Skip to main content

Ionic Dialysance and Conductivity Modeling

  • Chapter
Modeling and Control of Dialysis Systems

Abstract

In the 1993 two papers showed that instantaneous ionic dialysance can be measured without the need for blood or dialysate sampling and at no extra cost, simply by using two conductivity probes placed at the dialyzer inlet and outlet or a single probe alternately activated at the inlet and outlet. Given the very close correlation between the conductivity of dialysate and its sodium content it has been suggested that ionic dialysance can be considered equivalent to effective sodium dialysance. When ionic dialysance value is known it is possible to indirectly derive the plasma water conductivity value and thus the sodium concentration. The possibility to estimate sodium dialysance and plasma water sodium concentration without the need for blood samples and laboratory determination makes it very easy to apply the sodium kinetic model changing it in a conductivity kinetic model. Moreover, because of the similar molecular weight of sodium chloride and urea it has been suggested that ionic dialysance can also be considered equivalent to effective urea clearance. Thus, it should be possible to use ionic dialysance instead of urea clearance for the routine monitoring of delivered dialysis dose. Therefore, ionic dialysance seems a very promising and easy tool to improve dialytic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albadawy, M., Chlih, B., Jaber, W., et al.: Impaired delivery of hemodialysis prescription-Use of ionic dialysance. J. Am. Soc. Nephrol. 11, A1646 (2000)

    Google Scholar 

  • Bosticardo, G.M., Avalle, U., Giacchino, F., et al.: Accuracy of an On-line Urea Monitor Compared with Urea Kinetic Model and Direct Dialysis Quantification. ASAIO J. 40(3), 426–430 (1994)

    Article  Google Scholar 

  • Cheng, Y.L., Shek, C.C., Wong, F.K., et al.: Determination of the Solute Removal Index for Urea by Using a Partial Spent Dialysate Collection Method. Am. J. Kidney Dis. 31(6), 986–990 (1998)

    Article  Google Scholar 

  • Colton, C.K., Smith, K.A., Merrill, E.W., Reece, J.M.: Diffusion of organic solutes in stagnant plasma and red cell suspensions. Chem. Eng. Prog. Symp. Ser. 66, 85–100 (1970)

    Google Scholar 

  • Daugirdas, J.T., Depner, T.A.: A nomogram approach to hemodialysis urea modelling. Am. J. Kidney Dis. 23(1), 33–40 (1994)

    Google Scholar 

  • Daugirdas, J.T., Schneditz, D.: Overestimation of hemodialysis dose (Kt/V) depends on dialysis efficiency (K/V) by regional blood flow and conventional two-pool urea kinetic analyses. ASAIO J. 41(3), M719–M724 (1995)

    Article  Google Scholar 

  • Daugirdas, J.T., Smye, S.W.: Effects of a two compartment distribu-tion on apparent urea distribution volume. Kidney Int. 51, 1270–1273 (1997)

    Article  Google Scholar 

  • Daugirdas, J.T., Greene, T., Depner, T.A., et al.: Relationship between apparent (single-pool) and true (double-pool) urea distribution volume. Kidney Int. 56(5), 1928–1933 (1999)

    Article  Google Scholar 

  • Del Vecchio, L., Di Filippo, S., Andrulli, S., et al.: Conductivity: On-line monitoring of dialysis adequacy. Int. J. Artif. Organs. 21(9), 521–525 (1998)

    Google Scholar 

  • Depner, T.A., Keshaviah, P.R., Ebben, J.P., et al.: Multicenter clinical validation of an on-line monitor of dialysis adequacy. J. Am. Soc. Nephrol. 7(3), 464–471 (1996)

    Google Scholar 

  • Depner, T.A.: Quantifying hemodialysis. Am. J. Nephrol. 16(1), 17–28 (1996)

    Article  Google Scholar 

  • Depner, T.A., Greene, T., Gotch, F.A., et al.: Imprecision of the hemodialysis dose when measured directly from urea removal. Kidney Int. 55(2), 635–647 (1999)

    Article  Google Scholar 

  • Depner, T.A., Rizwan, S., Stasi, T.A.: Pressure effects on roller pump blood flow during hemodialysis. ASAIO Trans. 36(3), M456–M459 (1990)

    Google Scholar 

  • Di Filippo, S., Corti, M., Andrulli, S., et al.: Determining the adequacy of sodium balance in hemodialysis using a kinetic model. Blood Purif. 14(6), 431–436 (1996)

    Article  Google Scholar 

  • Di Filippo, S., Manzoni, C., Andrulli, S., et al.: Ionic dialysance allows an adequate estimate of urea distribution volume in hemodialysis patients. Kidney Int. 66(2), 786–791 (2004)

    Article  Google Scholar 

  • Di Filippo, S., Corti, M., Andrulli, S., et al.: Optimization of sodium removal in paired filtration dialysis by single pool sodium and conductivity kinetic models. Blood Purif. 15(1), 34–44 (1997)

    Article  Google Scholar 

  • Di Filippo, S., Andrulli, S., Manzoni, C., et al.: On-line assessment of delivered dialysis dose. Kidney Int. 54(1), 263–267 (1998)

    Article  Google Scholar 

  • Di Filippo, S., Manzoni, C., Andrulli, S., et al.: How to determine ionic di alysance for the online assessment of delivered dialysis dose. Kidney Int. 59(2), 774–782 (2001)

    Article  Google Scholar 

  • Di Filippo, S., Pozzoni, P., Manzoni, C., et al.: Relationship between urea clearance and ionic dialysance determined using a single-step conductivity profile. Kidney Int. 68(5), 2389–2395 (2005)

    Article  Google Scholar 

  • Dubois, D., Dubois, E.F.: A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 5(5), 303–311 (1989)

    Google Scholar 

  • Ebben, J., Ruan, J., Keshaviah, P., Emerson, P.: Sodium (conductivity) dialysance is membrane dependent (Abstract). ASAIO J. 42, 81 (1996)

    Article  Google Scholar 

  • Garred, L.J., Rittau, M., McCready, W., Canaud, B.: Urea kinetic modelling by partial dialysate collection. Int. J. Artif. Organs. 12(2), 96–102 (1989)

    Google Scholar 

  • Ghezzi, P.M., Frigato, G., Fantini, G.F., et al.: Theoretical model and first clinical results of the paired filtration dialysis (PFD). Life Support Syst. 1(Suppl.), 271–276 (1983)

    Google Scholar 

  • Goldau, R., Kuhlmann, U., Samadi, N., et al.: Ionic dialysance mea-surement is urea distribution volume dependent: A new approach to better results. Artif. Organs. 26(4), 321–332 (2002)

    Article  Google Scholar 

  • Gotch, F., Peter, H., Panlilio, F., et al.: On-line measurement of deli-vered Kt/V during dialysis. J. Am. Soc. Nephrol. 6, 600 (1995)

    Google Scholar 

  • Gotch, F.A., Panlilio, F.M., Buyaki, R.A., et al.: Mechanisms determining the ratio of conductivity clearance to urea clearance. Kidney Int. 66(Suppl. 89), S3–S24 (2004)

    Article  Google Scholar 

  • Gotch, F.A.: Kinetic modeling in hemodialysis. In: Nissenson, A.R., Fine, R.N., Gentile, D.E. (eds.) Clinical Dialysis, 3rd edn., pp. 118–146. Appleton & Lange, Norwalk, CT (1992)

    Google Scholar 

  • Gotch, F.A., Sargent, J.A.: A mechanistic analysis of the National Cooperative Dialysis Study. Kidney Int. 28(3), 526–534 (1985)

    Article  Google Scholar 

  • Gotch, F.A.: Models to predict recirculation and its effect on treat-ment time in single-needle dialysis. In: Ringoir, S., Vanholder, R., Ivanovich, P. (eds.) First International Symposium on single-needle dialysis, pp. 47–62. ISAO Press, Cleveland (1994)

    Google Scholar 

  • Gotch, F.A., Lam, M.A., Prowitt, M., et al.: Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. Proc. Clin. Dial. Transplant Forum 10, 12–17 (1980)

    Google Scholar 

  • Hakim, R.M., Breyer, J., Ismail, N., et al.: Effects of dose of dialysis on morbidity and mortality. Am. J. Kidney Dis. 23(5), 661–669 (1994)

    Google Scholar 

  • Kloppenburg, W.D., Stegeman, C.P., De Jong, P.E., et al.: Anthropometry-based equations overestimate the urea distribution volume in hemodialysis patients. Kidney Int. 59(3), 1165–1174 (2001)

    Article  Google Scholar 

  • Kuhlmann, U., Goldau, R., Samadi, N., et al.: Accuracy and safety of online clearance monitoring based on conductivity variation. Nephrol. Dial. Transplant. 16(5), 1053–1058 (2001)

    Article  Google Scholar 

  • Lindsay, R.M., Sternby, J.: Future directions in dialysis quantification. Semin. Dial. 14(4), 300–307 (2005)

    Article  Google Scholar 

  • Lindsay, R.M., Bene, B., Goux, N., et al.: Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis. Am. J. Kidney Dis. 38(3), 565–574 (2001)

    Article  Google Scholar 

  • Locatelli, F., Di Filippo, S., Manzoni, C.: Relevance of the conductivity kinetic model in the control of sodium pool. Kidney Int. Suppl. 76, S89–S95 (2000)

    Article  Google Scholar 

  • Locatelli, F., Di Filippo, S., Manzoni, C.: Urea clearance and ionic dialysance of excebrane hemodialyzers. Contrib. Nephrol. 127, 89–95 (1999)

    Article  Google Scholar 

  • Locatelli, F., Andrulli, S., Di Filippo, S., et al.: Effect of on-line conductivity plasma ultrafiltrate kinetic modeling on cardiovascular stability of hemodialysis patients. Kidney Int. 53(4), 1052–1060 (1998)

    Article  Google Scholar 

  • Locatelli, F., Di Filippo, S., Manzoni, C., et al.: Monitoring sodium removal and delivered dialysis by conductivity. Int. J. Artif. Organs. 18(11), 716–721 (1995)

    Google Scholar 

  • Manzoni, C., Di Filippo, S., Corti, M., Locatelli, F.: Ionic dialysance as a method for the on-line monitoring of delivered dialysis without blood sampling. Nephrol. Dial. Transplant. 11(10), 2023–2030 (1996)

    Article  Google Scholar 

  • McIntyre, C.W., Lambie, S.H., Taal, M.W., et al.: Assessment of hemodialysis adequacy by ionic dialysance: Intrapatient variability of delivered treatment. Nephrol. Dial. Transplant. 18(3), 559–562 (2003)

    Article  Google Scholar 

  • Mercadal, L., Ridel, C., Petitclerc, T.: Ionic dialysance: principle and review of its clinical relevance for quantification of hemodialysis efficiency. Hemodial. Int. 9(2), 111–119 (2005)

    Article  Google Scholar 

  • Mercadal, L., Du Montcel, S.T., Jaudon, M.C., et al.: Ionic dialysance vs urea clearance in the absence of cardiopulmonary recirculation. Nephrol. Dial. Transplant. 17(1), 106–111 (2002)

    Article  Google Scholar 

  • Mercadal, L., Hamani, A., Béné, B., et al.: Determination of access blood flow from ionic dialysance: theory and validation. Kidney Int. 56(4), 1560–1565 (1999)

    Article  Google Scholar 

  • Mercadal, L., Petitclerc, T., Jaudon, M.C., et al.: Is ionic dialysance a valid parameter for quantification of dialysis efficiency? Artif. Organs. 22(12), 1005–1009 (1998)

    Article  Google Scholar 

  • Muldowney, F.P., Healy, J.J.: Lean body mass and total body potassium. In: Bergner, P.E.E., Lush-baugh, C.C. (eds.) Compartments, Pools and Spaces in medical physiology, pp. 95–109. US Atomic Energy Commission Division of Technical Information, Oak Ridge (1967)

    Google Scholar 

  • Owen, W.F., Lew, N.L., Liu, Y., et al.: The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N. Engl. J. Med. 329(14), 1001–1006 (1993)

    Article  Google Scholar 

  • Parker, T.F., Husni, L., Huang, W., et al.: Survival of hemodialysis in the U.S. is improved with a greater quantity of dialysis. Am. J. Kidney Dis. 23(5), 670–680 (1994)

    Google Scholar 

  • Pedrini, L.A., Zereik, S., Rasmy, S.: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int. 34(6), 817–824 (1988)

    Article  Google Scholar 

  • Petitclerc, T., Coevoet, B.: Ionic dialysance and quality control in hemodialysis. Nephrologie 22(5), 191–197 (2001)

    Google Scholar 

  • Peticlerc, T., Benet, B., Jacobs, C., et al.: Non-invasive monitoring of effective dialysis dose delivered to the hemodialysis patient. Nephrol. Dial. Transplant. 10(2), 212–216 (1995)

    Google Scholar 

  • Petitclerc, T., Goux, N., Reynier, A.L., et al.: A model for non-invasive estimation of in-vivo dialyzer performances and patient’s conductivity during hemodialysis. Int. J. Artif. Organs. 16(8), 585–591 (1993)

    Google Scholar 

  • Petitclerc, T., Hamani, A., Jacobs, C.: Optimization of sodium bal-ance during hemodialysis by routine implementation of kinetic modelling: Technical aspects and preliminary clinical study. Blood Purif. 10(5-6), 308–316 (1992)

    Article  Google Scholar 

  • Polaschegg, H.D.: Automatic non-invasive intradialytic clearance measurements. Int. J. Artif. Organs. 16(4), 185–191 (1993)

    Google Scholar 

  • Ronco, C., Brendolan, A., Milan, M., et al.: Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney Int. 58(2), 800–808 (2000)

    Article  Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis in Replacement of renal function by dialysis. In: Jacob, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.) 4th edn., pp. 188–230. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Mathematic modeling of dialysis therapy. Kidney Int. 18(Suppl 10), 2–10 (1980)

    Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis. In: Maher, J.F. (ed.) Replacement of renal function by dialysis, pp. 87–143. Kluwer Academic Publishers, Dordrecht (1989)

    Chapter  Google Scholar 

  • Schneditz, D., Kaufman, A.M., Polaschegg, et al.: Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42(6), 1450–1456 (1992)

    Article  Google Scholar 

  • Schneditz, D., Fariyike, B., Osheroff, R., et al.: Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models. J. Am. Soc. Nephrol. 6(5), 1360–1370 (1995)

    Google Scholar 

  • Sherman, R.A., Besarab, A., Schwab, S.J., et al.: Recognition of failing vascular access: A current perspective. Semin. Dial. 10(1), 1–4 (1997)

    Article  Google Scholar 

  • Smye, S.W., Dunderdale, E., Brownridge, G., et al.: Estimation of treatment dose in high-efficiency haemodialysis. Nephron 67(1), 24–29 (1994)

    Article  Google Scholar 

  • Watson, P.E., Watson, I.D., Batt, R.D.: Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33(1), 27–39 (1980)

    Google Scholar 

  • Waugh, W.H.: Utility of expressing serum sodium per unit of water in assessing hyponatremia. Metabolism 18(8), 706–712 (1969)

    Article  Google Scholar 

  • Wuepper, A., Tattersall, J., Kraemer, M., et al.: Determination of urea distribution volume for Kt/V assessed by conductivity monitoring. Kidney Int. 64(6), 2262–2271 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Locatelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Locatelli, F., Manzoni, C., Pontoriero, G., Cavalli, A., Di Filippo, S., Azar, A.T. (2013). Ionic Dialysance and Conductivity Modeling. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics