
Towards Implicit Knowledge Discovery from

Ontology Change Log Data

Muhammad Javed1, Yalemisew M. Abgaz2, Claus Pahl3

Centre for Next Generation Localization (CNGL),
School of Computing, Dublin City University, Dublin 9, Ireland

{mjaved1, yabgaz2, cpahl3}@computing.dcu.ie

Abstract. Ontology change log data is a valuable source of information
which reflects the changes in the domain, the user requirements, flaws
in the initial design or the need to incorporate additional information.
Ontology change logs can provide operational as well as analytical sup-
port in the ontology evolution process. In this paper, we present a novel
approach to deal with change representation and knowledge discovery
from ontology change logs. We look into different knowledge gathering
aspects to capture every single facet of ontology change. The ontology
changes are formalised using a graph-based approach. The knowledge-
based change log facilitates detection of similarities within different time
series, discovering implicit dependencies between ontological entities and
reuse of knowledge. We analyse an ontology change log graph in order to
identify frequent changes that occur in ontologies over time. We identify
different types of change sequences based on their order and complete-
ness. Analysis of change logs also assists in extracting new change pat-
terns and rules which cannot be found by simply querying or processing
ontology change logs.

Keywords: Ontology Change Representation, Change Log, Pattern Dis-
covery, Implicit Knowledge Discovery, Ontology Evolution.

1 Introduction

Ontology change log data is a valuable source of information, based on which
domain ontologies can evolve in order to reflect the changes in the domain,
the user requirements, flaws in the initial design or the need to incorporate
additional information [6]. Change log data can also be used to capture sequential
change patterns and implicit dependencies between ontological entities. Ontology
change logs can play a significant role and can provide operational as well as
analytical support in the ontology evolution process. If there is a need to reverse
a change, we use the change log to undo/redo the changes applied in the past.
This is a common function in e.g. software versioning support. In collaborative
environments, change logs are also used to keep the evolution process transparent
and centrally manageable. It captures all the changes ever applied to any entity
of the ontology.



In this paper, we present an approach to deal with ontology change represen-
tation and discovery of implicit knowledge which cannot be captured by simple
queries on ontology change logs. We look into different knowledge gathering as-
pects to represent a single ontology change and formalise it using a graph-based
approach. We analyse the change log graph in order to identify frequent changes
that occur in the ontologies over time. We identify co-occurrences and implicit
dependencies between different ontological entities. Some central features of our
approach are:

– A fine granular ontology change representation (in form of rdf triples) which
helps in sharing the semantics of the data and representing the intent and
the scope of the change explicitly.

– Discovery of implicit knowledge. It consists of identifying frequent change
sequences, discovery of association rules, correlations between entities etc.

– Change pattern discovery by capturing frequent change subsequences (as
change patterns) from ontology change log data. We utilize the discovered
sequential change patterns to support pattern-based ontology evolution.

The paper is structured as follows: We discuss our study of change log data and
the data preparation steps towards implicit knowledge discovery in Section 2. In
Section 3, our observations and analysis on the preprocessed change log data is
given. In Section 4, the discovery of implicit knowledge from change log data is
discussed. We end with some related work and discussion.

2 Ontology Change Log Data

As a case study, the domain University Administration was used. The domain
is selected as it represents an organisation involving people, organisational units
and processes. The objective of university ontology was to assist in the proper
execution of the day-to-day activities. We conceptualized most of the activities
and the processes of the university. All the changes applied to the university
ontology were captured in an ontology change log.

An ontology change log (CL) consists of an ordered list of ontology changes,
CL =< C1, C2, C3 · · ·CN > where N refers to the sequence of ontology changes
in a change log. Each ontology change contains two types of data, i.e. Metadata
(MD) and the Change data (CD) - Figure 1. Metadata provides the common
details of the change, i.e. who performed the change, when the change was applied
and how to identify such change from the change log. Metadata can be given as
MD = (id, u, t) where id, u and t represent ID, user and timestamp. The change
data contain the central information about the change request and can be given
as CD = (Op, E, P ) where, Op, E and P represent the change operation, element
and parameter set of a particular change.

In order to conceptualise the changes, we construct a metadata ontology
by looking into concrete structure of OWL-DL syntax-based domain ontologies.
The metadata ontology represents different categories of ontology changes based
on our layered change operator framework [8], types of ontology elements (such



Javed Thu Mar 10 15:51:26 GMT 2011 12997625 Add classAssertion (John, PhD_Student)

Metadata

Change data

Fig. 1. Representation of a Single Ontology Change

as concept, axioms, restriction etc.) and other concepts such as change, users,
timestamp etc. Each instance of the change log is of type Change, available in
the metadata ontology. We used an RDF triple-store to record the change log,
domain ontologies and static metadata ontology. SPARQL queries are used to
run against the change log to capture the required knowledge. Based on the
different aspects, one can easily filter out the required knowledge, enhancing the
query performance significantly.

We adopt as the first step the main data preparation steps from knowledge
discovery for web log data [2, 3]. We assume for our discussion here that data is
cleaned and filtered, i.e. unnecessary and incorrect entries are removed.

User & Session Identification

MJaved
YAbgaz
Kosala

Data Extraction
Transformation

(RDF Triples -> graphML)DATA PREPROCESSING

KNOWLEDGE DISCOVERY

Composite Change
Discovery

Discovery of Different
Types of Change Sequences

Pattern Discovery
Correlations, Dependencies

&
Association Rules

A

B

(RDF Triples)

Change Log Data

Original Data

Filtered Data

N5
Att1

Att2
Att3

N6
Att1

Att2
Att3

Fig. 2. Knowledge Discovery Process from Ontology Change Log Data

The second step is session identification. We perform identification in two
steps. First, we identify the users. Secondly, we divide the sequential changes
applied by a single user into sessions, based on the ID and change time re-
quest. Different threshold values can be found in literature from 5 min to 2 hr
[13][14][15]. In our case, based on our empirical study and observations on the
ontology changes, the threshold value was set to 15 min. Thus, all those change
operations which are i) applied by the same user and ii) have less than 15 min
change time request difference between two consecutive change operations con-
stitute a single ontology change session.

The last step is data transformation. We formalise the change log data us-
ing a graph-based approach. We follow the idea of attributed graphs which
are typed over an Attribute Type Graph (ATG) with node and edge attri-



bution. Based on the ATG idea, an ontology change log graph (G) can be
given as G = (NG, NA, EG, ENA, EEA) where NG = {n(gi)|i = 1, 2, · · · p}
refers to the set of graph nodes. Each node represents a single ontology change
log entry. NA = {n(ai)|i = 1, 2, · · · q} refers to the set of attribute nodes.
EG = {e(gi)|i = 1, 2, · · ·p − 1} refers to the set of graph edges which con-
nect two graph nodes n(g). ENA = {e(nai)|i = 1, 2, · · · r} is the set of node
attribute edges which joins a graph node n(g) to an attribute node n(a) and
EEA = {e(eai)|i = 1, 2, · · · s} is the set of edge attributes which join a node
attribute edge e(na) to an attribute node n(a). The benefit of a graph-based rep-
resentation is the availability of well established algorithms and its well-known
characteristics such as performance, which can be used for querying the ontology
changes effectively. We used SPARQL queries in order to capture more than five
hundred ontology changes from university change log (>5000 log triples) and
converted them into a linear graph format using a graph API. As an example, a
small portion of the linear graph (in a form of listing) is given in Table 1. Each
line is a single node of the graph, representing a single change request. The id in
each line represents the order of the graph nodes in the change log graph. Note,
that the example here was chosen because it can fit on a small scale and the
metadata attributes attached to each node have not been mentioned.

3 Analysis of Preprocessed Change Log Data

We analyze the change log graph empirically in order to understand how ontolo-
gies evolve over time, learn about the intent of changes and identify recurring
change sequences. We discuss our findings here in the form of suitable metrics
and patterns.

3.1 Metrics and Patterns

1) Sequential/Subsequence Patterns: In Table 1, we can identify a number
of occurrences of the process of student enrollment. We found that users per-
formed the same change in differnt order of change operations at different times.
For example in Table 2, sequences s1, s2 and s3 have the same order of change
operations. First, the user adds the individual x to the ontology. In the next
step, he adds individual x as an instance of concept PhD Student and in the
last step, he adds an individual x as a member of a university department y. The
order of the graph nodes in any sequence is of vital importance as it represents
the consistent or inconsistent state of the ontology at any particular instance of
time.
2) Node–Distance between Change Operations: As different users may
adopt different orders of change operations, there could be gap between two
adjacent change operations of a sequence. We call it node-distance (or in short
N-Distance), as it refers to the distance between two adjacent nodes of a se-
quence in a change log graph. For a sequence s in a change log graph G, the
node gap between two adjacent nodes can be represented by a series of wild-cards



Table 1. A sequential list of change operations

Id Change Operations (extracted from ontology change log graph)

1 Add concept (“PhD Student”)
2 Add subclassOf (PhD Student, Student)
3 Add Instance (“Javed”)
4 Add classAssertion (Javed, PhD Student)
5 Delete subclassOf (PostGraduate, Student)
6 Delete concept (PostGraduate)
7 Add objectPropertyAssertion (Javed, isMemberOf, Computing)
8 Add dataPropertyAssertion (Javed, studentId, “58120348”)
9 Add Instance (“Yalemisew”)
10 Add classAssertion (Yalemisew, PhD Student)
11 Add objectPropertyAssertion (Yalemisew, isMemberOf, Electrical Engineering)
12 Add dataPropertyAssertion (Yalemisew, studentId, “58123857”)
13 Add Instance (“Kosala”)
14 Add classAssertion (Kosala, PhD Student)
15 Add individual (“ECOWS2009”)
16 Add objectPropertyAssertion (Kosala, isMemberOf, Electronic Engineering)
17 Add Instance (“Aakash”)
18 Add objectPropertyAssertion (Aakash, isMemberOf, Mechanical Engineering)
19 Add classAssertion(Aakash, PhD Student)
20 Delete inverseObjectProperty (hasSupervisor, isSupervisorOf)
21 Add dataPropertyAssertion (Aakash, studentId, “58121143”)
22 Add domainOf (courseCode, Course)
23 Add rangeOf (hasCourseCode, CourseCode)
24 Add Instance (“Wong”)
25 Add dataPropertyAssertion (Wong, studentId, “58129070”)
26 Add classAssertion (Wong, PhD Student)
27 Add Instance (“Pooyan”)
28 Add classAssertion (Pooyan, PhD Student)
29 Add objectPropertyAssertion (Pooyan, isMemberOf, Electronic Engineering)
30 Add objectPropertyAssertion (Pooyan, isMemberOf, Electrical Engineering)

(denoted by symbol x), where a wild-card x is a special symbol that matches
any change operation in the change log. For example, sequence s3 in Table 1 can
be written as s3 = {n13, n14, x, n16}. The overall N-Distance of the sequence is
denoted by upper case alpha A. It represents the number of wild-cards present
in the whole sequence whereas, lower case alpha α refers to the gap between
two distinct adjacent graph nodes of a sequence. A sequence s with N-Distance
As =

∑a
b α (where a and b refer to the graph node ids) can be denoted as

s = (n1, α
1
2, n2, α

2
3, · · · , nm). Thus, sequence s3 in table 1 can also be written as

s3 = {n13, +0, n14, +1, n16}.
3) Type Categorisation of Change Operations: We found a difference be-
tween fully distinct and type-equivalent change operations. Two ontology change
operations can be type-equivalent based on the type of their operation, ele-
ment and parameters. For example, in the list below, operations 1 and 2 are
type-equivalent as both of them have the same operation type (Add), the same
element type (ObjectPropertyAssertion) and the same type of instances (i.e.
Javed and Kosala are instances of type PhD Student and Computing & Elec-



Table 2. Node Sequences of PhD Student Enrollment Process

Sequence Node Set of Ontology Change Log Graph

s1 3 - 4 - 7 - 8

s2 9 - 10 - 11 - 12

s3 13 - 14 - 16

s4 17 - 18 - 19 - 21

s5 24 - 25 - 26

s6 27 - 28 - 29 - 30

tronic Engineering are types of university department). Operation 3 is distinct
in comparison with operations 1 and 2 as parameter IEEE is not of type univer-
sity department (instead of type Research Society).

1- Add ObjectPropertyAssertion(Javed, isMemberOf, Computing);
2- Add ObjectPropertyAssertion(Kosala, isMemberOf, Electronic Engineering);

3- Add ObjectPropertyAssertion(Abgaz, isMemberOf, IEEE);

4) Variations between Change Sequences: Two change sequences can be
different from each other in a number of ways such as in terms of their length,
order and type of operations involved etc. We can identify three types of vari-
ation which can occur between two sequences (Table 3), i.e. Len-variation, ST-
variation and DT-variation.

– Len-Variation: Len-variation captures the variation between two sequences
based on the number of graph nodes present in them. For example in Table
1, Len-variation between sequences s1 and s6 is 0 as the number of graph
nodes available in both sequences is 4.

– ST-Variation: ST-variation is a measure to capture the variation between
two sequences based on the number of distinct operations, but in different
quantity. For example, in Table 1, ST-variation between sequences s6 and
s1 is 1 as the former sequence contains one extra change operation (i.e.
operation 30), which is not present in the other; however, a similar type of
change operation is there (operation 07).

– DT-Variation: DT-variation captures the variation between two sequences
based on the number of distinct operations which are present in the first
sequence but missing in the other, e.g. DT-variation between sequences s1

and s6 is 1 as the former sequence contains one extra change operation
(operation 08), which is of a type not present in the other.

Table 3. Variations b/w sequences s1 and s6

- Len-Variation ST-Variation DT-Variation

s1 vs. s6 00 00 01

s6 vs. s1 00 01 00

4 Discovery of Sequential Abstractions from Ontology
Change Log

Mining of sequential abstractions is the key focus here. Based on our anal-
ysis of evolutionary aspects of domain ontologies and the identified sequen-



tial/subsequence change patterns from ontology change log graph (Sect. 3), we
categorized different type of change sequences into two basic subdivisions and
used them as the basis for change pattern discovery algorithms. We exploited
the identified change sequences to discover further implicit knowledge which in-
cludes composite changes and causal dependencies across the ontology taxonomy
hierarchy. Below, we discuss each section in detail.

4.1 Discovery of Different Types of Change Sequences

To perform some change operations in the exact same order over time is unlikely.
In a real world scenario, users perform changes by using different orders of change
operations. However, the end result of the change sequences may be the same.
Based on our sequential/subsequence pattern observations (discussed above), we
identified four different types of the sequences (in comparison to referenced can-
didate sequence) based on their ordering and completeness (i.e. Len-Variation).
We merged these different types of sequences into two basic divisions:

– Ordered Change Sequences (OS)
Type 1 - Ordered Complete Change Sequence (OCS)
Type 2 - Ordered Partial Change Sequence (OPS)

– Unordered Change Sequences (US)
Type 3 - Unordered Complete Change Sequence (UCS)
Type 4 - Unordered Partial Change Sequence (UPS)

Ordered Change Sequences comprise ordered change operations from a change
log. That means, such sequences (complete or partial) may have only positive
node distance between two adjacent graph nodes (w.r.t. referenced change se-
quences). In Table 1, w.r.t. sequence s1, the sequence s2 is of type 1 as the
sequence s2 is complete (i.e. Len − variation = 0) and change operations are
in the same order (i.e. α = +ve). However, the sequence s3 is of type 2 as the
change operations in it are in the same order, but the sequence is partial (i.e.
Len − variation > 0). Similarly, w.r.t. sequence s1, sequence s6 is also of type
2 due to the presence of DT − variation (i.e. operation 8 is not type-equivalent
to operation 30).

Unordered Change Sequences comprise unordered change operation from a
change log. That means, such sequences (complete or partial) may have positive
or negative node distances between two adjacent graph nodes (w.r.t. referenced
change sequences). In Table 1, sequence s4 is of type 3 (w.r.t. sequence s1) as the
sequence is complete. However, the change operations are unordered (i.e. α =
+ve/−ve). Furthermore, the sequence s5 is of type 4 as the change operations
are in different order as well as the sequence is partial.

The discovery of such change sequences has a number of benefits. First, it
helps for documenting evolving ontologies, i.e. representing how entities evolve
over time (entity evolution). Second, these change sequences are used to discover
the correlations & the causal dependencies between different ontological entities
which evolve together (Sect. 4.4). Third, and most importantly, the identified



change sequences are used in discovering usage-driven change patterns (Sect.
4.2).

4.2 Discovery of Sequential Change Pattern

Ontology change logs can be used to discover the usage-driven change patterns.
Such sequential change patterns provide guidelines to content change manage-
ment systems and support in the evolution process [11]. Identifying recurring se-
quenced change patterns from a change log is a problem of recognising frequent
pattern in a graph. A set of candidate pattern sequences CP, to be considered
as a domain-specific change pattern P, must meet the following criteria:

– The length of the each candidate pattern sequence cp must be equal to or
greater than the threshold value set by the minimum pattern length.

len(cp) ≥ min len(p) : cp ∈ CP (1)

– Each candidate pattern sequence cp must reflect a consistent state of the
ontology. There may be graph nodes available in cp which transforms a
consistent ontology to a non consistent (or vice versa). However, at the end
of the sequence, the ontology must be back in a consistent state.

endOf(cp) → consistent(O) : cp ∈ CP (2)

– The support for a candidate pattern cp in a change log graph G must be
above the threshold value of minimum pattern support of a pattern.

sup(cp) ≥ min sup(p) : cp → Pdomain specific (3)

The basic idea of the change pattern discovery algorithms is to i) start an iter-
ation process on each graph node, ii) generate the candidate sequence starting
from that particular graph node and iii) search the similar sequences within the
graph G. Details of the change pattern discovery algorithms can be found in
[12]. The change sequence types 1 & 3 (Sect. 4.1), where the change sequences
are of the same length, i.e. Len − variation = 0, were applied as a reference
in order to discover the change patterns. The performance-based comparison of
two algorithms, Ordered Complete Change Pattern (OCP) and Unordered Com-
plete Change Pattern (UCP), is given in Table 4. The OCP algorithm is efficient
in terms of time consumption. The reason is the permissibility of only positive
node distance (+α) in a change sequence. However, the UCP algorithm is more
efficient in terms of number of discovered patterns (9:5). Similarly, in terms of
size of maximal patterns, the UCP algorithm could discover patterns of greater
size as compared to OCP.

The discovered change patterns are based on the operations that have been
utilized frequently by the user and guarantee the consistent state of the ontolo-
gies. Once the sequential patterns are associated with the user category, patterns
will be more effective since the classified patterns are often more useful [7].



Table 4. Comparison between OCP and UCP Algorithm

a - OCP Algorithm b - UCP Algorithm

Max. Node Patterns Time Max. Pattern Patterns Time Max. Pattern
Distance Found (ms) size Found (ms) size

0 0 469 0 4 1359 6

1 3 609 5 7 2282 7

2 5 875 6 6 3906 7

3 5 985 6 8 4968 7

4 5 1110 6 8 6078 7

5 5 1203 6 9 7141 7

4.3 Discovery of Composite Changes

We made use of the correlations between different identified change sequences to
capture the composite changes from a change log. We use an example to illustrate
this. In Table 4, three separate identified change sequences are given. The first
two change sequences represent an addition of new concepts PhD Student and
MSCByResearch Student and provide a description of the concepts by adding
them as domain/range for object properties and linking individuals to them.
The last change sequence represents the deletion of a concept Research Student
and deleting all descriptions about such concept. If we look the three changes as
a sequence of change operations, they look like an addition and deletion of enti-
ties. However, there are implicit correlations, which exist among these sequences.
First, if we look at the node ids, it is clear that these three change operations
are applied one after another. Secondly, these three change sequences have the
parent of the target entity concept (Student) in common. Third, most of the
parameters of the change operations have been shared among each sequence. If
we look these three change sequence together, one can understand that these
are not three separate change sequences, but are linked to each other and there
exists a correlation between them. The intent of change is not to add two new
concept and delete one, but to split a concept into two and the three change
sequences must be applied as a single transaction. We identify such composite
changes with minimal user input. Once such composite change operations are
identified, they are represented as a single change request in a higher level (com-
posite) change log [9]. Later, such composite operations can be applied as a single
transaction whenever similar changes have to be performed. Such discovery of
composite changes supports the represention of the intent of change at a higher
level and improves the ontology evolution process in terms of consistency and
time consumption.

4.4 Discovery of Causal Dependencies

A causal dependency is related to the identification of ontological entities which
frequently (if not always) evolve together even if they are not directly connected.
That means, change in one part of the domain ontology has a direct impact on
another section of the ontology. We are interested in detecting such causal depen-
dencies across the ontology taxonomy. For example, in the change sequences of



Table 5. Three separate ontology change sequences

Node Id Change Operations

114 Add concept (PhD Student)
115 Add subClassOf (PhD Student, Student)
116 Add domainOf (hasSupervisor, PhD Student)
117 Add rangeOf(isSupervisorOf, PhD Student )
118 Add classAssertion (Javed, PhD Student)

119 Add concept (MSCByResearch Student)
120 Add subClassOf (MSCByResearch Student, Student)
121 Add domainOf (hasSupervisor, MSCByResearch Student)
122 Add rangeOf(isSupervisorOf, MSCByResearch Student)
123 Add classAssertion (Zubair, MSCByResearch Student)

124 Delete domainOf (hasSupervisor, Research Student)
125 Delete rangeOf(isSupervisorOf, Research Student)
126 Delete classAssertion (Javed, Research Student)
127 Delete classAssertion (Zubair, Research Student)
128 Delete subclassOf (Research Student, Student)
129 Delete concept (Research Student)

the university ontology (given in Table 1), whenever a user adds a new instance of
PhD Student, he/she also attaches a student id with the instance. Furthermore,
user adds additional information such as university department, email id etc. of
that particular student. These types of changes demonstrate that the existence
of the properties such as student id or isMemberOf are causally dependent on
the concept Phd Student. Thus, the existence of any PhD student without such
linked knowledge does not have any semantic use. Another example of captured
causal dependency is the introduction of new course. Whenever a new course is
introduced in a university department, new subjects (and subject codes) have
to be introduced, course-related books have to be purchased and added to the
library, new vacancies have been advertised in order to provide the expertise etc.

We analyzed different types of change sequences (Sect. 4.1) and the identified
composite changes (Sect. 4.3) in order to capture the ontological entities which
evolve together. Based on our analysis, we generate the association rules which
are implemented as sequences and contains higher change support and confidence
within the change log. These association rules were used to capture causally
dependent ontological entities. We employed such causal dependencies in existing
ontology change management systems in order to discover new trends within the
domain, change request recommendations etc. This, in turn, can also serve as
basis for process improvement actions, e.g., it may trigger patterns redesign or
better control mechanisms [4].

5 Related Work

An early work that relied on the activity logs for producing formal process
models corresponding to actual process execution is given in [16]. The author



describes different methods based on an analysis of the activity traces. Metrics
such as event frequency and regularity were taken into consideration to discover
process models. Results show that the proposed technique is promising and useful
in activities such as process model discovery, reengineering, software process
improvement etc. In [17], the focus is on detection of invisible tasks from event
logs. Their definition of invisible tasks is tasks that exist in a process model, but
not in its event log (such as initialise, skip, switch, redo, etc.). Author proposed
an algorithm which extends the mining capability by detecting of invisible tasks.
In contrast to their work, we are interested in the detection of composite changes
such as split, move, merge etc. In terms of mining of sequential patterns, it was
first proposed by Agrawal and Srikant [18] and later, these authors proposed
an algorithm (GSP Algorithm) based on an apriori property [19]. Since, many
authors have proposed a number of sequential pattern mining algorithms based
on their specific domains and suitability [2, 4, 5, 7, 10]. We have neglected early
process stages such as log parsing here [2, 3] in order to focus on the semantic
analysis, but an analysis of the log processing could bring further insights.

6 Conclusions

Activity log mining is not restricted to creating new formal process models but
can be extended to discover implicit knowledge. Such knowledge may give an on-
tology engineer clues as to how and in what direction the defined ontology should
evolve, based on the actual current data of change activities. The presented work
continues our previous research [8][9] by adding a comprehensive ontology change
representation and approach towards discovery of implicit knowledge from the
ontology change logs. In this paper, we proposed a fine-granular ontology change
representation by using different knowledge gathering aspects. We studied the
ontology change log data empirically in order to capture the implicit knowledge.
We utilised ontology change logs to identify different types of change sequences,
entity correlations, association rules and discovery of sequential change patterns.
Such discovered knowledge is used for the purpose of patterns redesign, docu-
mentation of changes at higher level, classification of ontology users etc. Our
future work includes the definition of a pattern language based on the implicit
knowledge discovered from a change log.

Acknowledgment

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142)
as part of the Centre for Next Generation Localisation at Dublin City University.

References

1. Yu, L.: Mining Change Logs and Release Notes to Understand Software Mainte-
nance and Evolution.In CLEI Electron Journal, Vol. 12, No. 2, pp. 1–10, 2009.



2. Ivancsy, R., Vajk, I.: Frequent Pattern Mining in Web Log Data. Acta Polytechnica
Hungarica. Journal of Applied Sciences, Vol. 3, No. 1, pp. 77-90, 2006.

3. Pabarskaite, Z., Raudys, A.: A process of knowledge discovery from web log data:
Systematization and critical review. In Journal of Intelligent Information Systems,
Vol. 28(1), pp. 79–104, 2007.

4. Guenther, C., Rinderle, S., Reichert, M., van der Aalst, W.: Change Mining in
Adaptive Process Management Systems. In: Proc. 14th International Conference
on Cooperative Information Systems(CoopIs), LNCS 4275, pp. 309-326, 2006.

5. Peng W., Li, T., Ma, S.: Mining logs files for data-driven system management. In
Journal of SIGKDD Explorations, volume 7, No. 1, pp. 44-51, 2005.

6. Haase, P., Sure, Y.: Usage Tracking for Ontology Evolution. EU IST Project SEKT
Deliverable D3.2.1 (WP3.2) 2003.

7. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-Dimensional
Sequential Pattern Mining. In ACM International Conferenece on Information and
Knowledge Management (CIKM ’01), pp. 81-88, 2001.

8. Javed, M., Abgaz, Y., Pahl, C.: A pattern-based framework of change operators for
ontology evolution. In 4th International Workshop on Ontology Content. Volume
5872 of Lecture Notes in Computer Science., Springer (2009), pp. 544-553.

9. Javed, M., Abgaz, Y., Pahl, C.: A Layered Framework for Pattern-Based Ontology
Evolution. In 3rd International Workshop on Ontology-Driven Information System
Engineering (ODISE), London, UK, 2011.

10. Kosala, R., Blockeel, H.: Web mining research: A survey: Newsletter of the Special
Interest Group on Knowledge Discovery and Data Mining, ACM, Vol. 2, No. 1,
pp. 1–15, 2000.

11. Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process
Management. In 14th International Conference on Object-Oriented and Entity
Relationship Modelling O-O ER95. Springer-Verlag (LNCS Series), 1995.

12. Gacitua-Decar, V., Pahl, C.: Automatic Business Process Pattern Matching for
Enterprise Services Design. 4th International Workshop on Service- and Process-
Oriented Software Engineering (SOPOSE-09). IEEE Press. 2009.

13. He, D., Goker, A.: Detecting session boundaries from Web user logs. In Proceedings
of the 22nd Annual Colloquium on Information Retrieval Research (pp. 57-66).
Cambridge, UK: British Computer Society, 2000.

14. Pitkow, J., Margaret, R.: Integrating bottom-up and top-down analysis for intel-
ligent hypertext. In Conference on Intelligent Knowledge Management, Intelligent
Hypertext Workshop, Dec. 12, 1994, National Institute of Standard Technology.

15. Montgomery, A.L., Faloutsos, C.: Identifying web browsing trends and patterns.
In Proceeding of IEEE Journal Computer, Vol. 34, issue 7, pp. 94-95, 2001.

16. Cook, J.E., Wolf, A.L.: Discovering models of software prosses from event-based
data. ACM Transactions on Software Engineering and Methodology. Vol. 5, no. 3,
pp. 215–249, 1998.

17. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process mod-
els with prime invisible tasks. In journal of Data Knowledge Engineering, Vol.69,
no. 10, pp. 999–1021, 2010.

18. Agrawal, R., Srikant, R.: Mining sequential patterns. In Proceedings of the
Eleventh Int. Conf. on Data Engg., Philip S. Yu and Arbee L. P. Chen (Eds.).
IEEE Computer Society, Washington, DC, USA, pp. 3–14, 1995.

19. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Proc. of the Int. Conf. on Extending Data Base Tech-
nology. Lecture Notes in Computer Science, vol. 1057. Springer Verlag, pp. 3–17,
1996.


