely 
used as an evolutionary computation technique. By using the 
adaptive genetic algorithm technique, a set of transition rules 
and their defining parameters have been identified and 
optimised using the limited data available as input data sources. 
The AGA technique is particularly useful in optimizing the CA 
transition rules which can be used by conventional CA models 
based on logistic regression approach. The application of the 
APA-CA model in Shanghai’s Jiading District demonstrates the 
effectiveness of the AGA technique in transition rule 
optimization for CA based urban models, which can contribute 
positively to human studies on urban dynamics.  
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