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Abstract. In this talk we show a construction for characterising 
developable surfaces in the form of Bézier triangular patches. It is shown 
that constructions used for rectangular patches are not useful, since they 
provide degenerate triangular patches. Explicit constructions of non-
degenerate developable triangular patches are provided. 

1 Introduction 

It is well known that developable surfaces play an important role in design 
in several branches of industry, such as naval and textile. Even architectural 
structures have been designed using developable surfaces. In these industries 
surfaces are designed which mimic properties of the materials that are used in 
production, which are intended to be deformed from plane sheets of metal or 
cloth just by folding, cutting or rolling, but not stretching. This sort of industrial 
procedures are less expensive or do not alter the properties of the material and 
therefore developable surfaces are favoured. 

In spite of their importance, developable surfaces are not easy to design within 
the standard framework of NURBS surfaces. The null gaussian curvature condi­
tion is a cubic expression in the parametrization of the surface and can be solved 
analitically just for low degrees. 

This does not mean that NURBS developable surfaces have not been used 
in design. On the contrary, pieces of plane, cylinders and cones have been used 
extensively. However, the general case of developable surfaces [1,2], tangent sur­
faces, has not received the same attention, though it is by large the most impor­
tant case of developable surfaces. 

Since the seminal papers by Mancewicz and Frey [3], Frey and Bindschadler [4] 
at General Motors, several approaches have been used to cope with developable 
surfaces: 

— Solving null curvature equations for low degrees: papers by Aumann [5], 
Lang and Roschel, [6], Chalfant and Maekawa [7]. 



— Projective geometry methods: planes and points are exchanged using duality: 
Bodduluri and Ravani [8], Pottmann and Farin [9], Pottmann and Wallner 
[10]. 

— Based on the de Casteljau algorithm: Chu and Séquin [11], Aumann [12], 
[13] and Fernández-J ambrina [14]. 

This last approach has been profitable for obtaining results with tensor product 
patches of developable surfaces and in this paper we would like to derive an 
extension to triangular patches. 

The paper is organised as follows. Section 2 is devoted to ruled triangular 
patches. Section 3 provides a quick overview of differential geometry of devel­
opable surfaces. Section 4 reviews construction of tensor product developable 
surfaces. This approach is extended to triangular patches in Section 5. Finally, 
cylindrical and conical triangular patches are described in Section 6. 

2 Ruled Triangular Bézier Patches 

Triangular Bézier patches are an alternative to tensor product patches for de­
signing polynomial surfaces. Instead of dealing with parametrizations of degree 
n-i in a variable and degree n<i in the other one, triangles are parametrizations 
of overall degree n. 

Triangular Bézier patches of degree n (cfr. for instance [15] for a review) are 
surfaces parametrised by 

b(u, v,w) = y ulv3w bah, u + v + w=l, 0 < u,v,w < 1 , 
¿-^ i\j\k\ 

r+j+k=n 

for a control net {6¿¿fc : i + j + k = n, 0 < i, j , k < n} of (n+2)(n+l) /2 vertices. 

Fig. 1. Bézier triangle of degree two 

The surface patch is bounded by three curves of degree n (see Fig. 1) located 
at ti = 0, w = 0, to = 0 and their respective control polygons are given by 
{bojn-j • j = 0 , . . . , n}, {5¿on-¿ : i = 0,...,n}, {5¿„_¿o : i = 0,...,n}. 



We are interested in triangular patches of ruled surfaces interpolating linearly 
between two curves of degree n parametrised by c(u) and d(v), u,v G [0,1], 
intersecting at c(0) = d(0), with control polygons { c o , . . . , cn} and {do, • • •, dn}, 
so tha t 

b(u, 0 ,1 — u) = c(u), 6(0, v, 1 — v) = d(v) . 

The boundary of the patch is formed then by both curves and a straight segment 
at w = 0 linking the ending points of the curves, cn and dn. Obviously they have 
to share the other end, CQ = do. 

Hence we already know the outer lines of the control net, 

hon-i = Ci, i = 0,...,n, bojn-j = dj, j = 0 , . . . , n , 

and by the linear precision property, 

i n — i 

n n 

so tha t 6(1 — v, v, 0) = (1 — v) cn + v dn traces a straight segment. Hence, we 
have to prescribe just the inner vertices of the control net. 

Since the surface is ruled we require tha t constant w = W lines on the surface 
must be straight lines. In order to simplify the analysis, we extend the patch 
from u + v + w = ltou + v = l,so tha t these lines are parametrised as 

(u) = b(u, 1 - u,W) = ¿ hA Wkrk(u) 
fc=o ^ ' 

(«):=E(^)«*(l-«)^-V, 

denoting Nj. := n — k 
Since {1, W, • • •, Wn} are linearly independent polynomials, if rw(u) is to be 

the affine parametrizat ion of a straight segment for all values of W, every rk(u) 
must be the affine parametrizat ion of a straight segment. We consider just the 
case of general values of the vertices b^k- It is clear that , as it happens for tensor 
product patches [16], for special positions of the vertices other solutions could 
be feasible. But we are interested just in the general case. 

Hence, by the linear precision property, for eack k, the vertices 

{dn-k = bon-kk,bin-k-lk, • • • , bn-k-llk, bn-k0k = Cn-k} 

must be equally spaced in order to have linear parametrizations of segments, 

i n — k — i . 
Uin—k—ik T^-n—k \ j (¿n — k: ^ U , . . . , 7?- fZ , 

n — k n — k 

as we checked already for k = 0. 



P r o p o s i t i o n 1. A Bézier triangular patch of degree n parametrised as b(u, v, w) 
and bounded by two curves c(u), d(v) of degree n intersecting at c(0) = d(0), with 
control polygons {co, . . ., cn} and {do, • • •, dn}, so that b(u, 0, 1 — u) = c(u) and 
6(0, v,l — v) = d(v) is a ruled surface if its control net is given by 

&ijk 
>H+j -jdi +3 

i+j 
, i + 3 boon — co — do 

That is, the diagonal lines of the control net are formed by points which are 
equally spaced between vertices of the curves with the same index. An example 
may be seen in Fig. 2. 

b2,0,0 

Fig. 2. Ruled Bézier triangle of degree two 

For instance, for a triangle of degree four we get a control net 

co tto d\ d>2 d% tt4 
c2+d2 c3+2rf3 e 4 + 3 d 4 

2 3 4 
2c3 + d3 c4 + d4 

3 2 
3c4 + t¿4 

4 

As a counterexample, let us consider a Bézier triangle of degree two, bounded by 
two curves, which provide every vertex of the control net but 6no- If we choose 
this point aligned with C2 and ¿2, but not in the middle of the segment, it is 
easy to check tha t constant w lines are not straight. 

Triangular ruled patches may be related to usual explicit ruled parametriza-
tions of surfaces, 

B(U, V) = (l- V) c(U) + V d(V) , U,Ve [0,1] , 

by a change of coordinates, 

u = U(l-V) 
v = UV 
w=l-U 

U = 

V = 

1 — w = u -\- V 
V V 

1 — w u -\- V 



which allow us to write down the parametrization of the ruled triangular patch 
in terms of the parametrizations of the curves, 

u c(u-\-v)-\-v d(u-\-v) 
biu, v, 1 — u — v) = . 

U + V 

3 Developable Surfaces 

Developable surfaces are ruled surfaces with null gaussian curvature [1,2]. Gaus­
sian curvature, K, of a surface parametrised by b(u, v) with uni tary normal 
vector v = buxbv/\\buxbv\\ is defined as the quotient of the determinants of its 
second, B, and first, G, fundamental forms, 

G={bu-K bu-bv\ B=(v-buu v -buv\ ^ , , = det B(u,v) 
\bv -bu bv -bv J ' \v -bvu v • bvv J ' ' det G(u, v) ' 

but Gauss ' Theorema Egregium states tha t K may be writ ten in terms of the 
first fundamental form and its derivatives. Since the first fundamental form de­
termines angles, lengths and areas on the surface, gaussian curvature is invariant 
under transformations, isometries, which preserve such features. 

Start ing with the usual parametrization of a ruled surface bounded by two 
curves c(u), d(u), 

b(u, v) = (1 — v)c(u) + vd{u) , u, v G [0, 1] , (1) 

since the second derivative bvv(u,v) is null, the determinant of the second fun­
damental form is negative and hence the gaussian curvature is negative or null 
at every point of a ruled surface. The determinant of the first fundamental form 
is positive, since this form is just the inner product of R 3 restricted to tangent 
vectors to the surface. 

Hence, developable surfaces are characterised by vanishing v • buv at every 
point, t ha t is, 

0 = (d'(u) - c'(u)) • ((1 - v)c'(u) + vd'(u)) x (d(u) - c(u)) 

= d'{u) • c'(u) x (d(u) — c(u)) . 

This provides a useful and geometrical characterization of developable surfaces: 

P r o p o s i t i o n 2. A ruled surface parametrised as (1) is developable if and only 
if the vector v(w) = d(u) — c(u), linking the points d{u), c(u), and the velocities 
of the curves at these points are coplanary for every value of u. 

Or put in another way, the tangent plane is the same for all points along the 
straight line (generatrix or ruling of the surface) linking d(u) with c(u). 

This means tha t we may write one of those velocities as a linear combination 
of the other two vectors, 

c'(u) = A(M)V(M) + /x(w)v'(w) . (2) 

This is useful for classifying developable surfaces: 



1. Planar surfaces: Pieces of planes are the trivial case of surfaces of null cur­
vature. 

2. Cylindrical surfaces: Ruled surfaces in which all straight lines (rulings) are 
parallel. For them v(w) is parallel to v'(w). 

3. Conical surfaces: Ruled surfaces in which all rulings meet at a point named 
vertex. 

4. Tangent surfaces: Ruled surfaces formed by all tangent lines to a given curve. 

The lat ter is the most general case, since every non-cylindrical surface may be 
shown to be either a tangent surface to a curve or, fulfilling additional conditions, 
a conical surface: 

Let us perform a change of base curve from c(u) by gliding it along the rulings 
to c(u) = c(u) — /x(w)v(w), 

c (u) = c (u) — ¡i (w)v(w) — /x(w)v (u) = (A(w) — fj, (u)) v(w) . 

In the general case, the velocity c'(u) is parallel to the rulings of vector v(w), 
tha t is, the surface is a tangent surface to the curve c(u). Only in the restrictive 
case for which A(w) = n'(u), c'(u) = 0, the new base curve reduces to a point, 
the vertex of a cone. 

4 Tensor Produc t Developable Patches 

In order to describe Bézier developable surfaces we star t by considering a ruled 
surface interpolated between two polynomial curves of degree n, c(u), d(u), de­
fined by their respective control polygons, {CQ, ... ,cn}, {do,... ,dn}, 

n n 
c{u) = '^J

ciBrt{u), d(u) = ^2diBt(u) , 
¿=o ¿=o 

in terms of the Bernstein polynomials of degree n, or the de Casteljau 
algorithm [17], 

c¿ (M) = (1 - U)CÍ(U) +UCÍ+I(U), i = 0 , . . . , n - 1 , 

ci (u) = (1 _ u)cl~ (w) +W C¿+1 (w) i = 0,...,n-r , 

c(u) := Cg' (U) = (1 — w)cg ' (U) + MC™ ' (u) . (3) 

The derivative of the curves, 

c'(u)=nic" (u) — CQ (U)J, d'(u) = nid" (u) — dr¿ (u)) , 

may be writ ten as a difference between the two last-but-one points in the de 
Casteljau algorithm. 

Hence the vectors c'(u), d'(u), d(u) — c(u) are barycentric combinations of the 
points Cg (u), c™ (u), d,Q (u), d\ (u). Since we have already seen tha t 
the ruled surface is developable if and only if these vectors are coplanary, the 
developability condition for a Bézier ruled surface may be restated in terms of 
these: 



P r o p o s i t i o n 3 . The ruled surface interpolating between two Bézier curves of 

degree n, defined by their respective control polygons, {co, . . ., c n } 7 {do, • • •, dn} 

is developable if and only if the points Cg (u), c™ (u), d^ (u), d" (w) are 

coplanary. 

That is, there exist coefficients A(u), M(w), such tha t 

(1 - A(u)) <£ _ 1 ) (u) + ¿ ( u ) c ? _ 1 ) ( u ) = (1 - M(u)) d^1](u) + M{u)dn^1](u) . 

(4) 
This way of writing the linear combination excludes the conical case. However, 
it does not hinder our goal of coping with the generic case. 

We may gain insight into this result by rewriting it in terms of blossoms, 

c¿ [wi] : = ci (w i) = (1 ~ui)ci + wiCj+i, i = 0, . . . , n - 1 , 

cV[«i, . . .,ur] := (1 - ur)ci >[uu. .. ,ur-i\ +urci+1'[u1,. .. ,w r _i] , 

C[UÍ, .. . , «„ ] := %\ui,. . . , « „ ] , i = 0,...,n-r, r = l , . . . , n , (5) 

since the linear combinations of the points, 

c^l\u) = c[u<n-l>,0] , c " _ 1 ) (u ) = c[u<n-l>, 1] , 

can be written in a rather compact form, taking into account tha t blossoms are 
multi-affine, 

c[u<n-l>, A{u)} = d[u<n-l>,M{u)} . (6) 

We have therefore characterised developability of a rational ruled surface in 
terms of blossoms: 

T h e o r e m 1. Two Bézier curves c(u), d(u) with control polygons {co,. . . , c n } 7 

{do, • • •, dn} define a generic developable surface if and only if their respective 
blossoms are related by 

c[u<n-l>,A{u)\ = d,[u<n-l>,M{u)\ 

The simplest case which can be analysed is the one of constant coefficients A, 
M, 

c[u<n-1>,A} = d[u<n-1>,M] , 

which is the family of developable surfaces found by Aumann [12], though in tha t 
paper the key issue was the use of an affine transformation between adjacent cells 
of the control net of the surface. 

This expression states the equality of two (n — l)-atic forms, which is equiv­
alent to the equality of the respective symmetric (n — l)-affine forms, since the 
correspondence between blossoms and parametrizations is one-to-one, 

c[u1,...,un-1,A] = d[u1,...,un-1,M] . (7) 



We may draw information about the control net applying it to sequences of zeros 
and ones, taking into account that the vertices are recovered as 

Cj=c[0<n-j>,l<j>] , 

(1 - A)CJ + Acj+1 = (1 - M)dj + Mdj+1 , j = 0 , . . . , n - 1 , 

stating that the cells of the control net of the surface are planar and share the 
same linear combination between vertices. 

These conditions may be solved recursively, 

(M-l\n
 1 1-AfM-iy-1 M - Ar^ f M - ly-'-1 A 

in order to relate the first and last rulings of the patch with the vertices of the 
control polygon of the curve c(w), 

M ^ \ M 
¿=i v 

, M , (do- co) , (8) 

or even its sides, 

/ M - l \ " ^ A-M^fM-iy-'-1
 A 

dn-cn=[-^r) (*-c0) + ^ - g ( ^ - J A>, (9) 
denoting Aci = Ci+1 — c¿. 

This construction of developable Bézier surfaces can be used to solve an in­
terpolation problem [12]: 

"Given a Bézier curve c(u) of degree n and two straight lines IQ and l\ passing 
through the endpoints of c(u), find a developable surface b(u,v) through c(u) 
(b(u, 0) = c(u)) with /o and l\ as first and last ruling (IQ : c(0,v), l\ : c(l,v))." 

Depending on the position of the rulings IQ, l\ we have three possible solutions 
to this problem: 

— If /o, h are parallel, we may construct a cylinder through the curve c(u) with 
rulings parallel to IQ and l\. 

— If /o, h meet at one point V, we may construct a cone through c(u) and 
vertex at V. 

— If /o, h are neither parallel nor meeting at one point, we may resort to 
Aumann's construction (8), 

A-M, ,,„... (M-\ 
(c„ - a(M)) + [~^^J (do - co) , 

M 
n - l 

M l M ̂  V M 
i=l 



relating a vector on IQ, do — CQ = <rv, and a vector on li, dn — cn = rw with a 
vector which is a barycentric combination of the vertices of the control polygon 
of the curve c(w), cn — a(M). 

This imposes a restriction on the value of M through an equation of degree 
n — 1, 

det(d0 - c0, dn - c„, a(M) - c„) = 0 . 

If Mo is a solution of this equation, we may reckon the coefficients of the linear 
combination, 

a(M0) = c„ + a 0 v + /30w , 

solving the linear system using Cramer's rule, 

= d e t ( q ( M 0 ) - c w , w , N ) = det(v, a(M0) - cw, N) 
a°~ det(v,w,N) ' lt}~ det(v,w,N) 

where N = v x w is a vector that completes a linear basis {v, w, N}. 
Hence, equation (10) is written as 

Mp-A, , , fMp-iy 
Tow = ^io-{aov+ÍJow) + {-jñr) aov ' 

from which we may read the coefficients <ro and TO that determine the ends of 
the rulings, 

A-Mp ( Mp Y ' 1 Mo-A 

The coefficient A remains a free parameter and may be fixed by choosing either 
do along IQ or cn along ¿i, but not both. This problem may be avoided by 
elevating the degree of the surface, stretching the surface patch along the rulings 
d{u) — c{u) [13]. 

If we have already made use of A for fixing dn, this may be accomplished by 
multiplying this vector by a linear factor (1 — A)u + A, so that the new surface 
patch 

5(w, v) = c{u) + v (d(u) -c{u)) ((1 -A)u + A) , 

is bounded by the curves c(w) and d(u) = c(u) + ((1 — A)u + A) (d(u) — c(u)) 
and we may use the coefficient A for choosing the end of the other ruling, 

d0 = d(0) = c0 + A (d0 - c0) . 

As we see in the next section, this construction is useful for designing developable 
triangular patches. 

5 Triangular Developable Patches 

We may try to use Aumann's family of developable surfaces to construct triangu­
lar developable surfaces limited by two curves of degree n and control polygons 
{CQ, . . . , cn}, {do,..., dn}. The first cell of the control net is restricted by 



(1 - A)c0 + ACÍ = (1 - M)d0 + Mdí , 

but since the curves intersect at co = do, the three points must be aligned, 

d l = ( 1 _ é ) C 0 + éCl-
This is a severe restriction, since it implies tha t the initial velocities of the curves 
must be parallel with this construction. An example may be seen in Fig. 3. 

Fig. 3. Degenerate triangular developable patch 

Therefore, Aumann 's family of developable surfaces does not seem to be a 
good start ing point for designing triangular patches. However, we may use them 
as an auxiliary patch for constructing them. 

Though we do not know the direction of the ruling at the initial vertex of 
the triangular patch, we may use Aumann's construction to design a tensor 
product developable patch through a curve c(u) of degree n and control polygon 
{ c o , . . . , cn} and fixing the last ruling by the choice of dn, 

b(u, v) = c(u) + v v(w) , v(w) = d(u) — c(u) . 

We fix the unknown vertex do by shortening the patch along the rulings of 
direction v(w), 

b(u, v) = c(u) + v uv(u) , 

so tha t the new bounding curve d(u) = b(u, 1) meets c(u) at CQ. 
The velocity of the v = const, curves is given by 

db(u,v) . . . . , . . . 
— = c (u) + V viu) + vuv (u) . 

au 

In particular, at the beginning of the curve d(u), 

¿'(0) = c'(0) + v(0) = n(ci - co) + (do - c0) , 



we learn tha t we may fix the auxiliary initial ruling by prescribing the initial 
velocity of the bounding curve d(u), 

do = (n + l)co — nc\ + d'(0) . 

Hence, by this procedure it is possible to find triangular developable patches 
with boundary on c(u) and the ruling dncn fixing the value of d'(0) and making 
use of Aumann's construction. 

Fig. 4. Stretching a tensor product patch to a triangular patch 

6 Cylindrical and Conical Triangular Patches 

Triangular patches of cylinders and cones are easier to construct than tangent 
surfaces. 

Cylinders bounded by a curve c(u) of degree n and rulings parallel to a con­
stant vector v are parametrised as 

b(u, v) = c(u) + vf(u) v , 

where f(u) is a polynomial vanishing at u = 0. The other bounding curve is 
d(u) = b(u, 1). An example is shown in Fig. 5. 

Hence, the only requirement for building a cylindrical triangular patch is 
tha t the vertices of the control polygons of the bounding curves, { c o , . . . , c n } , 
{do,..., dn} must lie on parallel lines, 

c\d\ || • • • || cndn , 

except for the first pair which coalesce to a single point, CQ = do-
Cones through a curve c(u) and with vertex on a point a may be parametrised 

as 
b(u, v) = c(u) + v v(w) , v(w) = c(u) — a . 

Hence, if c(u) is a curve of degree n, a curve d(u) at v = const, is also of the 
same degree. Since such curves are scaled copies of c(u), their control polygons 
must have sides proportional to the ones of the original curve, 

didi-í = aCiCi-í , i = 1, . . ., n , 



Fig. 5. Cylindrical triangular patch 

being {do,... ,dn} the control polygon of the second curve. 
We may proceed as we did for tangent surfaces in order to get triangular 

conical patches of degree n + 1. We shorten the patch linearly along the ruling 
so that the first generatrix is reduced to a single point, 

b{u,v) = c(u) -\-vwv{u) . 

The degree of the bounding curve d(u) = b(u, 1) is n + 1 . An example is shown 
in Fig. 6. 

Fig. 6. Conical triangular patch 

7 Conclusions 

In this paper control nets for ruled triangular Bézier patches bounded by two 
curves and a straight line have been constructed. It has been shown that Au-
mann's construction, which has been useful for designing general developable 
surfaces with tensor product patches, renders degenerate triangular patches. A 
construction grounded on degree elevation has been devised for bypassing this 
problem and producing nondegenerate triangular Bézier developable surfaces. 
This construction has been used for providing solutions to the problem of inter­
polating a triangular developable surface based on a curve and the last ruling of 
the surface, knowing the initial velocity of the other bounding curve. 
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