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F-13288 Marseille Cedex 9, France

Stephane.Ayache@univmed.fr

Abstract. In this paper, we have described the active cleaning approach that was

used to complement the active learning approach in the TRECVID collaborative

annotation. It consists in using a classification system in order to select the most

informative samples for multiple annotations, in order to improve the quality and

the reliability of the annotations. We have evaluated the actual impact of the ac-

tive cleaning approach on TRECVID 2007 collection. The evaluations were con-

ducted using complete annotations that were collected from different resources,

including the TRECVID collaborative annotations and the MCG-ICT-CAS anno-

tations.

From our experiments, a significant improvement of the annotation quality was

observed when applying the cleaning by cross-validation strategy, which selects

the samples to be re-annotated. Experiments show that higher performance can

be reached with a double annotations of 10% of negative samples or 5% of all

the annotated samples selected by the proposed cleaning strategy using cross-

validation. It has been shown that, with an appropriate strategy, using a small

fraction of the annotations for cleaning improves much more the system’s perfor-

mance than using the same fraction for adding more annotations.

Keywords: Corpus annotation, active learning, annotation cleaning.

1 Introduction

Concept indexing in image and video documents is very important for content-based

retrieval. It is a fundamental image/video retrieval problem: given a data set of images

and a query (visual concept), which images do present the given visual concept? Gen-

erally, classical keyword based search is not possible due to the frequent absence of

appropriate text annotation. Signal-level descriptions (e.g. color and texture) are also

known to be inappropriate for the task since they do not represent the semantic content

well, and are not easy to handle for users. Automatic concept indexing has been one

of the main focus of the TRECVID campaigns (evaluation of video retrieval systems,

[12]) since 2002.

Most concept indexing systems use a supervised learning approaches [7, 13], in which

concepts are learned from sets of positive and negative samples. The models and train-

ing algorithms are important for systems’ performance, but the training data also play
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an important role. While it is quite easy and cheap to get large amounts of raw data, it

is usually very costly to have them annotated, due to the involvement of human inter-

vention for judging the “ground truth”.

While the volume of data that can be manually annotated is limited due to the cost of

manual intervention, it still possible to select the data samples that will be annotated,

so their annotation is “as useful as possible” [1]. Deciding which samples will be the

most useful is not trivial. Active learning is an approach in which an existing system

is used to predict the usefulness of new samples. This approach is a particular case of

incremental learning in which the system is trained several times with a growing set of

labeled samples. The objective is to select as few samples as possible to be manually

annotated so that these annotations lead to better classification performance.

The quantity of the annotated samples is important for system’s performance, Their

quality is also very important since most advanced classification methods are sensi-

tive to mislabeled training examples. Using crowd-sourcing [3, 14] methods leads to

quickly changing the landscape for the quantity and the quality of labeled data available

to supervised learning. While such data can now be obtained more quickly and cheaply

than ever before, the generated labels also tend to be far noisier due to limitations of

quality control mechanisms. The quality of the labels obtained from annotators varies.

Some annotators provide random or bad quality labels in the hope that they will go

unnoticed and still be paid, and yet others may have good intentions but completely

misunderstand the task at hand or they become distracted or tired over time. The stan-

dard solution to the problem of “noisy” labels is to assign the same labeling task to

annotators, in the hope that at least a few of them will provide high quality labels or

that a consensus emerges from a great number of labels. In either case, a large number

of labels is necessary, and although a single label is cheap, the costs can accumulate

quickly. It can be observed, that if one is aiming to produce a quality labels within min-

imum time and money, it makes more sense to dynamically decide on the number of

labelers needed. For instance, if an expert annotator provides a label, we can probably

rely on it being of high quality, and we may not need more labels for that particular

task. On the other hand, if an unreliable annotator provides a label, we should probably

ask for more labels until we find an expert or until we have enough labels on which we

can apply the majority vote to decide the final label.

Given the substantial human effort required to gather good training sets -as well as

the expectation that more data is almost always advantageous-, researchers have begun

to explore new ways to collect labeled data. Both active learning and crowd-sourced

labeling are promising ways to efficiently build up training sets for concept indexing and

retrieval. The active learning techniques aim to minimize human effort by focusing label

requests on those that appear to be the most informative samples to the classifier [8, 4,

15, 10, 2], whereas crowd-sourcing work explores how to package annotation tasks in

such a way that they can be dispersed effectively [15, 5, 11]. The interesting questions

raised in these areas - such as dealing with noisy labels, measuring reliability, mixing

strong and weak annotations - make it clear that data collection is no longer an ordinary

necessity, but a thriving research area in itself.

Recent years have seen significant growth in label aggregation researches. For exam-

ple, Vijayanarasimhan et al. presented an approach for live learning of object detectors
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[15], in which the system autonomously refines its models by actively requesting crowd-

sourced annotations on images crawled from the worldwide web. Kumar et al. showed

that generating additional labels for labeled examples reduces the potential label noise

[5], and faster learning can be achieved by incorporating knowledge of worker accura-

cies into consensus labeling. Sheng et al. in [11] presented repeated-labeling strategies

of increasing complexity, and their results show clearly that when labeling is not per-

fect, selective acquisition of multiple labels is a strategy that data miners should have

in their repertoire; and for certain label-quality/cost regimes, the benefit is substantial.

Using multiple annotations to reduce labeling noise have also been used in the context

of crowd-sourcing; although a full double or triple annotation is even more costly than

a simple full one; and it is not in the spirit of data annotation based active learning

approaches, in which we do not need to annotate all the samples in the data set. In this

paper, we propose to use an active learning approach for selecting samples for second

or third annotations. We call this approach Active Cleaning. Using the simulated active

learning approach and all the available annotations on TRECVID 2007 development set,

we have designed different experiments in order to evaluate the benefits of the active

cleaning approach, as well as the relative efficiency of the associated strategies.

The outline of the paper continues as follows: the annotation type is presented in sec-

tion 2; the active cleaning approach is discussed in section 3; section 4 describes the

experimental results, while Section 5 presents concluding remarks.

2 Annotation type

We consider the binary annotations, which are often used for image/video classifica-

tion, such as “Does the video-shot contain an instance of the given visual concept C

or not?”. Let tx the target value for the sample x and yxk the kth label for the sample

x given by an annotator. The set of target values T and the set of labels Y are binary

scalars, hence yxk, tx ∈ {−1, 1}. T values are decided by applying the majority vote

on Y values. In the collaborative annotation we have a third case that we call skipped:

the user already saw the shot but he/she was confused of its label. Three possible an-

notations were considered: Positive, Skipped and Negative we name them pos, skip and

neg respectively.

3 Active cleaning

Active cleaning is the method of using an existing classification system for selecting

samples for re-annotation, in order to improve the quality of an annotated corpus. It may

be implemented in an incremental way, in conjunction with an active learning based

annotation algorithm. In this case, the annotations may be cleaner and more correct,

which makes the active learning more effective and efficient. Active cleaning may also

be used for cleaning an already existing annotation, which can be either complete or

partial. In this case, the benefits are only at the level of the resulting annotation.

Cleaning during active learning is the approach that was used in TRECVID collabo-

rative annotation system. The active cleaning algorithm based concept annotation is
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detailed in Algorithm 1, which applies the classical active learning algorithm in which

we added the cleaning process. Let D be the data set which needs to be labeled as con-

taining a target concept (e.g. Airplane, Person..); L, U the labeled and unlabeled subsets

respectively, thus L ∪ U = D and L ∩ U = φ. N a set of the possible choices of the

user to label sample x as containing a given concept or not. Three possible choices are

allowed by the annotation system: Positive, Skipped and Negative, (see section 2). We

denote Qal and Qcl to be the selection strategies of the active learning and cleaning

respectively (see section 3.1). Before explaining the algorithm let us introduce some

definitions in order to facilitate the understanding of our algorithm:

1. The set of available annotations: Y = {yxk ∈ N : x ∈ L; k ∈ {1, 2, . . . , t}},

where yxk defines the kth label of sample x given from an annotator. Hence we

ask, orderly, for up to three annotations for each sample, we set t = 3.

2. The subset of conflicting samples: ConfANN = {x ∈ L : yx1, yx2 ∈ Y ∧ yx1 6=
yx2}, a subset of L that have two different annotations for each sample.

3. The subset of second-annotations: SANNQcl
= {x ∈ L : yx1 ∈ Y ∧ yx2 /∈ Y },

a subset of L that have only one annotation for each sample, selected according to

the cleaning strategy Qcl.

4. The subset of primary-annotations: PANNQal
= {x ∈ U} samples have no avail-

able annotations, selected according to the active learning strategy Qal.

Algorithm 1 Active Cleaning Algorithm Based Concept Annotations

D: all data samples.

Li, Ui: labeled and unlabeled subsets of S, (Li ∪ Ui = D).

A=(train, predict): the elementary learning algorithm.

Qal, Qcl: the selection strategies, respectively, for the active learning and cleaning.

Yi: available annotations for Li.

Initialize L0 and Y0.

while D \ Li 6= ∅ do

mi ← Train(A, Li, Yi)

Pu ← Predict(Ui,mi)

Pl ← Predict(Li,mi)

(*) Select the subset ConfANN ⊂ Li

(**) Apply Qcl on Pl in order to select the subset SANN ⊂ Li.

(***) Apply Qal on Pu in order to select subset PANN ⊂ Ui.

Ỹ = (Label (ConfANN)) ∪ (Label (SANN)) ∪ (Label (PANN))
Yi+1 ← Yi ∪ Ỹ

Li+1 ← Li ∪ PANN

Ui+1 ← Ui \ PANN

end while

The algorithm is iterative, for implementation purposes, the elementary learning algo-

rithm A is split into two parts: train and predict. The algorithm starts by initializing

the L0 set, which can be done by collecting initial labels Y0 for some samples of D,

through the annotators. Iteratively, the development set D is split into two parts: labeled

samples Li, and unlabeled samples Ui. Then classifier A is trained using Li with its as-

sociated labels Yi and obtains the model mi, which is then used to predict the scores
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- likeliness to contain the target concept - Pl and Pu of the samples in Li and Ui sets

respectively. These predicted scores are used to select the samples to be labeled in the

next iteration. However, the selection is done in three steps: first the algorithm chooses

the samples with conflicting labels ConfANN (*); then it apply the cleaning strategy Qcl

on the predicted scores Pl of the samples in Li, and selects the samples of the SANN set

to be re-annotated by different users (**). Finally, the predicted scores Pu of unlabeled

samples in Ui are passed to the Qal strategy, which selects the PANN set (***). The

annotators are asked to annotate all the samples in these three sets, taking into account

that a data sample x can be examined maximum once by the same annotator, and anno-

tators cannot access the judgments of other annotators. When the new annotations set

Ỹ is completed, it will be added to the global annotations set Y . The set PANN is added

to the Li set to produce the set Li+1, and it is also removed from the Ui set to produce

the Ui+1 set. Thus a new iteration is started.

3.1 Active learning and Cleaning strategies, Qal and Qcl

In this paper, the selection strategy of the active learning, Qal has been chosen to imple-

ment the relevance sampling, which selects the most probable positive samples regard-

ing to their classification scores (samples with high prediction scores). It was observed

that this is a good strategy for sparse concepts [2, 10] where the objective is to find as

many positive samples as possible from the unlabeled set U to be annotated.

For the active cleaning, several strategies Qcl can be used for the selection of samples

to be re-annotated. They may depend upon the type of annotation (number of possible

judgments for instance) and the problem of highly imbalanced dataset, which is a very

frequent case in video indexing. Furthermore, these strategies can depend on whether

the first annotations were done incrementally or at once. We propose here a cleaning

strategy, denoted Cross-Val. It is based on re-annotating the wrongly labeled samples

due to an error of the annotator (for instance if the annotator missed the change of the

concept to annotate). Detecting the wrongly labeled samples is done by training classi-

fiers on these labeled samples and using the trained models to predict the correctness of

these labeled samples. Thus, through the predicted score of each sample we can expect

if the sample has a correct label or not. The wrongly labeled samples are then those hav-

ing positive labels with low scores, or negative labels with high scores. Basically, this

strategy selects fractions of the labeled samples. These fractions denoted as P%, N%
and S% and refer to annotated samples as positive, negative and skipped respectively,

(see section 2). Furthermore, the selected samples are then proposed to annotators for

a second annotation round.

In Cross-Val strategy, the N%, P% and S% correspond to the percentage of the labeled

samples as Negative, Positive and Skipped. This includes the baseline (no second anno-

tations), when N=P=S=0, re-annotating all skipped and positive samples (Skip-Pos) by

P=S=100 and N=0, and the extreme fully cleaning N=P=S=100. In this paper, we eval-

uated the Cross-Val strategy with different fractions and several ways of re-annotations

as in table 1. Our goal is to study the system performance with the Cross-Val strategy

for cleaning annotations, furthermore to find the best fraction values for this process.
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3.2 A posteriori cleaning

In the case of a posteriori cleaning, we assume that first annotations have been done,

thus we have one annotation for each sample, and they will be cleaned globally with

a single iteration. A system is trained using the available annotations and the samples

are ranked according to their probability of being positive by the system. The given

fractions P%, S% and N% of samples annotated as positive, skipped and negative will

be used respectively to select the samples for second annotation round. For the positive

samples, the system chooses the P% of positive samples with false prediction (have

lowest predicted scores). For the negative samples, it chooses the first N% of negatives

samples with the highest predicted scores annotated. For the skipped samples we chose

the S% of the skipped samples that have uncertainty scores (predicted score is close to

the classifier boundaries). In all cases, a third annotation is required from the annotators

when conflicting is detected, between the first and second annotations.

4 Experiments

We have evaluated the active cleaning approach based on the Cross-Val (Qcl) strat-

egy in a variety of contexts. It has been applied with a classification system using four

types of image descriptors, which are taken from IRIM GDR-ISIS partners [9], includ-

ing the combination of Histogram and Gabor, Global-Tlep, Global-Qwm and Bow-Sift.

The multiple-SVM classifiers with RBF kernel was applied as the classification algo-

rithm, which was implemented as in [10]. The evaluations were conducted using the

TRECVID 2007 collection metrics and protocol. The TRECVID 2007 collection con-

tains two main sets: the development set consists 21532 sub-shots with 36 concepts (or

“high level features”) selected from the LSCOM-lite [6] set for annotation, and the test

set which consists of 22084 sub-shots. In TRECVID 2007, the evaluation was done on

the test set using only 20 concepts which were chosen by the National Institute of Stan-

dards and Technology (NIST). In order to carry out the experiments on the simulated

active cleaning, three annotations are needed for each concept (c )× sub-shot (x) in this

dataset. We have collected and completed all the annotations, which were produced by

the collaborative annotation on the considered database, that we get at least two labels

for each c × x. In addition, we used a complete set of annotations: one label for each

video shot, produced independently by a group from the Multimedia Content Group,

Institute of Computing Technology, Chinese Academy of Sciences (MCG-ICT-CAS).

Since our goal, in this work, is to study the system performance with the Cross-Val (Qcl)

strategy for cleaning annotations, we present the different fractions that were used in

our experiments in table 1. In which E1 is the baseline, E8 refers to the cleaning of

all skipped and positive samples, and (E2, E3, . . . , E7) indicates the cross-validation

strategy with different (N%, P%, S%) fractions.

Qcl E1 E2 E3 E4 E5 E6 E7 E8

pos % 0 10 0 0 5 10 20 100

neg % 0 0 0 10 5 10 20 0

skip % 0 0 10 0 5 10 20 100

Table 1. The (P%,N%,S%) fraction values that were used in our experiments with our active

cleaning strategy.
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4.1 The active learning steps and the cold-start

In calculating the number of the required annotations at each active learning iteration

(including the third, second and first annotations), a variable step size function can be

used. In practice we used 30 steps in total, considering the geometric scale function

with the following formula: sk = s0 × (n/s0)
k/K , where n is the total size of the

development set, s0 is the size of the training set at the cold-start, K is the total number

of steps and k is the current step. At each step (or iteration) the algorithm calculates

the sk to be the size of the new training set and it chooses the number of samples

that needs to be cleaned clk, and the new samples to be labeled with size equal to

newk = sk − sk−1 − clk.

In this evaluation, the harmonic mean has been applied as a fusion function for the

multiple-SVM results (scores). The cold start problem was solved by using another

TRECVID collection, the 2005 one. We trained SVM classifiers on the TRECVID 2005

collection and predicted the usefulness on the development set of TRECVID 2007; we

have started with annotating the first 100 samples at the top of the ranked list (samples

having high scores), then the Active learning and cleaning system was run to label all

the shots within the development set.

4.2 Available annotations

In the following we present the two resources of the considered annotations:

1- Collaborative annotations (CA): annotations were done in collaboration with 32

groups of participants at TRECVID, each group contributed with several annotators.

The annotation system used is based on the active learning approach. For each concept

(c) × sub-shot (x) in the data set, the annotators have left the choice to label x as

containing an instance of concept t or not, pos and neg respectively, they also can skip

annotating it in the case of confusing on its label. This can be considered as crowd-

sourcing, since each shot could be proposed to several annotators to judge whether it

contains c or not. Since we were limited in time of the annotating phase of TRECVID,

this data set was not fully annotated. Furthermore, there are multiple annotations for the

annotated samples L for each concept c, and they are still available and can be used as

multiple judgments for the experiments on simulated active cleaning approach. For our

experiments, these judgments have been completed to have at least two judgments for

each sample.

2- MCG-ICT-CAS annotations (MCG): The MCG-ICT-CAS team has produced, on

its own, complete and independent annotations of all the concepts (c)× sub-shots (x).

The annotations were made by a pool of students. Each student could annotate shots to

contain only a specific concept, and the annotations were done on all the data set (active

learning was not considered). Each c × x has only one label, since only one annotator

(student) could examine and label it, which means that it does not contain multiple

annotations. This annotations set has the advantage of being complete, and since it was

made using a smaller number of annotators, one can say it is more consistent.

These annotations were taken by different annotators and two different systems, and

they have some noise in annotations. These noises came from the annotation systems
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Fig. 1. The MAP calculated on 20 concepts of the TRECVID 2007 test set, with two different

annotation sources.

used and the annotators themselves. For instance, given concept Sports: we got 482

positive samples from the CA annotations, while from MCS annotations we got only

226 positives; furthermore, the two sources were agreed on only 168 positive samples.

The performance of our baseline system, by using only single annotations from the two

annotation resources (CA and MCG), is shown in figure 1. This figure shows the effec-

tiveness in performance, of the classification system, with the number of the annotated

sub-shots from the development set. Thus, it presents the MAP, of the 20 concepts, cal-

culated on the test set. For both curves, we consider a better curve to be: the fastest in

growing, and the highest MAP value, it reaches, especially in the beginning. As we can

see, the system performance using the annotations produced by the CA is much higher

than using the MCG annotations. This can be due to the annotation strategy, which is

different in the two cases as described above, and it may also be related to the annotators

themselves.

From this result, we assume that for each concept (c) × sub-shot (x), the annotations

taken from CA are cleaner than the MCG, and we planned two main experiments to

study the effectiveness of the active cleaning strategies:

1. (MCG-CA): the first annotation, for each c × x, is taken from low-quality annota-

tors, (MCG), and the second annotation was taken from better-quality annotators

(CA).

2. (CA-MCG): the first annotation, for each c × x, is taken from good-quality anno-

tators, (CA), and the second annotation was taken from lower-quality annotators

(MCG).

In both experiments, we have used the second annotation produced by CA as the third

annotation, and it was used when the two annotations (CA and MCG) are conflicting.

4.3 Active cleaning effectiveness

We have studied the performance of the annotation system using the cleaning strategy,

Cros-Val with different P%, N% and S% fractions as set in table 1. Thus, we report the

obtained results from our two main experiments MCG-CA and CA-MCG. For simplic-

ity, we report the results of the last iteration of the active cleaning, in table 2. Further-

more, in figure 2 we present the full iterative results of the cleaning performance, for

some experiments.
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Table 2 presents the evaluation results of the two main combinations MCG-CA and CA-

MCG, using the cleaning strategy, Cros-Val with different P%, N% and S% fractions

as set in table 1. Moreover, it presents the number of cleaning annotations required for

each experiment in the two considered combinations. As we can see from this table,

MCG-CA #Annotations CA-MCG #Annotations

E1=N0P0S0 0.084 21532 0.091 21532

E2=N0P10S0 0.084 +0% +65 0.091 +0% +46

E3=N0P0S10 0.086 +2% +50 0.092 +1% +11

E4=N10P0S0 0.095 +14% +2100 0.096 +5% +2150

E5=N5P5S5 0.096 +14% +1100 0.095 +4% +1100

E6=N10P10S10 0.097 +15% +2200 0.090 -1% +2215

E7=N20P20S20 0.097 +15% +4400 0.095 +4% +4420

E8=N0P100S100 0.086 +2% +1150 0.093 +2% +580

Table 2. The result of the cleaning strategies with the eight experiments described in table 1.

some experiments do not have a real effect on the system performance, especially when

the cleaning system does not include the negative samples, as in E2, E3 and E8. This is

due to the fact, that the number of re-annotated samples is very small, since there are

few positive and skipped samples in the data set. However, the performance is higher

when the negative samples were included in the cleaning system; moreover it goes up

to 15% in the case of MCG-CA and 5% in CA-MCG. This is expected since, as shown

in figure 1, we consider that annotations from MCG have lower-quality than CA.
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Fig. 2. Active cleaning strategies: Cleaning MCG annotations by CA in left, and in right Cleaning

CA by MCG annotations.

Figure 2 shows the effectiveness of the active cleaning strategies E4 and E5 compared

to the baseline (E1) and the Skip-Pos (E8) strategy, with the two considered experi-

ments, the MCG-CA (left) and CA-MCG (right). As we can see in this figure, in both

experiments, the system performance (using the MAP) was increased when the clean-

ing system considered the re-annotations of negative samples, as in E4 and E5. Hence,

the Cross-Val strategy E4 works in re-annotating only 10% of the negative samples,

and E6 re-annotating 5% of each type of the annotations (positive, negative, skipped).

Moreover, the active cleaning maintains the purpose of using the active learning ap-

proaches to annotate large scale image/video databases. Thus, the best performance

could be obtained when annotating only 15-30% of the development set. The enhance-

ment in the performance is more important when cleaning the lower-quality annotations
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than better-quality annotations. Furthermore the active cleaning can better enhance the

performance under the condition that the number of annotations is the same.

4.4 A posteriori cleaning effectiveness

Table 3 shows the same results in the case of a posteriori cleaning. The results are sim-

ilar to the results obtained by active cleaning, as shown in the previous section, but

Active cleaning is is more effective and efficient. In this table, as we can see, using the

full three annotations (N100P100S100) leads to a better performance than using dif-

ferent fractions as in table 1. Even though, it requires three times as many annotations

as the baseline, while each of the other combinations requires only few more annota-

tions than the baseline. This is due to either the fraction is small (e.g. N5* or N10*) or

because the target concepts are sparse.

MCG-CA CA-MCG

E1=N0P0S0 0.0840 0.0910

E2=N0P10S0 0.0833 0.0917

E3=N0P0S10 0.0847 0.0927

E4=N10P0S0 0.0858 0.0917

E5=N5P5S5 0.0841 0.0921

E6=N10P10S10 0.0852 0.0910

E7=N20P20S20 0.0877 0.0921

E8=N0P100S100 0.0866 0.0931

Full3=N100P100S100 0.0962 0.0962

Table 3. The result of the posteriori cleaning with the eight experiments described in table 1.

5 Conclusions

We have described the active cleaning approach that was used to complement the ac-

tive learning approach in the TRECVID collaborative annotation. The actual impact of

the active cleaning approach was evaluated on TRECVID 2007 collection. The eval-

uations were conducted using complete annotations that were collected from different

resources, including the TRECVID collaborative annotations and the MCG-ICT-CAS

annotations.

From our experiments, a significant improvement of the annotation quality was ob-

served when applying the cleaning by cross-validation strategy, which selects the sam-

ples to be re-annotated. Experiments show that higher performance can be reached with

minimum double annotations of 10% of negative samples or 5% of all the annotated

samples selecteded by the proposed cleaning strategy using cross-validation. It has been

shown that, with an appropriate strategy, using a small fraction of the annotations for

cleaning improves much more the system’s performance than using the same fraction

for adding more annotations.
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