Skip to main content

Couple Points – A Local Approach to Global Surface Analysis

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

  • 3222 Accesses

Abstract

We introduce the concept of couple points as a global feature of surfaces. Couple points are pairs of points \(({\mathbf x}_1,{\mathbf x}_2)\) on a surface with the property that the vector \({\mathbf x}_2 - {\mathbf x}_1\) is parallel to the surface normals both at \({\mathbf x}_1\) and \({\mathbf x}_2\). In order to detect and classify them, we use higher order local feature detection methods, namely a Morse theoretic approach on a 4D scalar field. We apply couple points to a number of problems in Computer Graphics: the detection of maximal and minimal distances of surfaces, a fast approximation of the shortest geodesic path between two surface points, and the creation of stabilizing connections of a surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22(3), 485–493 (2003)

    Article  Google Scholar 

  2. Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Symposium on Computational Geometry, pp. 360–369 (1990)

    Google Scholar 

  3. Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. In: Proc. ACM Symp. Solid Model. Appl., pp. 179–190 (1999)

    Google Scholar 

  4. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proc. 19th Sympos. Comput. Geom. 2003, pp. 361–370 (2003)

    Google Scholar 

  5. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proc. 17th Sympos. Comput. Geom. 2001 (2001)

    Google Scholar 

  6. Efimov, N.: Flächenverbiegungen im Grossen. Akademie-Verlag, Berlin (1957) (in German)

    Google Scholar 

  7. Ferrand, E.: On the Bennequin Invariant and the Geometry of Wave Fronts. Geometriae Dedicata 65, 219–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal directions vectors. ACM Transactions on Graphics 23(1), 45–63 (2004)

    Article  Google Scholar 

  9. Guéziec, A.: Meshsweeper: Dynamic point-to-polygonal-mesh and applications. IEEE Transactions on Visualization and Computer Graphics 7(1), 47–61 (2001)

    Article  Google Scholar 

  10. Hahmann, S., Bonneau, G.P.: Smooth polylines on polygon meshes. In: Brunnett, G., Hamann, B., Müller, H. (eds.) Geometric Modeling for Scientific Visualization, pp. 69–84. Springer, Heidelberg (2003)

    Google Scholar 

  11. Hahmann, S., Belyaev, A., Buse, L., Elber, G., Mourrain, B., Rössl, C.: Shape interrogation. In: de Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring. ch. 1, Mathematics and Visualization, pp. 1–52. Springer, Berlin (2008)

    Google Scholar 

  12. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (2001)

    Google Scholar 

  13. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: Proc. SIGGRAPH, pp. 284–293 (2004)

    Google Scholar 

  14. Kuiper, N.H.: Double normals of convex bodies. Israel J. Math. 2, 71–80 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Minagawa, T., Rado, R.: On the infinitesimal rigidity of surfaces. Osaka Math. J. 4, 241–285 (1952)

    MathSciNet  MATH  Google Scholar 

  17. Mitchell, J.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (1998)

    Google Scholar 

  18. Ni, X., Garland, M., Hart, J.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. SIGGRAPH, pp. 613–622 (2004)

    Google Scholar 

  19. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys 34(2) (2001)

    Google Scholar 

  20. Pham-Trong, V., Biard, L., Szafran, N.: Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes. Numerical Algorithms 26(4), 305–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: 3DPVT, pp. 486–493 (2004)

    Google Scholar 

  23. Sheeny, D., Armstrong, C., Robinson, D.: Shape description by medial axis construction. IEEE Transactions on Visualization and Computer Graphics 2, 62–72 (1996)

    Article  Google Scholar 

  24. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics 24(3), 553–560 (2005)

    Article  Google Scholar 

  25. Theisel, H., Rössl, C., Zayer, R., Seidel, H.P.: Normal based estimation of the curvature tensor for triangular meshes. In: Proc. Pacific Graphics, pp. 288–297 (2004)

    Google Scholar 

  26. Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM Transactions on Graphics 28(4), 104:1–104:8 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rössl, C., Theisel, H. (2012). Couple Points – A Local Approach to Global Surface Analysis. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics