Skip to main content

Distributed Formation Control for Communication Relay with Positionless Flying Agents

  • Conference paper
Multimedia, Computer Graphics and Broadcasting (MulGraB 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 262))

Abstract

Distributed formation of swarming with no coordinated agreement or positioning information is an interesting research area. This principle is applied to the development of ad-hoc wireless communication networks based on flying agent for finding ground users in disaster areas. We describe a decentralized self-control algorithm for coordinating a swarm of identical flying agents to spatially self-organize into arbitrary shapes using local communication maintaining a certain level of density. The proposed approach generates a shared coordinate system by flying agents which are continuously performing local trilateration, and achieves pre-defined shape formation by allowing agents to scatter within the defined 2D shape using virtual pheromones to maintain their communication pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camazine, S.: Self-organization in biological systems. Princeton Univ. Pr. (2003)

    Google Scholar 

  2. Sharpe, T., Webb, B.: Simulated and situated models of chemical trail following in ants. In: From Animals to Animats 5: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior, pp. 195–204

    Google Scholar 

  3. De Nardi, R., Holland, O.: UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS, vol. 4433, pp. 116–128. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Elston, J., Frew, E.: Hierarchical distributed control for search and tracking by heterogeneous aerial robot networks. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 170–175. IEEE (2008)

    Google Scholar 

  5. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. Autonomous Robots 11(3), 319–324 (2001)

    Article  MATH  Google Scholar 

  6. Flint, M., Polycarpou, M., Fernandez-Gaucherand, E.: Cooperative control for multiple autonomous uav’s searching for targets. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 2823–2828. IEEE (2002)

    Google Scholar 

  7. Yoxall, P.: Minuteman project, gone in a minute or here to stay-the origin, history and future of citizen activism on the united states-mexico border. The U. Miami Inter-Am. L. Rev. 37, 517 (2005)

    Google Scholar 

  8. van de Burgt, R., Corporaal, H.: Blimp positioning in a wireless sensor network (2008)

    Google Scholar 

  9. U. of West England, “The flying flock” (2002), http://www.ias.uwe.ac.uk/projects.htm

  10. Campo, A., Dorigo, M.: Efficient Multi-Foraging in Swarm Robotics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 696–705. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kadrovach, B., Lamont, G.: Design and analysis of swarm-based sensor systems. In: Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, MWSCAS 2001, vol. 1, pp. 487–490. IEEE (2001)

    Google Scholar 

  12. Kovacina, M., Palmer, D., Yang, G., Vaidyanathan, R.: Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2782–2788. IEEE (2002)

    Google Scholar 

  13. Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 36–43. IEEE Computer Society (2004)

    Google Scholar 

  14. Van Dyke Parunak, H., Brueckner, S.A., Sauter, J.: Digital Pheromones for Coordination of Unmanned Vehicles. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 246–263. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Patwari, N., Ash, J., Kyperountas, S., Hero III, A., Moses, R., Correal, N.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine 22(4), 54–69 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yeom, K. (2011). Distributed Formation Control for Communication Relay with Positionless Flying Agents. In: Kim, Th., et al. Multimedia, Computer Graphics and Broadcasting. MulGraB 2011. Communications in Computer and Information Science, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27204-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27204-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27203-5

  • Online ISBN: 978-3-642-27204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics