This is an author-generated version.
The final publication is available at link.springer.org

DOI: 10.1007/978-3-642-27213-4_12
Link: http://link.springer.com/chapter/10.1007%2F978-3-642-27213-4_12

Bibliographic information:
Frank Elberzhager, Alla Rosbach, Jirgen Miinch, Robert Eschbach. Inspection and Test Process

Integration based on Explicit Test Prioritization Strategies. In Proceedings of the Software Quality
Days (SWQD), pages 181-192, Vienna, Austria, January 17-19 2012.

Inspection and Test Process Integration based on
Explicit Test Prioritization Strategies

Frank Elberzhager!, Alla Rosbach!, Jiirgen Miinch?, Robert Eschbach!

! Fraunhofer IESE, Fraunhofer Platz 1,
67663 Kaiserslautern, Germany
{frank.elberzhager, alla.rosbach, robert.eschbach} @iese.fraunhofer.de
2 University of Helsinki, P.O. Box 68,
00014 Helsinki, Finland
juergen.muench@cs.helsinki.fi

Abstract. Today’s software quality assurance techniques are often applied in
isolation. Consequently, synergies resulting from systematically integrating
different quality assurance activities are often not exploited. Such combinations
promise benefits, such as a reduction in quality assurance effort or higher defect
detection rates. The integration of inspection and testing, for instance, can be
used to guide testing activities. For example, testing activities can be focused on
defect-prone parts based upon inspection results. Existing approaches for
predicting defect-prone parts do not make systematic use of the results from
inspections. This article gives an overview of an integrated inspection and
testing approach, and presents a preliminary case study aiming at verifying a
study design for evaluating the approach. First results from this preliminary
case study indicate that synergies resulting from the integration of inspection
and testing might exist, and show a trend that testing activities could be guided
based on inspection results.

Keywords: software inspections, testing, quality assurance, integration,
focusing, synergy effects, case study, study design

1 Introduction

Quality assurance activities, such as inspection (i.e., static quality assurance) and
testing (i.e., dynamic quality assurance) activities, are an essential part of today’s
software development in order to ensure software products of high quality. However,
the costs for performing quality assurance activities can consume more than 50
percent of the overall development effort, especially for testing [7]. Moreover, it is
often unclear how to systematically guide and focus testing activities.

Existing approaches to focusing testing activities are widely based on metrics such
as size or complexity, gathered from the development of current or historical software
products. Regarding inspection and testing activities, systematic integration is often
missing. Inspection and testing activities are usually applied in sequence, i.e., in
isolation, and do not exploit synergy effects such as reduced effort or the use of
inspection results to guide testing activities.

This article presents an integrated inspection and testing approach that is able to
guide testing activities based on inspection results. Parts of a system that are expected
to be most defect-prone or defect types that are especially relevant can be prioritized
based on defect data gathered during an inspection. In order to be able to conduct a
focused testing activity, knowledge about relationships between inspections and
testing is required. Such relationships are usually context-specific. Therefore, it is
necessary to prove whether reliable evidence about such relationships exists in a
given context. If no such evidence exists, assumptions need to be made regarding the
relationships between inspection and testing activities. For example, one assumption
might be that parts of a system where a significant number of defects are found by an
inspection contain more defects to be found by testing (i.e., a Pareto distribution of
defects is expected). Such assumptions have to be evaluated in a given context in
order to provide appropriate guidance for testing.

A study design was determined and verified during a preliminary case study in
which the integrated inspection and testing approach was applied. The results showed,
for instance, that inspection and testing activities should focus on defect types that are
most suitable for detection (e.g., maintainability problems during inspections, and
usability problems during testing), and that an effort reduction for testing of up to
23% was achievable in the given context. However, one important prerequisite for the
applicability of the approach is the testability of the software under test.

The remainder of this article is structured as follows: Section 2 presents a short
overview of the integrated inspection and testing approach. The study design and the
preliminary case study are described in Section 3. Finally, Section 4 concludes the
article and gives an outlook on future work. An extended version of this article
includes related work and a more detailed description of the approach [5].

2 Approach

The main idea of the integrated inspection and testing approach [2], [3] is to use
inspection defect data to guide testing activities. In doing so, parts of a system under
test that are expected to be most defect-prone or defect types that are expected to
show up during testing can be prioritized based on an inspection defect profile
(consisting of, for example, quantitative defect data and defect type information from
an inspection). The approach is able to prioritize parts of a system or defect types (1-
stage approach), or both (2-stage approach), and can thus define a test strategy.

In order to be able to focus testing activities, it is necessary to describe
relationships between defects found in the inspection and the remaining defect
distribution in the system under test, which also counts for defect types.
Consequently, assumptions are explicitly defined. One example of an assumption is
that for parts of a system where many inspection defects are found, more defects are
expected to be found with testing activities (i.e., a Pareto distribution of defects is
expected). Assumptions should be at least grounded on explicitly described
hypotheses to make them reliable. Nevertheless, each assumption has to be validated
in a given environment in order to be able to decide whether the assumption can be

accepted or not (and thus, checking whether valuable guidance for testing activities is
provided).

In addition, context factors have to be considered, such as the number of available
inspectors or the experience of the inspectors. For example, consider the number of
available inspectors and time as two context factors. If only one inspector is available
for inspecting certain parts of a system within a limited amount of time, fewer parts
can be inspected. Consequently, more effort should be expended on testing activities.

Since an assumption is often too coarse-grained to be applied directly, concrete
selection rules have to be derived in order to be operational. For example, the
assumption regarding the Pareto distribution of defects can be refined in terms of
application level and thresholds, leading to the following exemplary selection rule:
“Focus a unit testing activity on code modules where the inspection found more than
10 major defects per 1,000 lines of code”.

In addition to the inspection defect profile, metrics and historical data can be
combined with inspection defect data in order to improve the prediction of defect-
proneness and relevant defect types, and thus, to obtain improved guidance for testing
activities. Fig. 1 presents the concrete process steps for guiding testing activities
based on inspection results.

Artifact

Corrected artifact Focu_sed
testing

1-stage approach
Test cases

1

|

|

|

:

|

S

ystem parts T :
|

Selection of :

|

|

|

|

|

Inspection

Defect profile

Prioritization Defect types
test cases
Historical data)—l [System parts
& defect types

Selection rules

Assumptions /
context factors

2-stage approach

1
1

1

: Key:

:
1

:
|

Fig. 1. Integrated inspection and testing approach

3 Case Study

3.1 Goals

The primary goals of the preliminary study were to check the design of the study and
to evaluate whether an integrated inspection and testing approach is able to guide

testing activities based on inspection results. Inspection defect data should be used to
predict those parts of a system under test that remain especially defect-prone and
should therefore be addressed by additional testing activities. In addition, defect types
should be prioritized for testing based on inspection data.

While the initial case study showed first insights regarding the relationship
between inspection and testing activities on the code level, more data should be
gained in the preliminary case study presented here. Therefore, different assumptions
in a given context describing the relationship between defects found during inspection
and testing had to be evaluated regarding their suitability for guiding (i.e., focusing)
testing activities.

The following research questions are derived from the primary goals:

e RQI: Is an evaluation of the integrated approach possible with the given study
design, and which assumptions between inspection and testing activities are
most suitable in the given context for guiding testing activities?

o RQI1.1: How appropriate is it to focus testing activities on certain
parts of a product based on inspection defect results?

o RQ1.2: How appropriate is it to focus testing activities on specific
defect types based on inspection defect results?

3.2 Main Results from Another Evaluation

The preliminary case study presented in this article is similar to an earlier case study
[2], [3]. It could be shown that assumptions regarding a Pareto distribution of defects
led to suitable predictions of defect-prone parts, while combining inspection results
and product metrics led to inconsistent results for the prediction of defect-prone code
classes. The main differences of the preliminary study presented here compared to the
previous one are that new assumptions are defined, that the integrated approach is
evaluated in a different context (e.g., another product that was inspected and tested,
new subjects), and that system testing is considered. Furthermore, the preliminary
study presented here has a special focus on evaluating the design of the study before
applying the approach in an industrial environment.

3.3 Context

A Java tool called DETECT (dependability focused inspection tool) was used for
evaluating the integrated inspection and testing approach. The tool supports people
who perform an inspection. Currently, it mainly supports individual defect detection
with the help of different kinds of reading support and allows defining new checklists
for use during defect detection. The different kinds of reading support include
different tree structures and two kinds of checklists. The tool provides a three-part
view for the inspector: a tracking mode that documents each step; the artifact to be
checked; and the corresponding reading support (e.g., a checklist).

The tool was mainly developed by one developer. Currently, it consists of about
57k lines of code (without blank lines and comments), about 380 classes, and about

2,300 methods. The developer identified the critical code parts that should be
inspected and discussed the selection of the code classes with the inspection team. In
order to be able to finish the inspection within existing time constraints, it was
decided to inspect only one kind of reading support, namely GITs (goal-indicator
trees [6]). Overall, six inspectors checked 12 code classes, comprising about 7,300
lines of code. Each inspector checked four code classes, consisting of about 2,500
lines of code.

Table 1 shows the experience, respectively the knowledge, of the six inspectors
regarding the inspection, the reading support to be checked, and the code structures
(i.e., programming knowledge). Three values (low, middle, high) are used for the
classification. Finally, the assigned checklists are shown.

The testing activities were performed by the developer of the tool and one
additional tester. Neither one was involved in the inspection.

Table 1. Experience of inspectors and assigned checklists

Inspection GIT Programming
No.| knowledge | knowledge | knowledge |Defect detection focus
1 + ++ ++ requirements
2 ++ ++ ++ requirements
3 + o) ++ implementation
4 ++ + ++ implementation, reliability
5 ++ o) o] code documentation
6 ++ ++ + code documentation
3.4 Design

The preliminary study described in this article followed a similar design compared to
the first evaluation of the integrated inspection and testing approach [2], [3].

First, a code inspection was conducted by six computer scientists (step 1) using
checklists. Overall, four different checklists were used, addressing requirements
fulfillment, implementation, reliability, and code documentation. Each checklist
consisted of three to eight questions and was assigned to those inspectors who could
answer the questions effectively. Finally, the checklists were mapped to the relevant
code classes by the developer of the tool so that each inspector checked four code
classes. One experienced quality assurance engineer aggregated the findings from all
inspectors. The developer analyzed each problem and decided whether a real defect
was found that had to be corrected or whether problems that were documented by an
inspector were only due to a misunderstanding and could be removed without any
correction.

The next step was the quality monitoring of the resulting inspection defect profile
(step 2). Reading rate, overall number of found defects, and defect distribution were
considered.

Step 3 comprised the prioritization, i.e., a prediction of defect-prone parts and
defect types had to be conducted. For this, four context-specific assumptions were
determined that were to be evaluated. Two assumptions of the initial study [2], [3]
were reused, and two new assumptions were defined based on experiences made
during the first study.

Finally, selecting test cases and conducting focused testing activities would be the
last steps (step 4 and 5). However, in order to be able to evaluate the stated
assumptions, prioritized as well as not prioritized parts were tested by two testers.
This enabled a detailed analysis of the assumptions regarding their appropriateness.
First, a unit test of code classes was started. Test cases were derived using
equivalence partitioning. Code classes that had been inspected and some additional
ones identified as being most critical or important were selected for testing. However,
it turned out that efficient unit testing was not possible due to bad testability of the
code classes. The code structure did not suit the unit test approach (e.g., due to
anonymous inner classes, anonymous threads, private fields and methods). To
neutralize the problems of the code structure, mocking frameworks (i.e., a simulation
of the behavior of code classes) were used. However, this framework turned out to be
very complex for inexperienced testers.

Beside unit testing, a manual system test was conducted in order to analyze
whether prioritization is possible between different levels (i.e., using defect
information from the code level to guide tests for the system level). System tests were
derived through typical walkthrough scenarios that followed the main functionality
the tool offers. Afterwards, the results from this testing activity were used as a
baseline and compared to the prioritization when the defined assumptions were
evaluated.

3.5 Execution

Step 1: Performing the inspection

Before the inspection was performed, a team meeting was held where the checklists
were explained and an overview of the code to be inspected was presented.
Afterwards, each inspector checked the assigned code classes with the assigned
checklist and documented all findings and the place of occurrence in a problem list. In
addition, defect type and defect severity were recorded. Each code class was checked
by at least two inspectors. Overall, 1450 minutes were spent on individual defect
detection (ranging from 90 to 280 minutes consumed per inspector).

Table 2. Defect content and defect density of each inspected code class

Code class I Il v iy v {vitwviyvi]ix| X | Xl | Xl
Defect content| 4 18 | 19 2 341 18| 13] 24 | 31 111 10 5
Defect density | .009(.021].020|.008].061].057].038|.031].045].026].031(.016

One experienced quality assurance engineer compiled the defect detection profile
and the developer of the tool checked for each defect whether it has to be corrected or
not. Of 236 problems found in total, 189 defects to be corrected remained. Table 2
shows the defect content (absolute number of defects) and defect density (absolute
number of defects divided by lines of code) of the twelve inspected code classes.
Table 3 shows a sorted list of the ODC-classified defects [8]. 54 defects (e.g., unclear

or missing comments) could not be classified according to any of the existing defect
types.
Table 3. ODC-classified defects from inspection

ODC defect types Sub-total |ODC defect types Sub-total Total
algorithm / method 53 relationship 1
checking 36 timing / serialization 0
function / class / object 32 interface / 0-o messages 0
assignment / initialization 13 other 54
Sub-total 134 55 189

Step 2: Monitoring the inspection results

Because this was the first systematic quality assurance run of the DETECT tool, no
historical data was available that could be used for monitoring the inspection results.
Instead, data from the first study of the integrated inspection and testing approach [2],
[3] was used since the environment was similar. In addition, data from the literature
was considered. The reading rate was about 630 lines of code per hour, which is
similar to the first study (there, it was 550, respectively 685, lines of code per hour in
two quality assurance runs). The number is rather high compared to reading rates
recommended in the literature, but consistent with experiences from industry [1].
Some reasons for the high number are that all lines of code were counted (including
blank lines and comments) and that the individual checklists pinpointed the inspectors
to certain parts, whereas other parts were read faster. Finally, the overall number of
found defects seemed reasonable compared to the first study and the distribution of
minor, major, and crash defects was also similar to the first study.

Step 3: Prioritizing the testing activities

In order to guide testing activities, a prediction of defect-prone parts and defects of
those defect types that are expected to appear during testing was made, i.e., those
parts and defect types were prioritized. Four assumptions were stated, including
instructions for the prioritization. More details and explanations can be found in [2],
(31, [4].

Assumption 1: If no defined selection criterion is used to determine parts of a
system that should be inspected, it is expected that a significant number of defects still
remain in those parts that are not inspected (i.e., an equal distribution of defects is
assumed). Consequently, testing should be focused especially on those uninspected
parts of a system.

Assumption 2: Parts of a system where a large number of inspection defects are
found indicate more defects to be found with testing (i.e., a Pareto distribution of
defects is assumed). Consequently, testing should be focused especially on those
inspected parts of a system that were particularly defect-prone.

Assumption 3: Inspection and testing activities find defects of various defect types
with different effectiveness. For inspections, this includes, e.g., maintainability
problems. For testing, this includes, e.g., performance problems. Consequently,

inspection and testing activities should be focused on those defect types that are most
convenient to find.

Assumption 4: Defects of the defect types that are found most often by the
inspection (i.e., a Pareto distribution of defects of certain defect types is assumed)
indicate more defects of the defect types to be found with testing. Thus, testing should
be focused on those defect types that the inspection identified most often.

A derivation of concrete selection rules is skipped here. However, this can be done
easily using the inspection defect profile; examples of concrete selection rules are
shown in [2], [3], and some applied selection rules are shown in Section 4.5.

Step 4 and 5: Selecting test cases and conducting the testing activities

To evaluate the integrated inspection and testing approach and the stated assumptions,
testing activities were performed without considering the inspection defect profile for
the prioritization (however, the inspection defects were corrected before testing
activities started). 40, respectively 42, similar test cases were applied during system
test by the two testers, covering the main functionality of the tool, i.e., different kinds
of reading support, the interaction of reading support and an artifact to be inspected,
the generation of a report of the findings, and creating a checklist was tested. In
addition, some explorative testing was performed by the tester that did not develop
the tool.

Table 4. Test results from system testing

Number of Number of
test cases defects found Defect ids Effort (min)
Tested functionality |tester 1| tester 2 | tester 1 | tester 2| tester 1 |tester 2| tester 1 | tester 2
reading support: GIT 3 3 1 1 id1, id8* id1 10 6
reading support: SGIT 3 3 0 1 id9* id1 7 6
reading support: GC 3 3 0 0 id10* 7 6
reading support: VID 0 1 0 1 id11* id1 0 30
reading support: CL 1 1 0 0 3 2
id2, id3,
id4, id6,
interaction 15 8 5 2 id7, id12*| id2, id3 33 21
report generation 1 1 1 0 id5, id13* 15 10
checklist creation 16 10 1 0 id4 40 10

During the system test, seven additional defects regarding functionality were found
by the two testers. Running the defined test cases took about 90, respectively 120
minutes. In addition, effort for explorative testing, test documentation, debugging, and
correction was consumed, resulting in an overall test effort for both testers of about 14
hours. The distribution of defects with respect to functionality can be found in Table 4
(id1 — id7). Tester 1 found one defect (defect id 1) when testing the GIT reading
support (which was inspected on the code level). However, this defect is independent
of the concrete reading support. Tester 2 also found this defect when testing GITs, but
also when testing the other tree-based reading model SGITs or VIDs. Furthermore,
most of the defects occurred when testing the interaction between reading support and
the artifact view. Two more defects were found when testing checklist creation and

report generation. In addition, tester 1 found six more usability problems that were
equally distributed (id8* — id13%*), i.e., for almost each functionality tested, one
usability problem was found.

3.6 Results of the Case Study and Lessons Learned

RQ1.1: Our first objective was to check whether the inspection defect information
could be used to predict defect-proneness within code classes in order to focus unit
testing activities. Unfortunately, the unit test activity could not be completed due to
bad testability of the code and no new defects were found. Therefore, research
question 1.1 could not be answered with respect to the unit level. Instead, the system
test activity was used to analyze whether the code inspection results can provide
valuable predictions for focusing system testing. Assumptions one and two were
applied accordingly. We were aware that this prioritization would mean a different
level of granularity, because for system tests it is not possible to address certain code
classes; rather, they are used to address functionalities.

Five different kinds of reading support and three additional tool functionalities
were tested and revealed that most of the defects were found in parts that had not been
inspected. One functional defect was found when applying the GIT reading support
(which was also inspected); however, this defect occurred independently of the
concrete reading support and was also found when testing other kinds of reading
support. Therefore, assumption one indicates a trend towards an appropriate
prioritization, respectively prediction, of defect-proneness and might help in guiding
system testing activities with reduced effort. Considering only the test execution
effort, an effort reduction of between 8% and 23% could be achieved, depending on
the concrete selection rules used. When defining a selection rule omitting the GIT test
cases, this leads to the lowest reduction in the number of test cases, while all
functional defects are found. Omitting SGITs as well, which are a very similar form
of reading support, increases the saved effort. In addition, omitting test cases for
checklists (i.e., low-complexity reading support), an effort reduction of up to 23% is
achievable, with all functional defects still being found. However, the absolute
numbers for conducting the tests are rather low and test derivation, documentation,
and further activities are not considered here. Consequently, the numbers have to be
treated with caution.

With respect to the evaluation of the study design, it is essential that appropriate
testability exists in order to focus the testing activities on the same system level.

RQ1.2: Our second objective was to analyze the relationship between defect types
identified in the inspection and during testing. Considering assumption three, many of
those inspection defects classified as ‘other’ were documentation problems (e.g.,
missing explanation of a method, unclear description). Such kinds of defects affect
the maintainability of the product under test and are not detectable with testing, since
they do not influence the observable functionality. Regarding testing, six additional
usability problems were found by a tester (e.g., bad readability of parts of reading
support). Such kinds of problems can be identified if a graphical user interface is used
during testing, but are usually not found during the inspection.

Table S. ODC-classified defects from inspection and system testing

ODC defect types Inspection| Testing
algorithm / method 53 2
checking 36 4
function / class / object 32 0
assignment / initialization 13 0
relationship 1 1
timing / serialization 0 0
interface / 0-o messages 0 0
other 54 6
Total| 189 13

In terms of maintainability and usability, it is rather easy to dedicate them to
inspection respectively testing activities in order to find such problems. However,
with respect to the ODC classification used for the inspection defects, detecting a
relationship to defects found during the system test is difficult due to the difference in
granularity between code defect types and system defect types. A post-mortem
analysis of the seven functional defects found during testing revealed that most of
them were classified as checking or algorithm / method defects, which fits exactly
with the two defect types identified most often during inspections (see Table 5).
Nevertheless, it is still unclear whether it is possible to derive system tests in a
systematic manner that can address such kinds of problems and how this could be
done. It might be possible that a defect classification, such as the ODC, is not suitable
for guiding system test activities. An explorative study for identifying an appropriate
defect classification would be necessary in this case. Finally, due to an uncompleted
unit testing activity, no new insights regarding relationships between inspection defect
types and testing defect types could be obtained on the unit level.

RQ1: To conclude the main results for research question one, a trend was found
that testing activities might be guided based on inspection results, i.e., defect-prone
parts and defect types could be predicted based on inspection defect data, and testing
activities could be focused on certain parts and defect types. However, the quality of
such focusing depends on the assumptions made in the given context. In our context,
parts that had not been inspected contained additional defects that were found during
testing. However, this can only be stated for defects found during system testing
because unit testing could not be fully completed (which shows the importance of
good testability). Therefore, appropriate testability is an inevitable prerequisite to
performing a suitable evaluation, respectively application, of the integrated approach.
An effort reduction for test case execution of up to 23% could be achieved when
focusing on parts of the system, with the same level of quality being achieved. With
respect to defect types, especially maintainability defects were found during
inspections, while usability problems were found during testing.

The initial results of the preliminary study presented in this article together with
results from the initial case study indicated a first trend towards the applicability of
the approach and the potential for exploiting further synergy effects when integrating
inspection and testing processes. As inspection and testing processes are established
quality assurance activities that are widely applied in industry, and effort reduction is

both a current and a future challenge, using inspection results to focus testing
activities is a promising approach to be considered in order to address this challenge.

3.7 Threats to Validity

Next, we discuss what we consider to be the most relevant threats to validity.

Conclusion validity: The number of testers and the number of found test defects
was low. One reason might be the low experience regarding testing. Consequently, no
statistically significant data could be obtained.

Construct validity: To demonstrate the integrated approach, different assumptions
were derived in our context. Four assumptions were used and analyzed regarding their
suitability. However, more assumptions are reasonable and may lead to better or
worse predictions. Finally, the selection of ODC was reasonable when focusing on the
unit test level, but may not be suitable when using it for the system test.

Internal validity: The subjects selected for the inspection and for the testing
activity may have influenced the number of defects that were found. However, the
effect was slightly reduced by using checklists that focus an inspector on certain
aspects in the code and by using equivalence partitioning, respectively addressing the
main functionality, for the testing activity. Finally, defects could be classified
differently.

External validity: The DETECT tool inspected and tested in the preliminary study
is one example to which the integrated inspection and testing approach was applied.
Few test defects were found that could be used for the analysis of the assumptions.
Larger software, as typically developed by software companies, is expected to result
in more test defects to be found. Assumptions have to be evaluated anew in each new
environment, meaning that the conclusions drawn with respect to the used
assumptions cannot be generalized directly. Finally, the results can only be transferred
to a context where a comparable number of defects are found.

5 Summary and Outlook

To address the challenge of guiding testing activities, an integrated inspection and
testing approach was presented that is used to predict defect-prone parts of a system
and defect types of relevance in order to focus testing activities based on inspection
results. This requires explicitly defined assumptions describing the relationships
between inspection defects and testing defects. A preliminary case study was
presented that analyzed four different assumptions in a given context. First trends
could be seen regarding a prediction of defect-proneness. In addition, inspection and
testing activities should be focused on those defect types that are most convenient to
find, e.g., addressing maintainability problems during inspections, and usability
problems during testing. It is worth noting that assumptions are probably not
generally acceptable and thus, have to be re-evaluated in each new context in order to
obtain evidence on them.

From an industry point of view, the integrated inspection and testing approach can
lead to several benefits. Improvements in effectiveness and efficiency are often goals
with respect to quality assurance activities. The approach might be applied in order to
reduce test effort or to find more defects by focusing the available test effort on parts
that are expected to be most defect-prone based on the inspection results.
Furthermore, detailed knowledge about inspection and test relationships can lead to
an improved overall quality assurance strategy and support the balancing of
inspection and testing activities.

With respect to future work, an improvement of the approach and additional
evaluations are planned. Based on the preliminary study and the evaluation of the
study design, we got new insights into what is necessary with respect to a sound
evaluation of the approach (e.g., appropriate testability). We recently began an
analysis of inspection and test defect data from an industrial context in order to prove
several of our assumptions as well as the potential for effort savings. The knowledge
from this study will be incorporated.

Regarding the improvement of the integrated inspection and testing approach,
more guidance on how to derive assumptions in a systematic manner should be
defined. Furthermore, results from different inspection activities or inspections of
only parts of an artifact might be used for guiding testing activities.

Acknowledgments. This work has been funded by the Stiftung Rheinland-Pfalz fiir
Innovation project “Qualitdts-KIT” (grant: 925). We would also like to thank Stephan
Kremer for tool development, all participants of the study, and Sonnhild Namingha
for proofreading.

References

[1] Cohen, J.: Best kept Secrets of Peer Code Review: Code Reviews at Cisco Systems, 63--87 (2006)

[2] Elberzhager, F. Eschbach, R. Muench, J.: Using Inspection Results for Prioritizing Test Activities. In:
21st International Symposium on Software Reliability Engineering, Supplemental Proceedings. 263--
272 (2010) http://inspection.iese.de

[3] Elberzhager, F. Muench, J., Rombach, D., Freimut, F.: Optimizing Cost and Quality by Integrating
Inspection and Test Processes. In: International Conference on Software and Systems Process, 3--12
(2011) http://inspection.iese.de

[4] Elberzhager, F., Eschbach, R., Muench, J.: The Relevance of Assumptions and Context Factors for
the Integration of Inspections and Testing. In: 37th Euromicro Software Engineering and Advanced
Application, Software Product and Process Improvement, in press (2011)

[5] Elberzhager, F., Eschbach, R., Rosbach, A., Miinch, J.: Inspection and Test Process Integration based
on Explicit Test Prioritization Strategies, IESE Report (2011)

[6] Elberzhager, F., Eschbach, R., Kloos, J.: Indicator-based Inspections: A Risk-oriented Quality
Assurance Approach for Dependable Systems. In: Software Engineering 2010, GI-Edition Lecture
Notes in Informatics, vol. 159, 105--116 (2010)

[7] Harrold, M.J.: Testing: A Roadmap. In: International Conference on Software Engineering. The
Future of Software Engineering, 61--72 (2000)

[8] Orthogonal Defect Classification, IBM, http://www.research.ibm.com/softeng/ODC/ODC.HTM

