Skip to main content

Discovering DNA Motifs with a Parallel Shared Memory Differential Evolution

  • Conference paper
  • 1661 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6927))

Abstract

The usefulness and efficiency of one algorithm to solve an optimization problem is not given only by the quality of the results obtained, it is also important the computational time and the resources required to obtain them. In this paper we present a parallel implementation of the Differential Evolution (DE) to solve the Motif Discovery Problem (MDP). MDP is an important biological problem that can have a high computational cost if we work with large amounts of nucleotides, so the fine-grained parallelism on a shared memory machine can help us to achieve results quickly. To ensure that our heuristic obtains relevant results we have compared them with those obtained by the standard algorithm NSGA-II and with other fourteen well-known biological methods. As we will see, the structure of the algorithm makes it well suited for parallelization, achieving good results and efficiencies up to 95%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’haeseleer, P.: What are DNA sequence motifs? Nature Biotechnology 24(4), 423–425 (2006)

    Article  Google Scholar 

  2. Fogel, G.B., et al.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Reseach 36(21), e142 (2008)

    Article  Google Scholar 

  3. Price, K., Storn, R.: Differential Evolution - A Simple Evolution Strategy for Fast Optimization. Dr. Dobb’s Journal 22(4), 18–24, 78 (1997)

    MATH  Google Scholar 

  4. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the Motif Discovery Problem by Using Differential Evolution with Pareto Tournaments. In: CEC 2010, pp. 4140–4147. IEEE Computer Society, Barcelona (2010)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  6. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. IEEE Transactions on Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  7. Wingender, E., Dietze, P., Karas, H., Knüppel, R.: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research 24(1), 238–241 (1996)

    Article  Google Scholar 

  8. Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M. (2012). Discovering DNA Motifs with a Parallel Shared Memory Differential Evolution. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27549-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27548-7

  • Online ISBN: 978-3-642-27549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics