Skip to main content

Protein Function Prediction by Spectral Clustering of Protein Interaction Network

  • Conference paper
Database Theory and Application, Bio-Science and Bio-Technology (BSBT 2011, DTA 2011)

Abstract

The increasing availability of large-scale protein-protein interaction (PPI) data has made it possible to understand the basic components and organization of cell machinery from the network level. Many studies have shown that clustering protein interaction network (PIN) is an effective approach for identifying protein complexes or functional modules. A significant number of proteins in such PIN remain uncharacterized and predicting their function remains a major challenge in system biology. We propose a protein annotation method based on spectral clustering, which first transforms the PIN using the normalized Laplacian of the PIN graph, and then employs a classic clustering algorithm like k-means. Protein functions are assigned based on cluster information. Experiments were performed on PPI data from the bakers’ yeast and since the network is noisy and still incomplete, we use pre-processing and purifying. We also performed network weighting based on the annotation correlation between nodes. Results reveal improvement over previous techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Mering, C., Krause, R., Sne, B., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  2. Hakes, L., Lovell, S.C., Oliver, S.G., et al.: Specificity in protein interactions and its relationship with sequence diversity and coevolution. PNAS 104(19), 7999–8004 (2007)

    Article  Google Scholar 

  3. Harwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, c47–c52 (1999)

    Article  Google Scholar 

  4. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 48 (2006)

    Article  Google Scholar 

  5. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  6. Arnau, V., Mars, S., Marin, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 21, 364–378 (2005)

    Article  Google Scholar 

  7. Rives, A.W., Galitski, T.: Modular organization of cellular networks. PNAS 100, 1128–1133 (2003)

    Article  Google Scholar 

  8. Friedel, C.C., Zimmer, R.: Inferring topology from clustering coefficients in protein-protein interaction networks. BMC Bioinformatics 7, 519 (2006)

    Article  Google Scholar 

  9. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins 54, 49–57 (2004)

    Article  Google Scholar 

  10. Dunn, R., Dudbridge, F., Sanderson, C.M.: The use of edge-betweenness clustering to investigate biological function in PINs. BMC Bioinformatics 6, 39 (2005)

    Article  Google Scholar 

  11. Luo, F., Yang, Y., Chen, C.F., Chang, R., Zhou, J., et al.: Modular organization of protein interaction networks. Bioinformatics 23, 207–214 (2007)

    Article  Google Scholar 

  12. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 69, 026113 (2004)

    Google Scholar 

  13. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein-protein interaction networks. Bioinformatics 23, i29–i40 (2007)

    Article  Google Scholar 

  14. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  15. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)

    Article  Google Scholar 

  16. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21) (2003)

    Google Scholar 

  17. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome. Biol. 5, R57 (2004)

    Article  Google Scholar 

  18. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: A lock-and-key model for protein-protein interactions. Bioinformatics 22, 2012–2019 (2006)

    Article  Google Scholar 

  19. Andreopoulos, B., An, A., Wang, X., Faloutsos, M., Schroeder, M.: Clustering by common friends finds locally significant proteins mediating modules. Bioinformatics 23, 1124–1131 (2007)

    Article  Google Scholar 

  20. Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein networks with power graph analysis. PLoS Comput. Biol. 4, e1000108 (2008)

    Google Scholar 

  21. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  22. Chen, J., Yuan, B.: Detecting Functional Modules in the Yeast Protein-Protein Interaction Network. Bioinformatics 18(22), 2283–2290 (2006)

    Article  Google Scholar 

  23. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark Graphs for testing Community Detection Algorithms. Physical Review E78, 046110 (2008)

    Google Scholar 

  24. Dwight, S., Harris, M., Dolinski, K., Ball, C., Unkley, G.B., Christie, K., Fisk, D., Issel-Tarver, L., Schroeder, M., Sherlock, G., Sethuraman, A., Weng, S., Botstein, D., Cherry, J.M.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using Gene Ontology (GO). Nucleic Acids Research 30(1) (2002)

    Google Scholar 

  25. The gene ontology consortium: Gene ontology: Tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Google Scholar 

  26. Fortunato, S.: Community Detection in Graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trivodaliev, K., Cingovska, I., Kalajdziski, S. (2011). Protein Function Prediction by Spectral Clustering of Protein Interaction Network. In: Kim, Th., et al. Database Theory and Application, Bio-Science and Bio-Technology. BSBT DTA 2011 2011. Communications in Computer and Information Science, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27157-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27157-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27156-4

  • Online ISBN: 978-3-642-27157-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics