Skip to main content

Normal Multi-scale Transforms for Surfaces

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

We prove well-posedness, convergence, and detail decay estimates for the normal triangular mesh multi-scale transform for C 1,α graph surfaces given in the simplest case when the subdivision rule S used for base point prediction is given by edge midpoint insertion. A restrictive assumption is that the initial triangular mesh needs to be quasi-regular and of small enough mesh-size. We also provide numerical evidence with other S for dyadic refinement (Butterfly, Loop), and propose a modification of the normal scheme resulting in improved detail decay for smooth surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraniuk, R., Janssen, M., Lavu, S.: Multiscale approximation of piecewise smooth two-dimensional functions using normal triangulated meshes. Appl. Comput. Harm. Anal. 19, 92–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binev, P., Dahmen, W., DeVore, R.A., Dyn, N.: Adaptive approximation of curves. In: Approximation Theory, pp. 43–57. Acad. Publ. House, Sofia (2004)

    Google Scholar 

  3. Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399–462 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Friedel, I., Khodakovsky, A., Schröder, P.: Variational normal meshes. ACM Trans. Graph. 23, 1061–1073 (2004)

    Article  Google Scholar 

  5. Grohs, P.: A general proximity analysis of nonlinear subdivision schemes. SIAM J. Math. Anal. 42, 729–750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guskov, I.: Irregular subdivision and its applications. PhD thesis, Princeton Univ., Dep. of Mathematics (1999)

    Google Scholar 

  7. Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Computer Graphics Proceedings (Siggraph 2000), pp. 95–102. ACM Press, New York (2000)

    Google Scholar 

  8. Harizanov, S.: Globally convergent adaptive normal multi-scale transforms. This Proceedings (submitted)

    Google Scholar 

  9. Harizanov, S., Oswald, P.: Stability of nonlinear subdivision and multiscale transforms. Constr. Approx. 31, 359–393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harizanov, S., Oswald, P., Shingel, T.: Normal multi-scale transforms for curves. Found. Comput. Math. 11, 617–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, J., Oswald, P.: Triangular \(\sqrt{3}\)-subdivision schemes: the regular case. J. Comput. Appl. Math. 156, 47–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: Geometric Modeling for Scientific Visualization, pp. 189–207. Springer, Berlin (2003)

    Google Scholar 

  13. Labsik, U., Greiner, G.: Interpolatory \(\sqrt{3}\)-subdivision. Computer Graphics Forum 19, 131–139 (2000)

    Article  Google Scholar 

  14. Lavu, S., Choi, H., Baraniuk, R.: Geometry compression of normal meshes using rate-distortion algorithms. In: Eurographics/ACM Siggraph Symposium on Geometry Processing, pp. 52–61. RWTH Aachen (2003)

    Google Scholar 

  15. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis. Univ. of Utah, Dep. of Mathematics (1987)

    Google Scholar 

  16. Runborg, O.: Introduction to normal multiresolution analysis. In: Multiscale Methods in Science and Engineering. LNCSE, vol. 44, pp. 205–224. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Runborg, O.: Fast interface tracking via a multiresolution representation of curves and surfaces. Commun. Math. Sci. 7, 365–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24, 289–318 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes of arbitrary topology. In: Computer Graphics Proceedings (SIGGRAPH 1996), pp. 189–192. ACM Press, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oswald, P. (2012). Normal Multi-scale Transforms for Surfaces. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics