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Abstract. The promise of modeling by subdivision is to have simple rules that
avoid cumbersome stitching-together of pieces. However, already in one variable,
exactly reproducing a variety of basic shapes, such as conics and spirals, leads to
non-stationary rules that are no longer as simple; and combining these pieces
within the same curve by one set of rules is challenging. Moreover, basis func-
tions, that allow reading off smoothness and computing curvature, are typically
not available. Mimicking subdivision of splines with non-uniform knots allows us
to combine the basic shapes. And to analyze non-uniform subdivision in general,
the literature proposes interpolating the sequence of subdivision control points
by circles. This defines a notion of discrete curvature for interpolatory subdivi-
sion. However, we show that this discrete curvature generically yields misleading
information for non-interpolatory subdivision and typically does not converge,
not even for non-uniform spline subdivision. Analyzing the causes yields three
general approaches for solving or at least mitigating the problem: equalizing pa-
rameterizations, sampling subsequences and a new skip-interpolating subdivision
approach.

Keywords: non-uniform subdivision, non-stationary subdivision, geometric con-
tinuity, curvature, splines, shape

1 Introduction

A major selling point of subdivision algorithms has been their conceptual simplicity
in smoothly connecting curve or surface regions by refinement with simple rules. A
main task of curve modeling in product design is to reproduce segments of a variety of
basic shapes, such as conics, spirals and clothoids exactly, and to transition smoothly
between them. Since the standard uniform, polynomial subdivision algorithms cannot
reproduce these basic shapes, a number of non-stationary curve subdivision algorithms
have recently been devised to reproduce, in particular, circles and ellipses [15, 20, 3,
6, 18, 4, 7, 2, 19]. However, the introduction of parameter-dependent subdivision means
that explicit basis functions for the control points are no longer easily available, re-
moving a reliable technique to compute curvature. Already establishing smoothness or
curvature continuity for non-stationary (or similar non-linear schemes [1, 21, 10, 12, 8])
is a challenge as general techniques, such as [5, p18] and [22], do not apply.

Furthermore, even when C2 smoothness can be proven, this may be meaningless
in practice without a reliable technique to compute curvature. Following e.g. Sabin et
al. [20, 2], we may therefore attempt to compute a discrete curvature, as the reciprocal
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of a radius of the circle passing through the point and its two neighbours in the refined
polygon. For interpolating curvature continuous schemes this measure must, by defi-
nition of a curvature continuous scheme, converge to the proper curvature. Also when
refining the control polygon of uniform C2 splines, the discrete curvature represents
the curvature correctly. However, for the standard midpoint subdivision of non-uniform
C2 cubic splines, the measure diverges (cf. Fig. 4). In fact, divergence of the measure
is typical as Lemma 1 shows.

This paper therefore discusses three techniques for estimating curvature from con-
trol points suitable for approximating subdivision: equalizing parameterization, sam-
pling subsequences and skip-interpolation. To illustrate them, we work with non-uniform
subdivision algorithms, a concept that is outlined in Section 2 and made concrete by a
simple quadratic subdivision that can reproduce conics, in Section 6. An approach for
reproducing more general basic shapes in one framework, is given in [14].

Concretely, for our focus on curvature from control points, we illustrate divergence
of the discrete curvature for two non-uniform, polynomial spline subdivision schemes
of degree 3, respectively degree 4. We also introduce the concept of skip-interpolation:
every second control point is interpolated by the refined polygon. This allows measur-
ing curvature as discrete curvature from the interpolating points while preserving the
typically better shape of non-interpolating, approximating subdivision.

Overview. In Section 2, we explain the need for subdivision mimicking splines with
non-uniform knots. In Section 3, we review non-uniform subdivision of degree 3 splines.
In Section 4 we use this subdivision to analyze discrete curvature, prove divergence
and to test strategies for obtaining predictive numbers from discrete curvature: equaliz-
ing parameters and subsampling. In Section 5, we derive a degree 4 skip-interpolating
subdivision algorithm. In Section 6, we complete the exposition with an example of a
non-uniform quadratic subdivision capable of reproducing various conics in one curve.

2 Non-uniform Subdivision

Non-uniform subdivision mimics the subdivision of splines with non-uniform knots.
Fig. 1 and 2 illustrate the challenges that motivate non-uniform subdivision. Of the
subdivision schemes listed in the introduction, Morin et al.’s scheme [15] is the only
one that can reproduce more than one primitive in one curve. But, as Fig. 1 shows,
even for this scheme, the underlying, inherently uniform spacing makes perturbations
non-local. Fig. 2 (b) shows that the approach of [15] also unable to reproduce a circle
on input of unevenly distributed samples. To prove the second claim, we note that for a
regular polygon on the unit circle with opening angle α, the approach of [15] produces
a circle of radius sin(α)

α . If the designer’s spacing of samples for perturbation is to be
honored in the control polygon, the control points’ distance to the circle center must be
scaled so that they can partially reproduce the circle (red in Fig. 2(b)). In the transition,
however, the reproduction is lost.

In order to reproduce different conics in one framework, splines use non-uniform
knot sequences {ti}. The rational cubic G2 constructions in [14] combine curvature
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(a) Uniform spline (b) local adjustment (c) [14] vs [15]

Fig. 1. In design, local refinement and shape adjustment naturally requires a switch from (a)
uniform to (b) non-uniform spacing. The approach of [14] can preserve segments, shown as thick
segments, of the original curve while (c) the superimposed red curve generated according to [15]
deviates everywhere from the original curve, i.e. is less local.

(a) circle sampled (b) [15] (c) [14] (d) local adjustment [14]

Fig. 2. Non-uniform spacing to support local adjustments. (a) Unequally-spaced designer sam-
ples on the circle in anticipation of local modification: small disks correspond to an opening angle
of π/16, large ones to 3π/16. (b) Circle in black, [15] in red. (c) Control net and exact circle gen-
erated by [14]. (d) Local modification using [14]: thick segments remain exactly on the circle.

continuity with exact reproduction of different basic shapes by simulating such non-
uniformity of the knot sequence by a non-uniform parameterization. The basic approach
can already be illustrated by a non-uniform quadratic subdivision mimicking rational
G1 splines. The details of such a scheme are given in Section 6. Here we outline the
main idea. Let fi and fi+1 be adjacent pieces of a C1 spline with non-uniform knots,
but with their domains re-parameterized to the unit interval [0, 1]. Then fi and fi+1 join
with geometric continuity (see e.g. [13]):

f ′i+1(0) = βif
′
i(1), βi :=

∆i

∆i−1
, ∆i := ti+1 − ti. (1)

By refining the control structure of such splines, we arrive at non-uniform subdivision
schemes [14] that are capable of combining primitives as shown in Fig. 1 and 2.

3 Non-uniform Subdivision of Cubic C2 Splines

We now consider subdivision of non-uniform C2 splines. Since we focus on measuring
curvature from control polygons, we may restrict attention to the polynomial scheme,
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pi+1pi+1

pi

q2i−1

q2i

q2i+1

Fig. 3. C2 cubic control net refinement.

rather than the more complex rational construction of [14] needed for reproducing basic
shapes. Many draft shapes can be designed using B-splines with uniform knot sequence.
However, subsequent local modifications lead to non-uniform splines as illustrated in
Fig. 1. Fig. 3 illustrates the subdivision of such a non-uniform cubic B-spline curve.
Suppose the cubic C2 spline has the

control polygon {pi}, knot sequence {ti} and βi :=
∆i

∆i−1
, ∆i := ti+1 − ti.

If we set t̄2i := ti and insert new knots at t̄2i+1 := (1 − ei)ti + eiti+1, with ratio
0 < ei < 1 then the spline’s refinement rules yield a new polygon {qi}, and constants,

q2i+1 := (1− ηi)pi + ηipi+1 , (2)
q2i := µiq2i−i + (1− µi − νi)pi + νiq2i+i (3)

ηi :=
1 + eiβi

1 + βi + βiβi+1
, µi :=

βi(1− ei)
1 + βi

, νi :=
ei−1

1 + βi
, (4)

βnew
2i :=

ei

1− ei−1
βi, βnew

2i+1 :=
1− ei

ei
. (5)

Here, as in the previous section, we may interpret the terms βi in (5) as constants of a
linear reparameterization.

4 Discrete Curvature from Polygon Sequences

To be able to estimate curvature in the absence of explicit generating functions, we
follow [20] in defining the discrete curvature to be the inverse radius of the circle in-
terpolating three consecutive control points. The first experiment below demonstrates
that discrete curvature does not converge when tracking the control polygon of a non-
uniform cubic C2 spline under midpoint subdivision. A similar failure of discrete cur-
vature as estimator of curvature occurs for subdivision based on a quartic C2 spline
(Fig. 8). The particular setup of non-uniform cubic C2 spline subdivision is helpful in
that we can easily compute the true curvature of the limit curve of the limit curve.
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Fig. 4. Discrete curvature of Fig. 1,(b), plotted against the control point index i after k = 10
refinement steps of (left) subdivision for non-uniform subdivision (discontinuity enlarged), (right)
when applying equalizing subdivision: no visible discontinuity.

Experiment 1 – divergence We locally refine the non-uniform C2 cubic B-spline of
Fig. 1, right, according to Section 3, by inserting knots with ratio ei = 1/2. The discrete
curvature after 10 refinement steps is displayed in Fig. 4, left. The spikes hint at a
discontinuity at the junction where ∆i := ti+1 − ti changes. Indeed, if we pick a

∆i−1 ∆i
t̄2i+1t̄2i−1 ti = t̄2i

q2i−1
q2i

q2i+1

Fig. 5. Calculating the discrete curvature of a cubic C2 spline from the control polygon.

knot t̄i, insert neighbors t̄2i−1 and t̄2i+1 using ei−1 = ei = 1/2 so that the ratio
βi = ∆i/∆i−1 remains unchanged under refinement, and set t̄2i := t̄i as in Fig. 5, then
there is no convergence. Let κ be the curvature of the spline at t̄i, denote by κ2ki−1

the discrete curvature to the left of t̄i after k steps, by κ2ki+1 the discrete curvature to
the right of t̄i after k steps, and by κ2ki the discrete curvature at t̄i. Since we have the
underlying spline, we can compute the control polygon under midpoint subdivision and
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find

lim
k→∞

κ2ki−1 =
6

βi + 5
κ , lim

k→∞
κ2ki = κ , lim

k→∞
κ2ki+1 =

6βi

5βi + 1
κ . (6)

That is κ2ki converges to κ but its left and right neighbors converge to the same value
only if βi = 1. In other words, only for uniform B-splines does the refined control
polygon provide correct information on the curvature of the limit curve. Fig. 8 shows an
even more extreme behavior for the control polygon of a spline of degree 4, defined by
(12) in Section 5: the discrete curvature jumps everywhere. Generally, without care, we
can therefore not infer the curvature directly from the control net of an approximating
subdivision.

Experiment 2 – equalization Since, according to the previous experiment, control poly-
gons of uniform B-splines have useful discrete curvature expressions, we insert new
knots t̄2i+1 in the spirit of [20]:

ei :=
√

1 + βi√
1 + βi +

√
βi

√
1 + βi+1

.

This moving ratio ‘equalizes’, i.e. we get, in the limit, a uniform knot sequence. Indeed,
Fig. 4, right, shows that the spikes, hence discontinuities, in the discrete curvature dis-
appear. The following lemma formally substantiates this observation.

t−3 t−2 t−1 0 t1 t2 t3

q−2

q−1

q0

q1

q2

Fig. 6. Calculating the discrete curvature of a cubic G2 spline.

Lemma 1 (Continuity of the discrete curvature). The discrete curvature of midpoint
subdivision of a cubic G2 B-spline with non-zero curvature is continuous if and only if
its knot sequence is uniform; it is always continuous under equalizing subdivision.

Proof. Let f be defined over [−1, 0] and g over [0, β]. Consider subintervals near the
origin 0 as illustrated in Fig. 6. For ε→ 0 under subdivision,

f : [t−3, t−2], [t−2, t−1], [t−1, 0], (7)
t−3 := −ε(h−1 + h−2 + h−3), t−2 := −ε(h−1 + h−2), t−1 := −εh−1,

g : [0, t1], [t1, t2], [t2, t3], (8)
t1 := εh1, t2 := ε(h1 + h2), t3 := ε(h1 + h2 + h3).
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For midpoint subdivision h−3 = h−2 = h−1 = 1 , h1 = h2 = h3 = β , while for
equalizing subdivision, we have hi depend on ε and limε→0 hi(ε) = 1. We compute
the curvature κ of the spline at the origin 0; and we compute the discrete curvatures κi,
i = −1, 0, 1, from triples (qi−1,qi,qi+1) of control points of the refined spline. Then
with h∞i := limε→0 hi(ε) and ρi := limε→0 κi/κ,

ρ−1 =
3(h∞−2 + h∞−1)

h∞−3 + 2h∞−2 + 2h∞−1 + h∞1
, ρ0 =

3(h∞−1 + h∞1 )
h∞−2 + 2h∞−1 + 2h∞1 + h∞2

,

ρ1 =
3(h∞1 + h∞2 )

h∞−1 + 2h∞1 + 2h∞2 + h∞3
.

(9)

For midpoint subdivisions this yields as in (6)

ρ−1 =
6

5 + β
, ρ0 = 1 , ρ1 =

6β

1 + 5β
, (10)

while for equalizing subdivisions all ρi = 1 and the claim follows.

Note that the proof of Lemma 1 is based on the explicit knowledge of the underlying
B-spline curve. A similar proof for a general non-stationary or non-linear subdivision
scheme would be tricky.

Experiment 3 – subsequences Since equalization leads to complicated subdivision
rules, we try another approach. We insert new knots midway as in Experiment 1, but
determine the discrete curvature from subsequences. If we choose every 23rd control
point, the result for non-uniform C2 subdivision looks gratifyingly like Fig. 4, right.
However, proving convergence in a general setting is a subtle affair. By contrast, for the
next approach it is straightforward.

5 Skip-interpolating Subdivision

In order to obtain a subdivision scheme with easily measurable curvature, we general-
ize splines of degree 4, but such that every second control point stays fixed. Then the
discrete curvature of the interpolating subsequence represents the limit curvature as it
would for an interpolating subdivision algorithm.

First, we review subdivision of quartic C2 splines. If all βi equal 1 and the domain
intervals of the Bézier quartics are split at their center then the refinement rules for
obtaining new control points [q̄, q̃] from [p̄, p̃] are (cf. Fig. 7(a))

q̄2i :=
3
16

p̃i−1 +
5
8
p̄i +

3
16

p̃i, q̄2i+1 :=
1
8
p̄i +

3
4
p̃i +

1
8
p̄i+1 ,

q̃2i :=
1
16

p̃i−1 +
3
8
p̄i +

9
16

p̃i, q̃2i+1 :=
9
16

p̃i +
3
8
p̄i+1 +

1
16

p̃i+1 .

(11)

In Fig. 8, the control points p̄i (black disks) and p̃i (gray disks) are equally distributed
on the unit circle. The discrete curvature of the refined polygons in Fig. 8(c,d) shows
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q̃2i+1q̃2i

q̄2i+2

q̄2i+1

q̄2i

p̄i+1

p̄i

p̃i+1

p̃i

p̃i−1

(a) standard uniform

q̃2i+1

q̃2i

q̄2i+2

q̄2i+1

q̄2i pi+1

pi

p̃i+1

p̃i

p̃i−1

(b) skip-interpolating

Fig. 7. Standard subdivision [p̄, p̃]→ [q̄, q̃] and skip-interpolating subdivision [p, p̃]→ [q, q̃].

(a) Control points (b) curvature (c) 4 refinement steps (d) 6 refinement steps

Fig. 8. (a) Quartic C2 spline, (b) the spline’s exact curvature plotted against the parameter on the
absissa and (c,d) the discrete curvature at i/2k during the kth refinement. The discrete curvature
jumps, oscillating densely about the true curvature.

that there is no sense in tracing their densely oscillating discrete curvature to estimate
the curvature of the limit C2 spline.

Next, we consider the conversion of the B-spline control points p̃i of the polynomial
spline to its Bernstein-Bézier coefficients bi,j (see e.g. [11, 17] for the definitions of the
B-spline form and the Bernstein-Bézier (BB) form). With the constants βi representing
the ratios of the non-uniform lengths of adjacent knot intervals,

bi−1,3 :=
βip̃i−1 + p̄i

βi + 1
, bi1 :=

βip̄i + p̃i

βi + 1
, (12)

bi,2 := p̃i, bi−1,4 := bi0 =
βibi−1,3 + bi1

βi + 1
.

In particular, for βi = 1, we get the familiar formulas bi−1,3 := 1
2 p̃i−1 + 1

2 p̄i , bi1 :=
1
2 p̄i + 1

2 p̃i , bi−1,4 = bi0 := 1
2bi−1,3 + 1

2bi1.

To arrive at skip-interpolation, we define pi := bi,0 and observe in (12) and Fig. 9
that the relation between the sequence of point triples p̃i−1, p̄i, p̃i and p̃i−1,pi, p̃i is
linear. Therefore, we can equally well express a subdivision with the structure of (11)
in terms of points p̃i,pi as shown in Fig. 7(b). The corresponding subdivision rules for
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p̃i−1 p̃i−1

p̃ip̃i

p̄i

bi,1
bi,1

bi,0 bi,0

pi

bi−1,2 bi−1,2bi,2 bi,2

bi−1,3 bi−1,3

Fig. 9. Control points p̄i, p̃i,pi and BB-coefficients bi,k, k = 0 . . . 4. (left) standard C2 B-
spline to BB-form conversion (12) (right) Skip-interpolating conversion with points pi = bi,0

on the resulting curve.

deriving new points [q, q̃] from [p, p̃], generalized to account for varying βi, are

q2i := pi,

q2i+1 := a0p̃i−1 + a1pi + a2p̃i + a3pi+1 + a4p̃i+1, (13)
q̃2i := e0p̃i−1 + e1pi + e2p̃i,

q̃2i+1 := `0p̃i + `1pi+1 + `2p̃i+1.

where

a0 := −1
8

β2
i

βi + 1
, a1 :=

1
8
βi +

3
16

, a2 := 1− a0 − a1 − a3 − a4,

e0 := −1
4

β2
i

βi + 1
, e1 :=

1
2

+
1
4
βi, e2 := 1− e0 − e1,

and [a3, a4, `2, `1, `0] are obtained from [a1, a0, e0, e1, e2] by replacing βi → 1/βi+1.
This subdivision is called skip-interpolating, since every second point q2j of the control
polygon ends up on the limit curve. The curve inherits curvature continuity in the limit
from the underlying C2 spline.

We note that in both (11) and (13), the discrete curvature of the combined control
nets is meaningless: already the subpolygons, p̃i or p̄i, yield wildly oscillating plots.
But the subpolygon based on pi shows no spikes, as predicted.

6 Non-uniform Subdivision Based on a Rational Quadratic G1

Curve Construction

As promised in Section 2, we present a non-uniform subdivision scheme based on a
G1 curve construction. This construction is useful in its own right and its derivation is
similar but simpler than that in [14].

Given a control polygon p and weights ωi at the control points as in Fig. 10, middle,
we derive the BB-control-points of a rational quadratic G1 curve with BB-pieces fi

Fig. 10, left, such that numerator and denominator are in BB-form (Bernstein-Bézier
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mi

mi−1

mi+1

mi+2

pi

pi+1

βi+2

βi+1βi

βi−1

pi−1
ωi−1

ωi

ωi+1
q2i−2

q2i−1 q2i

q2i+1

Fig. 10. Construction of Non-uniform Rational Quadratic Subdivision. (left) BB-control poly-
gons with end points mi. (middle) Affine control polygon p with weights ω and the G1 constant
βi associated with edge pi−1pi. (right) Once-refined control polygon.

form):

fi : u 7→
∑2

k=0 wkbkB2
k(u)∑2

k=0 wkB2
k(u)

Bn
k :=

(
n

k

)
(1− u)n−kuk. (14)

In terms of βi, the BB-control-points of a rational quadratic fi are

mi := (1− νi)pi−1 + νipi , νi :=
ωi

βiωi−1 + ωi
,

bi,0 := mi, bi,1 := pi, bi,2 := mi+1, wi,0 = wi,2 := 1, wi,1 := ωi. (15)

We now associate the weights ωi with the coefficients bi,1 and the constants βi with
mi and hence with edges pi−1pi (see Fig. 10, middle).

To subdivide, we split each quadratic curve segment by de Casteljau’s algorithm at
its center u = 1/2. Then we re-normalize each piece’s rational weights so that the first
and last are both 1:

w̄i,k :=
wi,k

wi,0
, k = 0, 1, 2 ;

wsym
i,k := w̄i,khk

i , k = 0, 1, 2 ;hi :=
1

√
w̄i,2

.
(16)

Then
βsym

i := hi−1hiβi.

Subdivision generates the new control points q2i−1, q2i of the two subquadratics, a
symmetrized weight ωj per point and a symmetrized constant βj per edge (cf. Fig. 10,
right) by the following weight-dependent, hence non-stationary, and constant-dependent,
hence non-uniform, subdivision algorithm.

Algorithm. [Non-uniform Rational Quadratic Subdivision]
Input: Control polygon p, weights ω and constants β (see Fig. 10, middle).
Output: Control polygon q, new weights ω and constants β (see Fig. 10, right).
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The explicit refinement rules are

q2i−1 := ai
0pi−1 + ai

1pi, q2i := bi
0pi + bi

1pi+1, (17)

ai
0 :=

ωi−1βi

(ωi−1βi + ωi)(1 + ωi)
, bi

1 :=
ωi+1

(ωiβi+1 + ωi+1)(1 + ωi)
, (18)

ai
1 := 1− ai

0, bi
0 := 1− bi

1. (19)

For the next refinement step, set ẇi :=
√

(1 + ωi)/2 and redefine

pk := qk , ω2i−1 = ω2i := ẇi , β2i−1 :=
ẇi−1

ẇi
βi , β2i := 1 .

We call the scheme ‘non-uniform’ to emphasize its dependence on the constants βi.
The smoothness of the subdivision algorithm is immediate since it corresponds to

subdividing an underlying G1 rational spline. If all weights ωi are equal and all βi = 1
in the algorithm then for ai

0 = bi
1 = c := 1

2(1+ω) ,

q2i−1 := cpi−1 + (1− c)pi, q2i := (1− c)pi + cpi+1, ω ←
√

1 + ω

2
, (20)

i.e. the subdivision simplifies to a known uniform non-stationary C1 circle-reproducing
subdivision [9].

Indeed, the non-uniform subdivision can reproduce a number of conics in one frame-
work. Fig. 11(a) illustrates the construction of a circle from an asymmetric circum-
scribed control polygon. We need only to set

wi := cos
αi

2
, βi :=

sin αi

2

sin αi−1
2

, (21)

where the αi are the opening angles between consecutive points on the circle that are
interpolated by the circumscribed control polygon. Fig. 11 (b) and (c) make the point
that the subdivision can reproduce the ‘uniform’ non-stationary subdivision from [9]
but additionally vary shape by varying βi. The uniform subdivision, even though non-
stationary, can only reproduce one primitive at a time, here an ellipse, making designs
such as Fig. 1(b) cumbersome. By contrast, Non-uniform Rational Quadratic Subdi-
vision adapts to two or more different prescribed conics by replicating the pieces as
rational quadratic splines and converting them to control polygons of the subdivision
algorithm. Fig. 11(d) shows (dotted) the circle as in (a), now reproduced from a control
polygon that is a circumscribed triangle. For the solid-drawn variant, the weights of
the top two control points are increased to locally yield hyperbolic pieces and the βi

has been adjusted to keep the bottom segment exactly on the circle. The curve in (e)
corresponds to uniform βi = 1.

7 Discussion

Our original goal was to address a shortcoming of recent subdivision algorithms for
practical design: none locally reproduces several basic shapes within the same curve by
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αi

pi pi−1

(a) circumscribed control
polygon

(b) uniform βi (c) non-unif. βi

(d) varying wi and βi (e) varying only wi

Fig. 11. Non-uniform Rational Quadratic Subdivision. (a) Circle-circumscribed control poly-
gon with unequal opening angles αi yields a circle (cf. (21)). (b) The result of setting βi = 1 and
wi := cosπ

4
is identical to [9]. (c) The result of unequal βi for wi := cosπ

4
. (d) Circle from a

triangle (both dotted) and an alternative shape where the circle piece is preserved by varying the
βi corresponding to the bottom; the remainder is replaced by two hyperbolic pieces, abutting at
the hollow circle marker, obtained by increasing the top two weights wi. (e) Same as (d) but with
all βi identical.

one algorithm. In addressing this challenge algorithmically by non-uniform subdivision
following the approach of [14], we noticed a second, related challenge, already present
in non-uniform subdivision of polynomial splines: While control polygons often work
well for extracting first-order information about curves, the experiments in Section 4
and Lemma 1 show that curvature of an approximating non-stationary subdivision is
not easily gleaned from control polygons. In retrospect, this should not surprise since
control nets without associated generating functions do not allow for a mathematical
analysis of the resulting limit shape [16, Introduction].

Among the options that we explored in order to nevertheless generate useful curva-
ture information in a practical way from control polygons, equalization leads to compli-
cated subdivision rules; and selecting subsequences requires additional careful analysis.
Skip-interpolation, on the other hand, is a simple technique to be able to read off curva-
ture while still preserving the typically better shape of non-interpolating, approximating
subdivision.

Acknowledgments. Work supported in part by NSF Grant CCF-0728797.
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