Skip to main content

Algebraic Curves of Low Convolution Degree

  • Conference paper
  • 3228 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Abstract

Studying convolutions of hypersurfaces (especially of curves and surfaces) has become an active research area in recent years. The main characterization from the point of view of convolutions is their convolution degree, which is an affine invariant associated to a hypersurface describing the complexity of the shape with respect to the operation of convolution. Extending the results from [1], we will focus on the two simplest classes of planar algebraic curves with respect to the operation of convolution, namely on the curves with the convolution degree one (so called LN curves) and two. We will present an algebraic analysis of these curves, provide their decomposition, and study their properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vršek, J., Lávička, M.: On convolution of algebraic curves. Journal of Symbolic Computation 45(6), 657–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  3. Farouki, R., Sakkalis, T.: Pythagorean hodographs. IBM Journal of Research and Development 34(5), 736–752 (1990)

    Article  MathSciNet  Google Scholar 

  4. Farouki, R., Sakkalis, T.: Pythagorean-hodograph space curves. Adv. Comput. Math. 2, 41–66 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kosinka, J., Jüttler, B.: G 1 Hermite interpolation by Minkowski Pythagorean hodograph cubics. Computer Aided Geometric Design 23, 401–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kosinka, J., Jüttler, B.: MOS surfaces: Medial surface transforms with rational domain boundaries. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 245–262. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Kosinka, J., Lávička, M.: On rational Minkowski Pythagorean hodograph curves. Computer Aided Geometric Design 27(7), 514–524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Peternell, M., Pottmann, H.: A Laguerre geometric approach to rational offsets. Computer Aided Geometric Design 15, 223–249 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pottmann, H., Peternell, M.: Applications of Laguerre geometry in CAGD. Computer Aided Geometric Design 15, 165–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jüttler, B.: Triangular Bézier surface patches with linear normal vector field. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII. Information Geometers, pp. 431–446 (1998)

    Google Scholar 

  11. Peternell, M., Manhart, F.: The convolution of a paraboloid and a parametrized surface. Journal for Geometry and Graphics 7(2), 157–171 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Sampoli, M.L., Peternell, M., Jüttler, B.: Rational surfaces with linear normals and their convolutions with rational surfaces. Computer Aided Geometric Design 23(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lávička, M., Bastl, B.: Rational hypersurfaces with rational convolutions. Computer Aided Geometric Design 24(7), 410–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, I.K., Kim, M.S., Elber, G.: Polynomial/rational approximation of Minkowski sum boundary curves. Graphical Models and Image Processing 60(2), 136–165 (1998)

    Article  Google Scholar 

  15. Gravesen, J., Jüttler, B., Šír, Z.: On rationally supported surfaces. Computer Aided Geometric Design 25, 320–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoretical Computer Science 392(1-3), 141–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersurfaces. Journal of Symbolic Computation 23, 267–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. Journal of Pure and Applied Algebra 136, 199–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Mathematische Zeitschrift 237, 697–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Šír, Z., Bastl, B., Lávička, M.: Hermite interpolation by hypocycloids and epicycloids with rational offsets. Computer Aided Geometric Design 27, 405–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jüttler, B., Sampoli, M.: Hermite interpolation by piecewise polynomial surfaces with rational offsets. Computer Aided Geometric Design 17, 361–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 81(2), 299–309 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brieskorn, E., Knörer, H.: Plane algebraic curves. Birkhaüser, Basel (1986)

    Book  Google Scholar 

  25. Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  26. Fulton, W.: Algebraic Curves. Benjamin, New York (1969)

    MATH  Google Scholar 

  27. Kim, M.S., Elber, G.: Problem reduction to parameter space. In: Proceedings of the 9th IMA Conference on the Mathematics of Surfaces, pp. 82–98. Springer, Heidelberg (2000)

    Google Scholar 

  28. Walker, R.: Algebraic Curves. Princeton University Press, Princeton (1950)

    MATH  Google Scholar 

  29. Lávička, M., Bastl, B., Šír, Z.: Reparameterization of curves and surfaces with respect to their convolution. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 285–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC (2005)

    Google Scholar 

  31. Hartshorne, R.: Algebraic Geometry. Springer, Heidelberg (1977)

    Book  MATH  Google Scholar 

  32. Moon, H.: Minkowski Pythagorean hodographs. Computer Aided Geometric Design 16, 739–753 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vršek, J., Lávička, M. (2012). Algebraic Curves of Low Convolution Degree. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics