A Safe Regression Testing Technique for Web Services
based on WSDL Specification

Tehreem Masodd Aamer Nadeem Gang-soo Lee

Center for Software Dependability,
Mohammad Ali Jinnah University (MAJU), Islamabadkiztan
tehreem_maju@yahoo.com , anadeem@jinnah.edu.pk

“Department of Computer Engineering,
Hannam University, Korea
gslee@hannam.ac.kr

Abstract. Specification-based regression testing of webisesvis an important
activity which verifies the quality of web service& major problem in web
services is that only provider has the source @mEboth user and broker only
have the XML based specification. So from the pectipe of user and broker,
specification based regression testing of web sesvis needed. The existing
techniques are code based. Due to the dynamic mehafwveb services, web
services undergo maintenance and evolution praegedly. Retesting of web
services is required in order to verify the impatthanges. In this paper, we
present an automated safe specification basedssgnetesting approach that
uses original and modified WSDL specifications ¢bange identification. All
the relevant test cases are selected as reusabte hmir regression test
selection approach is safe.

Keywords: Regression testing, web services, specificatioringgstest case
selection.

1 Introduction

Web services have become center of attention dutiegpast few years. It is a
software system designed to support interoperaileraction between different
applications and different platforms. A system ihiethh web services are used is
named as web services based system. Web servieestamlards such as Hypertext
Transfer Protocol (HTTP), Simple Object Access ot (SOAP) [13], Universal
Description, Discovery, and Integration (UDDI), W8brvices Description Language
(WSDL) and Extensible Markup Language (XML) [3] foommunication between
web services through internet [1].

Maintenance is the most cost and time consumingebéh software life cycle, it
requires enhancement of previous version of sofiway deal with the new
requirements or problems. As modifying software magur faults to the old
software, testing is required. It is very difficdtir a programmer to find out the
changes in software manually, this is done by nwkiomparison of both previous
test results and current test results being runv M@ changed or modified software
needs testing known as regression testing [2].

Regression testing is performed during and aftemthintenance to ensure that the
software as a whole is working correctly after ads have been made to it. Basic
regression testing steps includes change idertditan modified version of the
system, impact of changes on other parts of theesyscompatibility of both changed
part and indirectly affected part with the baseltast suite, removing invalid test
cases and selecting a subset of baseline testtisaftes used for regression testing [2].

Significant research has been carried out on gstfrweb services [12] but there
is limited amount of work on regression testingwab services.Most of the existing
approaches for regression testing of web servicescade based but no work is
available on specification based regression testirvgeb services.

In web services, only web service provider has sbaerce code and both web
service broker and user only have the specificatitmovider is not willing to share
the source code [1]. So from the perspective okér@and user, specification based
regression testing is needed. A change may occuvein service functionality or
behavior with no interface change, specificatiodl wot change. But if a change
occurs in interface, specification will also be ihad [6]. Our focus is interface
change. Further details about changes are explairszttion Il1.

WSDL plays very important role in web servicesislan XML document used to
describe web services. It has four major elemdratsare Types, Messages, PortType
and Binding [8]. The main concern of our approashType element of WSDL
specification [8]. WSDL specification uses an XMkchéma [14], which is used to
define types used by web service. XML schema dsfgimple types and complex
types [14]. For simplicity, we will only considergher level complex types. Complex
type within a complex type is not considered beedhe depth of the tree increases.

We have applied boundary value analysis [10] ora dgpe level changes and
selected reusable test cases [11]. Test suiteifetatisn of Leung and white [11] is
used in this paper. The proposed approach seldcthearelevant test cases as
reusable test cases which is explained by the dfedim example. Safety is defined as
all the relevant test cases are used [2].

The remaining paper is organized as follows: Sactidncludes related work in
the area of regression testing of web servicestidgetll discusses the proposed
approach for selective regression testing. In thd eonclusion of the paper is
presented in Section IV.

2 Related Work

Ruth, et al. [4] presented an approach to apply a safe regressst selection
technique to Java web services. Their approackased on Java-based control flow

graph named as Java Interclass Graph (JIG).They t@eated JIG by performing
static and dynamic analysis of code. They idemtifiangerous edges by comparing
old and new JIG. Then they compared the table gésdovered by the tests with the
set of dangerous edges to identify the tests topédormed. They provided a
simulation tool.

Ruth, et al. [5] presented a framework to apply a safe regpastest selection
technique to generic web services. There techrigjbased on control flow graph for
service involved in the regression testing activithe idea is that Control Flow
Graphs (CFG) should be able to highlight the chantgt can cause regression
testing. They also discussed that publishing t@s¢g is useful.

Pentaet al. [6] used test cases as a contract between sgrocgder and system
integrator. They considered dynamicity as an ingartharacteristic of service-based
applications, and performed online tests, i.e.execute tests during the operation
phase of the service-based application. They disclitheir approach with respect to
some scenarios and used some QoS assertions frmieg service regression
testing. They didn’t focus the changes in the djpations. They provided a toolkit
for generating XML-encoded test suite.

Khan and Heckel [7] presented a model-based apprftacregression testing of
web services. They identified changes and impachahges by using models that are
used to describe the service interface. For extdyahavior they used finite state
automatons and for data dependencies, bipartiterdismcy graph is used where the
nodes represents methods and classes. Then a miethddst case selection is
presented.

3 Proposed Approach

In web services, a change may occur in web serfuinetionality or behavior and
interface is not changed, in this case specificatidl not change and old test cases
can be used. But if a change occurs in interfgoegification will also be changed. In
this case, some required old test cases can betesklend there is a need to develop
some new test cases for regression testing [6]. pfrbposed approach focuses on
interface change.

A WSDL specification has four major elements whick messages, types, binding
and port type [8]. A message provides an abstrefotitlon of the data which is being
transmitted. A binding is used to define formatneéssage and protocol details for
operations and messages. A port type represertsad abstract operations. A type is
used to provide a data type definition, used t@ides the exchanged message which
is then used by a web service. WSDL specificatisesuan XML Schema which is
used to define types used by web service [14].

Figure 1shows the overall architecture of our proposed @ggr for specification
based regression testing of web services. The ncajmponents of our approach are
parser, comparator and regression test select@in@rWSDL specification of web
service is named as baseline WSDL, when initiallyed service is build. Modified
WSDL specification is named as delta WSDL, whened wervice is changed. Major
components are explained below.

Baselin Delta
e WSDI

L L

Pars:] [Pars:

A\ 4 l

Baselin Delta
e Tree

Data Type
Change

Baseline
Test

Regression
Test Selectc

Reusable
Test Case

Fig. 1. Abstract Model of the proposed approach

Input: Wsdl specification output: baseline and
delta tree

Step 1.

Select type element of WSDL specification.

Step 2:

Select element to be modeled as root node. Select
name of element as its attribute along with its
value enclosed with an equal sign.

Step 3:

If complex type of the root element exists then
an outgoing directed edge is formed from root
node which is connected to a complex type node
having name as its attribute along with its value
enclosed with an equal sign.

Step 4:

For each sub element of complex type, a new node
is generated, having element as name of the node
and a number of the element.

Associate all attributes and their values with
their respective nodes, in the same sequence as
described in the schema.

Step 5:

Repeat step 3 for all the sub elements of complex
tvoe

Fig. 2. Algorithm for generating tree of datatype

3.1 Parser
As described earlier, the main concern of our apghmois Type element of WSDL
specification. It provides a data type definiticr flescribing messages exchanged.

WSDL uses an XML schema to describe types used lep Bérvice [14]. XML
Schema defines simple types and complex types.I8itypes include either built in
primitive data types or derived data types and tgta facets. Built in primitive types
include string, float, etc. Derived data types uidd integer, etc. Complex type is any
user defined data type. A facet is a constraintctvhis used to set the values for a
simple type like length, mininclusive, etc [14]. ideve are taking facets as attributes
of sub elements. Parser takes original and modWW&DL specifications as input and
generates tree for type element of the WSDL spmmtin. An algorithm for
generating trees for both original and changed WSpcifications is given in Fig 2.
If any attribute of element, complex type and sléiment have no value specified in
XML schema then the attribute value is consideredal.

Example: Mortgagel ndex

Mortgagelndex is a Web service used to provide higntweekly and Historical
Mortgage Indexes. There are many possible Adjustabate Mortgage (ARM)
indexes. Some common mortgage indexes are 12-Mbrgthsury Average (MTA),
Treasury bill (T-Bill), etc [9]. For example if aolrower thinks that interest rates are
going to rise in the future, the T-Bill index woubé a more economical choice than
the one-month LIBOR index because the moving aweEjculation of the T-Bill
index creates a lag effect.

This web service has four basic operations, ie.,
GetCurrentMortgagelndexByWeek, GetCurrentMortgadekMonthly,
GetMortgagelndexByMonth, GetMortgagelndexByWeek.reHave are taking one
operation for explanation which is GetMortgagelri8gMonth. This operation takes
month and year as input and provides ARM indexestte specified values. Both
month and year are of type int [9]. XML schematfis operation is provided in Fig
3.

Example: XML Schema
<s:element name&etM ortgagel ndexByM onth">
<s:complexType>
<s:sequence>
<s:element maxOccursE" minOccurs=1" name=M onth" type="s:int" maxInclusive
="12" mininclusive =1" />
<s:element maxOccursE" minOccurs=1" name="Y ear" type="s:int* maxinclusive
="2007" minInclusive =1990"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name&etM ortgagel ndexByM onthResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs£" maxOccurs=1" name="GetM or tgagel ndexByM onthResult"
type="tns:Monthlyl ndex"/> </s:sequence>
</s:complexType>
</s:element>

Fig. 3. Original XML Schema for Element GetMortgagelndekBynth [9]

A runtime view of the operation GetMortgagelndexByith is shown in Fig 4.

Mortgagelndex

Click for a complete list of aperations.

GetMortgageIndexByMonth
Get ARM indexzs by Month

Test

To test the operation using the HTTP POST protocal, click the 'Invoke' button.
Parameter Walue

Month:

zar

Invoke

Fig 4. A runtime view of GetMortgagelndexByMonth

The resulting baseline tree generated from thér@igchema is shown in Fig 5.

name=GetM ortgagel ndexBy
Month
O DD

Fig. 5. Baseline tree T for complex datatype

Baseline tree for complex Datatype of Fig 3 is shdaw Fig 5. In Fig 5 an oval
shape represents a node e.g. here Element, ConyplexElementl and Element2 are
nodes. An oval callout represents attributes ametéaof simple type e.g. name,
minOccurs, maxOccurs and type are attributes andnelusive, maxinclusive are
facets of simple type int. Here facets are alscsictaned as attributes. The procedure
for generating tree from schema as shown in Figyeplained below.

In this example, first parser takes element oftyipe and generates a tree for it. A
node shape is drawn and named it as Element. Theattabute shape is attached
with this element and enclosed the name as abw@trand a value of this attribute in
it. For example here attribute is name and valu&esMortgagelndexByMonth. So
Name= GetMortgagelndexByMonth is written inside ti#ribute shape. Then the
next element is complex type, a node shape is deawinnamed it as complex type.
Then draws an outgoing directed edge from the mooe and connect it to the new
node. Then an attribute shape is attached wittm#wsnode and enclosed the name as

its attribute and value of this attribute in it. rdea null value is assigned to the
attribute name of ComplexType as it has no nameifspe in Fig 3. In Fig 3 there are
two sub elements of ComplexType. First sub elementonth. Now as its type is int
which is a primitive data type, a new node is dramd named it as Elementl. Then
an outgoing directed edge is drawn from ComplexTiypée to this new node. Then
attribute shapes are attached with this new nodeviery attribute of Element 1 and
enclosed the name and values of these attributesbgrone. For example heré 1
attribute is minOccurs having value 1, so in theitaite shape minOccurs =1 is
written. Similarly all other attributes are drawRepeat the same procedure for the all
other sub elements of ComplexType. For naming seheirtle having lvalue is
attached with the root node, as it is the firstenofithe tree. 1.1 is attached with the
attribute name of root node. 2 is attached with@Henode named as complex type.
2.1 is attached with the attribute name of compigre node. Same is the case with
other nodes and attributes. The resulting baseliree model for element
GetMortgagelndexByMonth generated by applying theva steps is shown in Fig 5.
Now suppose a change occurs in the attributeseofieht2 (year) described in Fig 3.
The changed schema is described in Fig 6. Herevtiees of the attributes
mininclusive and maxinclusive are changed to 199 £000 respectively.
Remaining schema is same. Then the tree is geddrata the modified schema by
applying the same steps presented in Fig 2. A%t change is in the values of
mininclusive and maxInclusive of element2 (yeao)0sly these attribute values are
changed in the resulting delta tree.

Example: XML Schema
<s:element name&etM ortgagel ndexByM onth">
<s:complexType>
<s:sequence>
<s:element maxOccurs£" minOccurs=1" name=M onth" type="s:int" maxInclusive
="12" mininclusive =1" />
<s:element maxOccursE" minOccurs=1" name="Year" type="s:int* maxInclusive
="2000" minInclusive =1995"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name&etM ortgagel ndexByM onthResponse™>
<s:complexType>
<s:sequence>
<s:element minOccurst" maxOccurs=1" name="GetM or tgagel ndexByM onthResult"
type="tns:M onthlyl ndex" />
</s:sequence>
</s:complexType>
</s:element

Fig. 6. Modified XML schema

The resulting delta tree generated from the madigiehema is shown in Fig 7.

name=GetM ortgagel ndexBy
@ —
© T

Fig. 7. Delta tree T’ for complex datatype

3.2 Comparator

We define data type changes in our approach. Tyeenemt of the WSDL
specification provides a data type definition f@asdribing messages exchanged. In
Fig 8 e is used for representing the root eleménbmplex type in baseline tree and
e’ is used for representing the root element of glemtype in delta tree. c is used to
represent complex type in baseline tree and c'seduo represent complex type in
delta tree. ei is the instance of sub element afpdex type in baseline tree and ej is
the instance of sub element of complex type inediette. T the root element attribute
name and value of Fig 5 and Fig 7 are comparetiges they are same so step 2 is
executed. In step 2 name and value of the compiex attribute are compared, as
they are also same, so we execute step 3 and 5.

In step 3 we check the sub elements of complex type by one, i element of
complex type node of Fig 5 and Fig 7 when compattezly are same, and so step 4 is
executed for its every attribute. In step 4 altilatite names and values are compared
one by one, they are same so check if there ioHmr element of the complex type.
As there is another sub element denoted by elemaotzhe name and value of
element2’s attribute of both Fig 5 and Fig 7 avmpared, as they are same so step 4
is executed for its every attribute. In step 4th# attribute names and values are
compared one by one, in this case two values ofbatés maxinclusive and
mininclusive are different so this change is deteédity comparator shown in Table 1.
1% is the change in the attribute maxinclusive vadumel 2° is the change in the
attribute mininclusive of Element 2.

Input: _ baseline and delta tree Output: _ changes

Variables: e denotes root node of baseline tree
e’denotes root node of delta tree

¢ denotes complex type node of baseline tree

¢’ denotes complex type node of delta tree

ei denotes instance of sub element of complex type in
baseline tree

ej denotes instance of sub element of complex type
delta tree.

Step 1.

Compare e.name and e'.name. If matched then If
e.value==e’.value then execute step 2 else root nod
deleted from baseline tree. If e.name! =e’.name and
e.value==e’.value then content of the attribute
changed. Execute step 2. Else If e.name! =e’.name a
e.value! =e’.value then root node deleted.

Step 2:

Compare c.name and c.name. If matched then If
c.value==c’.value then execute step 3, 5 else compl
type node deleted from baseline tree. If c.name!
=c’.name and c.value==c’.value then content of the
attribute changed. Execute step 3, 5. Else If c.nam
=c’.name and c.value! =c’.value then complex type n
deleted.

Step 3: Check_subElement (c, ')

For each child ei of ¢

For each child ej of ¢’

Compare ei.name and ej.name. If matched then If
ei.value==ej.value then execute step 4 for every
attribute else sub element node deleted from baseli

tree. Execute step 4. If ei.name! =ej.name and
ei.value==ej.value then content of the attribute
changed. Execute step 4. Else If ei.name! =ej.name
ei.value! =ej.value then attribute deleted from
baseline tree. Execute step 4 for every attribute.

Step 4.

Compare attribute name and value. If matched then
repeat step 4 for other attributes Else attribute
changed. Repeat step 4 for other attributes.

Step 5: Check_subElementAdded (c, ¢’)

For each child ej of ¢

For each child ei of ¢’

If ej.name==ei.name then If ej.value==ei.value then
matched else sub element added in delta tree. If
ei.name! =ej.name and ei.value==ej.value then conte
of the attribute changed. Else If ei.name! =ej.name
and ei.value! =ej.value then attribute added in del
tree.

nd

ex

el
ode

ne

and

nt

ta

Fig. 8. Change detection algorithm

The detected changes are shown below in Table 1.

Table 1: Detected hanae

4.5 changed
4.6 changed

3.3 Regression Test Selector

Finally regression test selector takes baselirtestéte and data type changes as input,
and categorizes the test suite. Baseline test ssitmtegorized into obsolete and
reusable test cases [11]. Obsolete test casebawe test cases that are invalid for the
delta version. They are invalid because the elesnaaty be changed or deleted from
the baseline version. Reusable test cases are tsiseases that are still valid for the
delta version after applying boundary value cood#i We perform boundary value
analysis for test case selection [10]. Criteriat tva are using for boundary value
analysis is max value, min value, max-1, min+1 amdndom value which should be
greater than min value and less then max value.example by applying these
conditions on specification shown in Fig 3, we &t month: 1,2,11,12,7 and for
year: 1990, 1991, 2006, 2007 and 1998. First oba#ieline test suite for original
specification tree T is shown in Table 2 by applyithe above boundary value
conditions. Every value of month is combined witlery value of year.

Table 2: Baseline test suite

TC1=1,1990 | TC10=7,1991 | TC19= 12,2007
TC2=2,1990 | TC11=1,2006 | TC20= 7,2007
TC3=11,1990 | TC12=2,2006 | TC21=1,1998
TC4=12,1990 | TC13= 11,2006| TC22= 2,1998
TC5=7,1990 | TC14=12,2006| TC23= 11,1998
TC6=1,1991 | TC15=7,2006 | TC24= 12,1998
TC7=2,1991 | TC16=1,2007 | TC25=7,1998
TC8= 11,1991 | TC17= 2,2007

TC9=12,1991 | TC18= 11,2007

Algorithm of regression test selector is shown ig & Now for the modified tree
T’ in Fig 7, again boundary value analysis is parfed for checking the usability of
baseline test suite. The resulting reusable tesstscare shown in Table 3.

Step 1:

Perform boundary value analysis on the boundaries o f
delta version

Step 2:

Compare new boundaries with the baseline boundaries

Step 3:

Select test cases from the baseline test suite that

are still valid for delta version named as reusable

test cases.

Step 4.

Discard the obsolete test cases from the baseline t est
suite that are no longer valid for the delta versio n.

Fig. 9. Test case selection algorit

Now the boundary values for year become 1995, 19060, 1999, 1997. The test
cases that are still valid from the baseline testesafter applying the changed

boundary value conditions are shown in Table 3 fwhg known as reusable test
cases.

Table 3: Reusable test cases

TC21=1,1998
TC22=2,1998
TC23=11,1998
TC24=12,1998
TC25=7,1998

A regression test suite is considered as safein€iudes all the test cases covering
the whole changed part of the system as well asvttade indirectly affected part of
the system. A safe regression test suite can hidnes test cases from the baseline test
suite that are covering the unchanged part of yiséem. Here all the relevant test
cases are used as reusable test cases. Hencstaask selection approach is safe.
Case 1: Attribute changed
If values of any attribute change then there carnifEact on test cases. Check the
type attribute of sub element and min and max Biekior any other range attribute if
there. If value of attribute name of root elementhanged then it means old element
is deleted. Check other attributes as well. If gadfi attribute name of complex type is
changed then it means old complex type is delétdeck other attributes as well. If
value of all attributes of all sub elements. Erame, type, minOccurs, maxOccurs,
mininclusive, maxinclusive etc is changed then itams value is changed. If
maxInclusive and mininclusive values are changesh ttest cases will be selected
from the baseline test suite according to the nedues of the mininclusive and
maxInclusive. If type value is changed then chéekdompatibility of new type with
the previous one.

Case 2: Types: Check the compatibility of old and new types.

e.g. Ifintis changed to float and mininclusivelanaxinclusive values are same then
test cases will be selected according to min and in@dusive values but if there is no
max and min inclusive values then test cases willlie selected from baseline test
suite. If float is changed to int and mininclusiaed maxInclusive values are same
then test cases will be selected according to méhraax inclusive values but if there
is no max and min inclusive values then test caskksiot be selected from baseline
test suite. If int is changed to string, then tzstes will not be selected from baseline
test suite. If string is changed to int, then tzses will not be selected from baseline
test suite. Same is the case with other types.

Case 3: Node

Deleted: If any node is deleted, then all its attributes aleo deleted. If complex
type node is deleted, then all its attributes dse deleted and all baseline test cases
will be removed

Added: If any node is added, then check its attributes @aldes. Select test case
according to the new values.

4 Conclusion

In this paper, we presented a specification basgaession test selection approach for
web services based on WSDL specification of wekiser The proposed approach is
a safe regression testing technique as it selegltetbst cases which exercise the
modified parts of web service. A proof-of-concepolthas also been developed to
support our approach.

Ackmowledgement

This work was supported by the Security EngineerlRgsearch Center, under
research grant from the Korean Ministry of Knowledgconomy.

References

1. Gottschalk, K., Graham, S., Kreger, H., Snelllniroduction to web services architecture.
IBM Systems Journal, 41(2), 170-177 (2002)
2. Binder, R.: Testing Object-Oriented Systems: M&deatterns and Tools. Addison-Wesley
Professional, (2000)
3. Extensible Markup Language (XML) 1.1 (Secondtigd) (2006) — World Wide Web
Consortium, http://www.w3.0rg/TR/xml11/
4. Ruth, N.M,, Lin, F., Tu, S.: Applying Safe Reggmn Test Selection Techniques to Java
Web Services. International Journal of Web Bes/Practices Vol.2, No.1-2, 1-10 (2006)
5. Ruth, M., Tu, S., Oh, S., Loup, A., Horton, Ballet, O., Mata, M.: Towards automatic
regression test selection for Web services31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), Bejjidlgina, pp. 729—-736 (July 2007)
6. Penta, M. D., Bruno, M., Esposito, G., Mazza,Ganfora, G.: Web services regression
testing. In: Baresi, L., Di Nitto, E. (eds.)st@nd Analysis of Web Services, pp. 205-234.
Springer, New York (2007)
7. Khan, T. A., Heckel, R.: A methodology for motlelsed regression testing of web services.
Testing: Academic and Industrial ConferenceacBce and Research Techniques
(TAICPART), pp. 123-124, (2009)
8. Web Services Description Language (WSDL) 2.@ paCore Language (2007) — World
Wide Web Consortium http://www.w3c.org/TR/wsdl20/
9. WebserviceX.NET. http://www.webservicex.net-M@agelndexWebService
10. Jorgensen, P. C., Software Testing: A Craftsmapfgoach, CRC Press, Inc. (2002)
11. Leung, H. K. N., White, L.: Insights into regs#on testing: software testing, proceedings of
conference on software maintenance. pp 60SEBN: 0-8186-1965-1, (Oct 1989)

12. Bares, L., Nitto, E. D.: Test and Analysis oftW&ervices, ACM computing classification,
ISBN 978-3-540-72911-2 Springer Berlin HeidegpRew York (2007)

13. Simple Object Access Protocol (SOAP) 1.2, BaRrimer: (2007) — World Wide Web
Consortium, http://www.w3.org/TR/soapl12-part0/

14. XML Schemas- Part 2, Datatypes - World Wide bWeConsortium,
http://iww.w3.org/TR/xmlschema-2/

