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Abstract. In this paper a data mining approach for variable selection
and knowledge extraction from datasets is presented. The approach is
based on unguided symbolic regression (every variable present in the
dataset is treated as the target variable in multiple regression runs) and
a novel variable relevance metric for genetic programming. The relevance
of each input variable is calculated and a model approximating the tar-
get variable is created. The genetic programming configurations with dif-
ferent target variables are executed multiple times to reduce stochastic
effects and the aggregated results are displayed as a variable interaction
network. This interaction network highlights important system compo-
nents and implicit relations between the variables. The whole approach is
tested on a blast furnace dataset, because of the complexity of the blast
furnace and the many interrelations between the variables. Finally the
achieved results are discussed with respect to existing knowledge about
the blast furnace process.
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1 Introduction

Data mining is the process of finding interesting patterns in large datasets to
gain knowledge about the data and the process it originates from. This work
concentrates on the identification of relevant variables which is mainly referred
to as variable or feature selection ([1] provides a good overview about the field).
Usually a large set of variables is available in datasets to model a given fact
and it can be assumed that only a specific subset of these variables is actually
relevant. Although there are often no details given on how variables are related,
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an identified set of relevant variables is easy to understand and can already
increase the knowledge about the dataset considerably. However, determining
the subset of relevant variables is non-trivial especially if there are non-linear
or conditional relations. Implicit dependencies between variables further hamper
the identification of relevant variables as this ultimately leads to multiple sets
of different variables that are equally possible.

In this paper genetic programming (GP) [4], a general problem solving meta-
heuristic, is used for data mining. GP is well suited for data mining because it
produces interpretable white box models and automatically evolves the struc-
ture and parameters of the model [4]. In GP feature selection is implicit because
fitness-based selection makes models containing relevant variables more likely
to be included in the next generation. As a consequence, references to relevant
variables are more likely than references to irrelevant ones. This implicit feature
selection also removes variables which are pairwise highly correlated but irrel-
evant to describe a given relation. However, if pairwise correlated and relevant
variables exists in the dataset, GP does not recognize that one of the variables
can be removed and keeps both.

In this work symbolic regression analysis is executed multiple times to reveal
sets of relevant variables and to reduce stochastic events. Additionally aggregated
characteristics about the whole algorithm run are used to extract information
about the dataset, instead of solely using the identified model. In section 2
a overview of metrics used to calculate the variable relevance is given and a
new frequency-based variable relevance metric is proposed. Section 3 outlines
the experimental setup, the blast furnace dataset and the parameters for the
GP runs. Section 4 presents and discusses the achieved results and section 5
concludes the paper.

2 Variable Relevance Metrics for GP

Knowledge about the minimal set of input variables necessary to describe a
given dependent variable is often very valuable for domain experts and can
improve the understanding of the examined system. In the case of linear models
the relevance of variables can be detected by shrinkage methods [2]. If genetic
programming is used for the analysis of relevant variables not only linear relations
but, based on the set of allowed symbols, also non-linear or conditional impact
factors can be detected. The extraction of the variable relevance from GP runs
is not straightforward and highly depends on the metrics used to measure the
variable importance.

Two variants to approximate the relevance of variables for genetic program-
ming have been described in [12]. Although both metrics have been designed to
measure population diversity they can be used to estimate the variable relevance.
The frequency-based approach either uses the sum of variable references in all
models or the number of models referencing a variable. The second, impact-based
metric uses the information present in the variable to estimates its relevance. The
idea is to manipulate the dataset to remove the variable for which the impact



should be calculated (e.g., by replacing all occurrences with the mean of the
variable) and to measure the response differences between the original model
and the manipulated one.

In [10] two different definitions of variable relevance are proposed. The pres-
ence weighted variable importance calculates the relative number of models,
identified and manually selected by one or multiple ParetoGP [8] runs, which
reference this variable. The fitness-weighted variable importance metric also uses
the presence of variables in identified models, but additionally takes the fitness
of the identified models into account [7]. As the authors state this eliminates the
need of manually selecting models because the aggregated and weighted score
of irrelevant variables should be much smaller than the overall score of relevant
variables.

2.1 Extension of Frequency-based Variable Relevance for GP

The frequency-based variable relevance relfreq is also based on the variable oc-
currence over multiple models but in contrast to the other metrics the whole
algorithm run is used to calculate the variable relevance. The frequency of a
variable xi in a population of models is calculated by counting the references to
this variable over all models m (Equation 1,2). The frequency is afterwards nor-
malized by the total number of variable references in the population (Equation
3) and the resulting frequencies are averaged over all generations (Equation 4).

CountRef(xi,m) =

{

1 +
∑

b∈Subtrees(m) CountRef(xi, b) , if Symbol(m) = xi

0 +
∑

b∈Subtrees(m) CountRef(xi, b) , if Symbol(m) 6= xi

(1)

frequ(xi,Pop) =
∑

m∈Pop

CountRef(xi,m) (2)

relfrequ(xi,Pop) =
freq(xi,Pop)

∑n

k=1 freq(xk,Pop)
(3)

relevance(xi) =
1

G

G
∑

g=1

relfreq(xi,Popg) (4)

Tracing the relative variable frequencies over the whole GP run and visual-
izing the results is aimed to lead to insights into the dynamics of the GP run
itself. Figure 1 shows the trajectories of relative variable frequency for the blast
furnace dataset described in section 3.1. It can be already seen that the relevance
of variables varies during the GP run. In the beginning two variables (the hot
blast amount and the hot blast O2 proportion) are used in most models, but
after 100 generations the total humidity overtops these two. The advantage of
calculating the variable relevance over the whole run instead of using only the
last generation is that the dynamic behavior of GP is taken into account.



Because of the non-deterministic nature of the GP process the relevance of
variables typically differs over multiple independent GP runs. Implicit linear or
non-linear dependencies between input variables are another possible reason for
these differences. Therefore, the variable relevances of one single GP run are not
representative. It is desirable to analyze variable relevance results over multiple
GP runs in order to know which variables are most likely necessary to explain
the target variable and which variables have a high relevance in single runs only
by chance. Therefore, all GP runs are executed multiple times and the results
are aggregate to minimize stochastic effects.

Fig. 1. Relative Variable Frequencies of one single GP run for the blast furnace dataset.

3 Experiments

The frequency-based variable relevance metric and data mining approach is
tested on a complex industrial system. The general blast furnace and the physical
and chemical reactions occurring in the blast furnace are quite well known. How-
ever, on a detailed level many of the inter-relationships of different parameters
and the occurrence of fluctuations and unsteady behavior in the blast furnace
are not totally understood. Therefore, the knowledge about relevant variables
and accurate approximations of process variables are of special importance and
were calculated using repeated GP runs on the blast furnace dataset.



3.1 Blast Furnace Dataset

The blast furnace is the most common process to produce hot metal globally.
More than 60% of the iron used for steel production is produced in the blast
furnace process [6]. The raw materials for the production of hot metal enter the
blast furnace via two paths. At the top of the blast furnace ferrous oxides and
coke are charged in alternating layers. The ferrous oxides include sinter, pellets
and lump ore. Additionally feedstock to adjust the basicity is also charged at
the top of the blast furnace. In the lower area of the blast furnace the hot blast
(air, 1200 ◦C) and reducing agents are injected through tuyeres. These reducing
agents include heavy oil, pulverized coal, coke oven or natural gas, coke tar
and waste plastic and are added to substitute coke. The products of the blast
furnace are liquid iron (hot metal) and the liquid byproduct slag tapped at the
bottom and blast furnace gas which is collected at the top. For a more detailed
description of the blast furnace process see [9].

The basis of our analysis is a dataset containing hourly measurements of a
set of variables of the blast furnace listed in Table 1. The dataset contains almost
5500 rows; rows 100–3800 are used for training and rows 3800–5400 for testing.
Only the first half of the training set (rows 100–1949) is used to determine the
accuracy of a model. The other half of the training set (rows 1950–3800) is used
for validation and selection of the final model. The dataset cannot be shuffled
because the observations are measured over time and the nature of the process
is implicitly dynamic.

Group Variables

Hot blast
pressure amount
O2 proportion speed
temperature total humidity

Tuyere Injection
amount of heavy oil amount of water
amount of coal tar

Charging

coke charge weight amount of sinter
amount of pellets amount of coke
amount of lump ore burden basicity B2
coke reactivity index

Tapping
hot metal temperature amount of slag
amount of alkali

Blast furnace top gas temperature gas utilization CO

Process parameters melting rate cooling losses (staves)
Table 1. Variables included in the blast furnace dataset.

3.2 Algorithmic Settings

Unguided symbolic regression treats each of the variables listed in Table 1 as the
target variable in one GP configuration and all remaining variables are allowed



as input variables. This leads to 23 different configurations, one for each target
variable. For each configuration 30 independent runs have been executed on
a multi processor blade system to reduce stochastic effects. Table 2 lists the
algorithm parameters for the different GP configurations. The resulting model of
the GP run is that one with the largest R2 on the validation set and gets linearly
scaled [3] to fit the location and scale of the target variables. The approach
described in this contribution was implemented and tested in the open source
framework HeuristicLab [11].

Parameter Value

Population size 1000
Max. generations 150
Parent selection Tournament (group size =7)
Replacement 1-Elitism
Initialization PTC2 [5]
Crossover Sub-tree-swapping
Mutation rate 15%
Mutation operators One-point and Sub-tree replacement
Tree constraints Max. expression size = 100

Max. expression depth = 10
Model selection Best on validation
Stopping criterion Max. generations reached
Fitness function R

2 (maximization)
Function set +,-,*,/,avg,log,exp
Terminal set constants, variable

Table 2. Genetic programming parameters for the blast furnace dataset.

4 Results

A box plot of the model accuracies (R2) over 30 independent runs for each
target variable of the blast furnace dataset is shown in Figure 2. The R2 values
are calculated from the predictions of the best model (selected on the validation
set) on the test set for each run. Whiskers indicate four times the interquartile
range, values outside of that range are indicated by small circles in the box-plot.
Almost all models for the hot blast pressure result in a perfect approximation
(R2 ≈ 1.0). Very good approximations are also possible for the O2 proportion
of the hot blast and for the flame temperature. On the other hand the hot blast
temperature, the coke reactivity index and the amount of water injected through
tuyeres cannot be modeled accurately using symbolic regression.

4.1 Variable Interaction Network

The variable interaction network obtained from the GP runs is shown in Figure
3. For each target variable the three most relevant input variables are indicated
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Fig. 2. Box-plot of R2 value on the test set of models for the blast furnace dataset.

by an arrow pointing to the target variable. Arrows in both directions are an
indication that the pair of variables is strongly related; the value of the first
variable is needed to approximate the value of the second variable and vice versa.
Variables that have many outgoing arrows play a central role in the process and
can be used to approximate many other variables. In the blast furnace network
central variables are the melting rate, the amount of slag, the amount of injected
heavy oil, the amount of pellets, and the hot blast speed and its O2 proportion.
The unfiltered variable interaction network must be interpreted in combination
with the box plot in Figure 2 because the significance (not in the statistical
sense) of arrows pointing to variables which cannot be approximated accurately
is rather low (e.g., the connection between the coke reactivity index and the
burden basicity B2).

4.2 Detailed Results

The variable interaction network for the blast furnace process provides a good
overview of the blast furnace process. Exemplary the influence factors obtained
by unguided symbolic regression on the melting rate are analyzed and compared
to the influences known by domain experts.

The melting rate is primarily a result of the absolute amount of O2 injected
into the furnace and is also related to the efficiency of the furnace. A crude
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Fig. 3. Relationships of blast furnace variables identified with unguided symbolic re-
gression.

approximation for the melting rate is

Total amount of O2

[220 . . .245]
(5)

When the furnace is working properly the melting rate is higher (O2/220), when
the furnace is working inefficiently the melting rate decreases (O2/245) and high
cooling losses can be observed. Additional factors that are known to affect the
melting rate are the burden composition and the amount of slag. The identified
models show a strong relation of the melting rate with the hot blast param-
eters (data not shown). The melting rate is used in models for the hot blast
parameters: pressure, O2-proportion, amount, and the total humidity which is
largely determined by the hot blast. In return the hot blast parameters play an
important role in the model for the melting rate.

Equation 6 shows a model for the melting rate with a rather high squared
correlation coefficient of 0.89 that has been further simplified by omitting unin-
fluential terms and manual pruning. The generated model 6 (constants ci, i = 1..8
are omitted for better readability) also indicates the known relation of the melt-
ing rate and the amount of O2. Additionally the cooling losses, the amount of
lump ore and the gas utilization of CO have been identified as factors connected
to the melting rate.



Melting rate = log(c0 × TempHB ×O2-propHB×

(c1Cool. loss + c2AmountHB + c3) + c4 ×Gas utilCO

× (c5Lump ore + c6)× (c7AmountHB + c8))

(6)

5 Conclusion

Many variables in the blast furnace process are implicitly related, either because
of underlying physical relations or because of the external control of blast furnace
parameters. Examples for variables with implicit relations to other variables
are the flame temperature or the hot blast parameters. Usually such implicit
relations are not known a-priori in data-based modeling scenarios but could be
extracted from the variable relevance information collected from multiple GP
runs.

Using an unguided symbolic regression data mining approach several models
have been identified that approximate the observed values in the blast furnace
process rather accurately. In some cases the data-based models approximate
known underlying physical relations, but in general the statistical models pro-
duced by the data mining approach do not match the physical models perfectly.
A possible enhancement could be the usage of physical units in the GP process
to evolve physically correct models.

Currently the variable relevance information is used to determine the nec-
essary variable set to model the target variable. The experiments also lead to
a number of models describing several components of the blast furnace. The
generated models can be used to extract information about implicit relations in
the dataset to further reduce and disambiguate the set of relevant input vari-
ables. Additionally the information about relations between input variables can
be used to manually transform symbolic regression models to lower the number
of alternative representation of the same causal relationship. However, the im-
plementation of software that uses such models of implicit relations or manually
declared a-priori knowledge intelligently, to simplify symbolic regression mod-
els, or to provide alternative semantically equivalent representations of symbolic
regression models, is left for future work.
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