Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6839))

Included in the following conference series:

Abstract

Problem decomposition is the first step to apply a cooperative coevolutionary algorithm (CCEA) to a problem. This step determines how to divide the problem into components with an appropriate granularity. Most of the current methods implement a natural-based decomposition where each component plays a specific role or represents an emergent property. However, there could exist some real problems that the roles or the properties are hard to determine or somewhat unclear. This paper offers a solution by decomposing the problems in an unnatural way, which implements a blind decomposition. Our primary analysis indicates that the blind decomposition is feasible. We also provide some basic advice on how to implement the blind decomposition in combination with different collaboration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potter, M.A.: The Design and Analysis of a Computational Model of Cooperative Coevolution. PhD. Dissertation, Computer Science Department. George Mason University (1997)

    Google Scholar 

  2. Gomez, F., Miikkulainen, R.: Robust Non-Linear Control through Neuroevolution. Technical Report AI-TR-03-303. Technical Report AI-TR-03-303, The University of Texas at Austin Department of Computer Sciences (2003)

    Google Scholar 

  3. Moriarty, D.E., Miikkulainen, R.: Forming Neural Networks through Efficient and Adaptive Coevolution. Evolutionary Computation 5, 373–399 (1997)

    Article  Google Scholar 

  4. Weicker, K., Weicker, N.: On the Improvement of Coevolutionary Optimizers by Learning Variable Interdependencies. In: IEEE Congress on Evolutionary Computation, Piscataway, NJ, vol. 3, p. 1632. IEEE, Washington, DC (1999)

    Google Scholar 

  5. Potter, M.A.: A Cooperative Coevolutionary Approach to Partitional Clustering. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 374–383. Springer, Heidelberg (2010)

    Google Scholar 

  6. Paredis, J.: Symbiotic Coevolution for Epistatic problems. In: Wahlster, W. (ed.) 12th European Conference on Artificial Intelligence, Hungary, pp. 228–232. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  7. Yang, Z., Tang, K., Yao, X.: Large Scale Evolutionary Optimization Using Cooperative Coevolution. Information Sciences 178, 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: IEEE Congress on Evolutionary Computation, Hong Kong, pp. 1663–1670 (2008)

    Google Scholar 

  9. Wiegand, R.P., Liles, W.C., Jong, K.A.D.: An Empirical Analysis of Collaboration Methods in Cooperative Coevolutionary Algorithms. In: Genetic and Evolutionary Computation Conference, pp. 1235–1242. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  10. Wiegand, R.P., Liles, W.C., Jong, K.A.D.: The Effects of Representational Bias on Collaboration Methods in Cooperative Coevolution. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 257–270. Springer, Heidelberg (2002)

    Google Scholar 

  11. Panait, L., Wieg, R.P., Luke, S.: A Sensitivity Analysis of a Cooperative Coevolutionary Algorithm Biased for Optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 573–584. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Potter, M.A., Jong, K.A.D.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8, 1–29 (2000)

    Article  Google Scholar 

  13. Watson, R., Pollack, J.: Coevolutionary Dynamics in a Minimal Substrate. In: Genetic and Evolutionary Computation Conference, pp. 702–709. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  14. Ficici, S.G., Pollack, J.B.: Challenges in Coevolutionary Learning: Arms-race Dynamics, Openendedness, and Mediocre Stable States. In: The 6th International Conference on Artificial Life, pp. 238–247. MIT, Los Angeles (1998)

    Google Scholar 

  15. Cliff, D., Miller, G.F.: Tracking The Red Queen: Measurements of Adaptive Progress in Co-evolutionary Simulations. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 200–218. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Shi, M., Wu, H.: Pareto Cooperative Coevolutionary Genetic Algorithm Using Reference Sharing Collaboration. In: Genetic and Evolutionary Computation Conference, Montréal Québec, Canada, pp. 867–874. ACM, New York (2009)

    Google Scholar 

  17. Shi, M.: Comparison of Sorting Algorithms for Multi-fitness Measurement of Cooperative Coevolution. In: Genetic and Evolutionary Computation Conference, Montréal Québec, Canada, pp. 2583–2588. ACM, New York (2009)

    Google Scholar 

  18. Neumaier, A.: Some Hard Global Optimization Test Problems

    Google Scholar 

  19. Deep, K., Dipti: A New Hybrid Self Organizing Migrating Genetic Algorithm for Function Optimization. In: IEEE Congress on Evolutionary Computation, Singapore, pp. 2796–2803. IEEE, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, M. (2012). Natural vs. Unnatural Decomposition in Cooperative Coevolution. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25944-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25943-2

  • Online ISBN: 978-3-642-25944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics