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Abstract. In modern mobile networks, users increasingly share their location
with third-parties in return for location-based services. In this way, users obtain
services customized to their location. Yet, such communications leak location
information about users. Even if users make use of pseudonyms, the operators of
location-based services may be able to identify them and thus affect their privacy.
In this paper, we provide an analysis of the erosion of privacy caused by the use
of location-based services. To do so, we experiment with real mobility traces and
measure the dynamics of user privacy. This paper thus details and quantifies the
privacy risks induced by the use of location-based services.

1 Introduction

In traditional cellular networks, users share their location with their network operator
in order to obtain voice and data services pervasively. With the emergence of data ser-
vices, users increasingly share their location with other parties such as location-based
services (LBSs). Specifically, users first obtain their location by relying on the localiza-
tion capability of their mobile device (e.g., GPS or wireless triangulation), share it with
LBSs and then obtain customized services based on their location. Yet, unlike cellular
operators, LBSs are mainly provided for free and generate revenue with location-based
advertisement. Hence, there is a key difference between the business models of LBS
providers and cellular operators: LBS providers aim at profiling their users in order to
serve tailored advertisement.

Subscribers of cellular networks know that their personal data is contractually pro-
tected. On the contrary, users of LBSs often lack an understanding of the privacy impli-
cations caused by the use of LBSs [18]. Some users protect their privacy by hiding be-
hind pseudonyms that are mostly invariant over time (e.g., twitter usernames). Previous
works identified privacy threats induced by the use of LBSs and proposed mechanisms
to protect user privacy. Essentially, these mechanisms rely on trusted third-party servers
that anonymize requests to LBSs. However, such privacy-preserving mechanisms are
not widely available and users continue sharing their location information unprotected
with third-parties. Similarly, previous work usually considers the worst-case scenario
in which users continuously upload their location to third-parties (e.g., traffic monitor-
ing systems). Yet, with most LBSs, users do not share their location continuously but
instead, connect episodically to LBSs depending on their needs and thus reveal a few
location samples of their entire trajectory. For example, a localized search on Google
Maps [7] only reveals a location sample upon manually connecting to the service.



In this work, we consider a model that matches the common use of LBSs: we do not
assume the presence of privacy-preserving mechanisms and consider that users access
LBSs on a regular basis (but not continuously). In this setting, we aim at understanding
the privacy risk caused by LBSs. To do so, we experiment with real mobility traces and
investigate the dynamics of user privacy in such systems by measuring the erosion of
user privacy. In particular, we evaluate the success of LBSs in predicting the true identity
of pseudonymous users and their points of interest based on small samples of mobility
traces. Our results explore the relation between the type and quantity of data collected
by LBSs and their ability to de-anonymize and profile users. We quantify the potential
of these threats by carrying out an experimentation based on real mobility traces from
two cities, one in Sweden and one in Switzerland. We show that LBS providers are
able to uniquely identify users and accurately profile them based on a small number
of location samples observed from the users. Users with a strong routine face higher
privacy risk, especially if their routine does not coincide with that of others. To the
best of our knowledge, this work is among the first to investigate the erosion of privacy
caused by the sharing of location samples with LBSs using real mobility traces and to
quantify the privacy risk.

2 State of the Art

Location-based services [1,7,13,29] offer users to connect with friends, to discover their
environment or to optimize their mobility. In most services, users share their location
episodically when connecting to the service. Some services such as road-traffic monitor-
ing systems require users to continuously share their location. In this work, we consider
users that manually share their location and thus only reveal samples of their mobility.

The IETF Geopriv working group [3] aims at delivering specifications that will
help implementing location-aware protocols in a privacy-conscious fashion. It proposes
to use independent location servers that deliver data to LBSs according to privacy poli-
cies defined by users. In other words, it provides user control over the sharing of their
location data. In this paper, we complement the IETF proposal by enabling to quantify
the privacy threat induced by the sharing of specific location data with LBSs.

Privacy-preserving mechanisms impede LBSs from tracking and identifying their
users [5,20,21,22,24,31,42]. In general, the proposed mechanisms either run on third-
party anonymizing servers, or directly on mobile devices. Most mechanisms alter the
user identifier or the content of location samples. For example, anonymization tech-
niques remove the identifier from the user requests, and obfuscation techniques blur the
location information. The effectiveness of privacy-preserving mechanisms is usually
evaluated by measuring the level of privacy [11,37,39,40]. Most existing works con-
sider worst-case scenarios in which users continuously share their location with LBSs.
However, privacy-preserving mechanisms are rarely used in practice. One reason may
be that users do not perceive the privacy threat because they are not intensively sharing
their location. As this is rarely the case in practice, in this work, we aim at clarifying the
privacy threat when users reveal samples of their mobility manually and do not make
use of privacy-preserving mechanisms.
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Fig. 1: System model. Users episodically upload their location wirelessly to LBSs.

Without privacy-preserving mechanisms, location information enables the identi-
fication of mobile users [6]. Partridge and Golle [19] could identify most of the US
working population using approximate home and work locations. In other words, a
small amount of information (i.e., two location samples) may be sufficient to uniquely
identify most users. Similarly, Beresford and Stajano [4] identified all users in contin-
uous location traces by examining where users spent most of their time. Using GPS
traces from vehicles, two studies by Hoh et al. [23] and Krumm [25] found the home
addresses of most drivers. De Mulder et al. [32] could identify mobile users in a GSM
cellular network from pre-existing location profiles by using statistical identification
processes. In [30], Ma et al. study the erosion of privacy caused by published anony-
mous mobility traces and show that an adversary can rapidly relate location samples
to published anonymous traces. In this work, we push further the analysis of the de-
anonymization threat by considering an adversary that learns only few location samples
of users real trajectories and that does not have access to anonymized traces.

3 System Model

We present the assumptions regarding LBSs and the associated privacy threats.

3.1 Network Model

We study a network (Fig. 1) that involves mobile users equipped with wireless devices,
third-parties running LBSs and a wireless infrastructure. Wireless devices feature lo-
calization technology such as GPS or wireless triangulation that lets users locate them-
selves. The geographic location of a user is denoted by l = (lon, lat), where lon is
the longitude, and lat is the latitude. The wireless infrastructure relies on technology
such as WiFi, GSM or 3G to let users connect to the Internet. LBSs are operated by
independent third-parties that provide services based on the location of mobile users.

Cellphone users send their location together with a service request to LBSs through
the wireless infrastructure. For each request sent, users may identify themselves to the
LBS using proper credentials. In general, we assume that users are identified with pseu-
donyms (i.e., fictitious identifiers), such as their username, their HTTP cookie or their
IP address: some services may require users to register and provide the corresponding
username and password, whereas others may use HTTP cookies to recognize users.

LBSs provide users with services using the location information from requests.
LBSs store the information collected about their users in a database. As defined in [38],
each location sample is called an event denoted by< i, t, l >, where i is the pseudonym
of a user, t is the time instance at which the event occurred, and l is the location of the
user. The collection of events from a user forms a mobility trace.
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Fig. 2: Threat model. The LBS learns multiple locations of user A over several days. It can then
infer the activities of user A and possibly obtain his true identity.

3.2 Threat Model

LBS operators passively collect information about the locations of pseudonymous users
over time. For example, an LBS can observe location samples of user A over the course
of weeks (Fig. 2). A priori, the LBS also knows the map over which users move and has
access to geographic information systems that provide details such as points of interest
in maps [9]. In addition, the LBS may use the increasing amount of location information
available from other sources such as public transportation systems [36].

We consider that the LBS aims at obtaining the true identify of its users and their
points of interest. To do so, the LBS studies the collected information. Even if com-
munications are pseudonymous, the spatio-temporal correlation of location traces may
serve as a quasi-identifier [5,6,10,19]. This is a significant threat to user privacy as such
information can help the LBS to profile users.In this work, we investigate the ability of
LBSs to identify users and their points of interest based on the collected information.

4 Privacy Erosion

In this section, we describe the process of privacy erosion caused by the use of LBSs.
To do so, we first discuss how users tend to share their location with LBSs. Then, we
explain how LBS operators can obtain the true identity of their users and their points of
interest from the collected information.

4.1 Collection of Traces by LBSs

Depending on the provided service, LBSs collect location samples about their users.
For example, typical services (such as Foursquare, Google Maps, Gowalla, or Twitter)
offer users to connect with friends, to discover their environment or to optimize their
mobility. Depending on their needs, users access such LBSs at different times and from
different locations, thus revealing multiple location samples. In general, users of these
services do not continuously share their locations. Instead, users have to manually de-
cide to share their location with their mobile devices. We classify most popular LBSs
into three broad categories and describe the information shared by users in each case.
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Localized Search Many LBSs enable users to search for local services around a spe-
cific location (e.g., localized Google Search [7]). Localized searches offer mobile sub-
scribers spontaneous access to nearby services. Hence, a user location acts as a spatial
query to the LBS. For example, users can obtain the location of nearby businesses,
products, events, restaurants, movie theaters or other local information depending on
the type of information provided by the LBS.

Such localized searches help users navigate unfamiliar regions and discover un-
known places. Thus, users episodically connect to LBSs, revealing samples of their
mobility. LBSs obtain statistical information about the visited locations of mobile users
and learn popular locations and user habits. Yet, LBSs do not learn the actual activity of
mobile users (e.g., the name of the visited restaurant) as they do not know the decision
of the user about the provided information.

Street Directions Another popular use of LBSs consists in finding a route between
two locations. Typically, a user shares its location with an LBS and requests the shortest
route to another location (e.g., Google Maps).

Users of such services usually reveal their current location and a potential destina-
tion. Hence, users may leak their home/work locations to LBSs in addition to samples
of their mobility. This enables LBSs to obtain statistical information about the preferred
origins and destinations of mobile users.

Location Check-ins A novel type of location-based service offers users to check-
in to specific places in return for information related to the visited location [13]. For
example, it can be used to check into shops, restaurants or museums. It allows users to
meet other users that share similar interests and to discover new aspects of their city
through recommendations [29].

With such services, users not only precisely reveal their location (GPS coordinates),
but also their intention. Indeed, the LBS can learn the current activity of its users. Users
can check-in to public places, but also private homes.

In summary, depending on the provided service, users share different samples of
their mobility. In order to take this into account, in the following, we consider that
LBSs obtain various type of location samples out of users’ whereabouts.

4.2 Attacks by LBSs

The spatial and temporal information contained in mobility traces may serve as location-
based quasi-identifiers [6,10]: an LBS may obtain the true identity and points of inter-
ests of its pseudonymous users from the collected mobility traces.

Location-Based Quasi-Identifiers Quasi-identifiers were introduced by Delenius [10]
in the context of databases. They characterize a set of attributes that in combination can
be linked to identify to whom the database refers (see [33] for more). In [6], Bettini et
al. extend the concept to mobile networking. They consider the possibility to identify
users based on spatio-temporal data and propose the concept of location-based quasi-
identifiers. They describe how a sequence of spatio-temporal constraints may specify
a mobility pattern that serve as a unique identifier. For example, as already mentioned,
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Golle and Partridge [19] identify location-based quasi-identifiers by showing that home
and work locations uniquely identify most of the US population. Hence, if an LBS
learns users’ home and work locations, it can obtain their identity with high probability.

In this work, we assume that the LBS succumbs to the temptation of finding the
identify of its users. To do so, we consider that the LBS uses the home and work loca-
tions of users as location-based quasi-identifiers.

Inferring Home and Work Locations Previous works investigated the problem of
characterizing and extracting important places from pseudonymous location data. These
works propose various algorithms to infer important locations based on the spatial and
temporal evidence of the location data. We group the existing works in two categories.
In the first category [2,23,25], the authors use clustering algorithms to infer the homes of
mobile users. For example in [25], Krumm proposes four different clustering techniques
to identify the homes of mobile users in vehicular traces: traces are pseudonymous and
contain time-stamped latitudes and longitudes. Similarly, in [23], Hoh et al. propose
a k-mean clustering algorithm to identify the homes of mobile users in anonymous
vehicular traces: traces do not have pseudonyms, but contain the speed of vehicles, in
addition to their location. In the second category [27,28], Liao et al. propose machine
learning algorithms to infer the different type of activities from mobile users data (e.g.,
home, work, shops, restaurants). Based on pedestrian GPS traces, the authors are able
to identify (among other things) the home and work locations of mobile users.

We rely on previous work to derive an algorithm that exclusively infers the home and
work locations of mobile users based on spatial and temporal constraints of pseudony-
mous location traces. The algorithm operates in two steps: first, it clusters spatially the
events to identify frequently visited regions; second, it temporally clusters the events to
identify home and work locations.

The spatial clustering of the events uses a variant of the k-means algorithm as de-
fined in [2]: it starts from one random location and a radius. All events within the radius
of the location are marked as potential members of the cluster. The mean of these points
is computed and is taken as the new centre point. The process is repeated until the mean
stops changing. Then, all the points within the radius are placed in the cluster and re-
moved from consideration. The procedure repeats until no events remain. The number
of points falling into a cluster corresponds to its weight and is stored along with the
cluster location. Clusters with a large weight represent frequently visited locations.

Based on the output of the spatial filtering, the algorithm then uses temporal ev-
idence as a criterion to further refine the possible home/work locations. In practice,
users have different temporal patterns depending on their activities (e.g., students). The
algorithm considers simple heuristics that apply to the vast majority of users. For ex-
ample, most users spend the night at home and commute in the beginning/end of the
day. In order to apply the temporal evidence, the algorithm considers all events in each
cluster and labels them as home or work. Some events may remain unlabeled if they do
not match any temporal criterion. The algorithm considers two temporal criteria. First,
the algorithm checks the duration of stay at each location. To do so, it computes the
time difference between the arrival of a trip at a certain location, and the departure time
of the following trip. A user that stays more than 1 hour in a certain location over night
is likely to have spent the night at home. Hence, the algorithm labels events occurring at
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such location as home events. Second, the algorithm labels events occurring after 9am
and before 5pm as possible work events. Finally, for each cluster, the algorithm checks
the number of events labelled home or work and deduces the most probable home and
work locations.

Inferring User Points of Interest Usually, LBSs use the content of queries to infer the
points of interest of their users. Yet, LBSs may further profile users by analyzing the
location of multiple queries and inferring users’ points of interest.

We use the spatial clustering algorithm defined above to obtain the possible points of
interest of users that we call uPOIs: a uPOI is a location regularly visited by a user. For
each identified uPOI, we store the number of visits of the user and derive the probability
P i

v that a user i visits a specific uPOI, i.e., the number of visits to a uPOI normalized by
the total number of visits to uPOIs.

Metrics The real home/work addresses are unavailable in our data sets. Hence, we
apply our algorithm to the original mobility traces and derive a baseline of home/work
locations. We then evaluate the probability of success of the LBS by comparing the
baseline to the outcome of our algorithm on the samples of location data collected by
the LBS. In other words, we compare the home/work location pairs predicted from the
sampled traces with the baseline. In practice, it is complicated to obtain the real home
and work locations of users (i.e., the baseline ground truth) in mobility traces without
threatening their privacy. Because no real ground truth is available, this approach does
not guarantee that we have identified the real home/work locations. Yet, it allows us to
compare the effectiveness of the attack in various conditions.

The probability Ps of a successful identification by the LBS is then:

Ps =
Number of home/work pairs correctly guessed

Total number of home/work pairs
(1)

This probability measures the ability of LBSs to find the home/work locations from
sampled traces and thus uniquely identify users. This metric relies on the assumption
that home/work location pairs uniquely identify users [19]: it provides an upper-bound
on the identification threat as home/work location pairs may in practice be insufficient to
identify users especially in the presence of uncertainty about the home/work locations.

We also evaluate the normalized anonymity set of the home and work pairs of mobile
users. To do so, we compute the number of home/work locations that are in a certain
radius from the home/work location of a certain user i. For every user i, we define its
home location as hi and its work location as wi. For each user i, we have:

Ai
home =

1
|h|

∑
j 6=i

1|hj−hi|<RA
(2)

Ai
work =

1
|w|

∑
j 6=i

1|wj−wi|<RA
(3)

where RA specifies the radius considered for the anonymity set.
We measure the ability of LBSs to infer uPOIs by considering for each user i, the

number of uPOIs correctly inferred. For every user i, we have:
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P i
uPOI =

Number of uPOIs correctly guessed
Number of uPOIs

(4)

We also use the notion of Kullback-Leibler divergence [26] to measure the ability
of the adversary to guess the probability of each user visiting specific uPOIs. For every
user i, we have:

DKL(P i
v||Qi

v) =
∑

j

P i
v(j) log

P i
v(j)

Qi
v(j)

(5)

where P i
v is the actual probability that user i visits specific uPOIs and Qi

v is the proba-
bility guessed by the adversary.

5 Evaluation

We present our methodology to evaluate the erosion of privacy caused by LBSs.

5.1 Setup

We start from data sets of real mobility traces. The data sets contain the location of users
at a high granularity. Because users usually reveal only a few location samples to LBS
operators, we artificially reduce the information available to the LBSs by selecting a
few events from the traces. Then, we consider various de-anonymization attacks on the
location traces. In practice, we load mobility traces in Matlab and apply the algorithm
described in Section 4.2. We repeat every analysis 100 times and consider the average.

5.2 Mobility Traces

There exist several publicly available data sets of human mobility. For example, there
are mobility traces of taxis [35], of student mobility in campus [12], or of sport activi-
ties [34]. Yet, most of these data sets have a limited applicability to our problem because
the mobility of users is tied to specific scenarios (e.g, taxis, campus).

In this work, we consider two data sets representing normal activities of users in
cities. These mobility traces contain several trips for each user. A trip defines a trajec-
tory of a user going from one source location to a destination (e.g., a user commuting
from home to work). Users move on a map following road constraints.

Borlange Data Set The city of Borlange is a middle-sized (15×15km2) Swedish city of
approximately 46000 inhabitants. Borlange has 3077 road intersections interconnected
by 7459 roads (Fig. 3 (a)). The data set was collected over two years (1999-2001) as
part of an experiment on traffic congestion that took place there.1 About 200 private cars
(with one driver per car) within a 25 km radius around the city center were equipped
with a GPS device. At regular intervals (approximately every 5 seconds), the position,
time and speed of each vehicle was recorded and stored. Mostly because of GPS accu-
racy issues, many observed trips did not match the Borlange map. The data was thus
manually verified and corrected using road fitting algorithms for a subset of 24 vehicles
resulting in a total of 420814 “clean” trips (see [14] for more details). This data set was
obtained by civil engineers and used to analyze the route choices of mobile users.

1 The data set is available at http://icapeople.epfl.ch/freudiger/borlange.zip .
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Fig. 3: Borlange data set. (a) Map of Borlange, Sweden. The city has 46000 inhabitants and
spreads over 15× 15km2. (b) Spatial histogram showing the density of users per cell c(z).

Lausanne Data Set The Lausanne area in Switzerland is a region of 15 × 7km2 of
approximately 120000 inhabitants (Fig. 4 (a)). In September 2009, Nokia began running
a data collection campaign in Lausanne area. Around 150 users are equipped with GPS-
enabled Nokia phones that record their daily activities and upload them on a central
database. Among other things, the phones measure the GPS locations of users at regular
intervals (approximately every 10 seconds). In July 2010, we took a snapshot of the
database containing traces of 143 users tracked over 12 months.2 Note that the database
contains traces of pedestrians, but also of users in cars, buses and trains. It has thus a
larger diversity in terms of mobility patterns than the Borlange data set. We focus on
the traces that start and finish in the Lausanne area and obtain around 106600 trips.

In order to evaluate the statistical relevance of the mobility traces, we compute
statistics of mobility in the data sets. We divide the whole region of Borlange/Lausanne
into square cells of equal size (500×500m). and evaluate the distribution of users’ visits
in each cell. We define a variable Cz that counts the number of events among all users
that happen in each cell z. For each cell, we compute the empirical probability that an
event falls into the cell z, c(z) = CzP

x Cx
. In Figure 3 (b), we show the density map (i.e.,

the set of cells with their corresponding c(z)) for the Borlange data set. We observe that
the activity of users is concentrated in a few regions. We observe a similar distribution
in the Lausanne data set (Fig. 4 (b)). Yet, in the latter, there is a small bias towards one
location (the EPFL campus), indicating that many users from the experiment share the
same work place. The Lausanne data set reflects scenarios in which many users share
the same work place, for example, downtown of a large city.

In Figure 5, we show the empirical Cumulative Distribution Function (CDF) of c(z)
for both data sets in semi-log scale. We observe that the CDF increases linearly, indi-
cating a heavy-tailed distribution of user density. This confirms that some cells have a
density much above the average. Our observations about the heavy-tailed distribution
match existing results in the literature on mobility traces [8,34,41] and confirm the sta-
tistical relevance of the data sets. Intuitively, the heavy-tailed distribution may indicate
that users are easily identifiable as they share few locations.

2 The data set is not publicly available.
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Fig. 4: Lausanne data set. (a) Map of Lausanne area, Switzerland. The city has 120000 inhabitants
and spreads over 15× 7km2. (b) Spatial histogram showing the density of users per cell c(z).
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Fig. 5: Empirical CDF of c(z) in semi-log scale. We observe a linear behavior for both data sets
indicating a heavy-tailed distribution of user density in the network.

5.3 Modeling the Collection of Traces by LBSs

We start from mobility traces containing location samples at high granularity. As de-
scribed in Section 4.1, the type and quantity of location information collected by LBSs
depends on the services and their usage. To take this into account, we select a few
events from the entire traces in various ways. Each selected event effectively represents
a query to LBSs.

Uniform Selection (UF) We select events uniformly at random from the set of all
possible events of each user. This captures scenarios in which users are likely to use an
LBS anytime and anywhere.

Home/Work Selection (HW) We distinguish between three types of events: home,
work and miscellaneous. Home and work events refer to queries made from home and
work, respectively, whereas miscellaneous events refer to other visited locations. Based
on these type of events, we select location samples uniformly in each set corresponding
to home/work events with probability ρ and miscellaneous events with probability 1−ρ.
A large ρ captures scenarios in which users access LBSs mostly from home and work
(e.g., street directions), whereas a small ρ captures scenarios in which users access
LBSs mostly on the go (e.g., localized search or location check-ins).
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Fig. 6: Normalized size of anonymity set Ai
home, Ai

work and Ai
homeWork. Borlange with (a)

RA = 1km and (b) RA = 5km. Lausanne with (c) RA = 1km and (d) RA = 5km.

Points of Interest Selection (PO) We distinguish between two types of events: cPOIs
and miscellaneous. cPOI events refer to queries made from regions of a city with many
points of interest (e.g., POIs of the city), whereas miscellaneous events refer to other
visited locations. Based on these type of events, we select location samples uniformly in
each set corresponding to cPOI events with probability ρ. A large ρ captures scenarios in
which users access LBSs mostly from popular locations (i.e., localized search), whereas
a small ρ captures scenarios in which users access LBSs mostly in unpopular areas such
as residential areas.

Preferred Selection (PF) We distinguish between two types of events: preferred and
miscellaneous. Preferred events refer to queries made from locations frequently visited
by each user (i.e., uPOIs), whereas miscellaneous events refer to other visited locations.
Based on these type of events, we select location samples corresponding to preferred
events with probability ρ. A large ρ captures scenarios in which users access LBSs
mostly during their routine, whereas a small ρ captures scenarios in which users access
LBSs mostly in unfamiliar areas.

We tune the selection type using probability ρ. Note that home/work selection strat-
egy with ρ = 0.5 is different from the uniform selection strategy: with ρ = 0.5 in
home/work selection, home/work events and miscellaneous events have the same prob-
ability to be chosen, whereas with the uniform selection, all events have the same prob-
ability to be chosen. We consider various number of queries λ in order to model the
quantity of data collected by LBSs. For example, a number of queries λ = 60 means
that 60 samples of all location samples of each user are shared with the LBS.

5.4 Results

Unless otherwise stated, we consider that users share their location with the LBS with
a 10 meters precision (i.e., GPS), that the clustering radius in the spatial clustering
algorithm is 100 meters and that the adversary has a tolerable error margin of 50 meters
to correctly guess a home/work/uPOI locations.

Size of Anonymity Set The graphs in Fig. 6 detail the size of the anonymity set for
home locations, work locations, or both normalized with the number of users in the data
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Fig. 7: Privacy erosion in Borlange with varying selection probability ρ and number of queries λ.
(a) Home identification. (b) Work identification. (c) Home and work identification (Ps).

set. On the x-axis, the graphs show the fraction of users that has an anonymity set of
less than a given normalized size on the y-axis. We consider two radius RA = 1km and
RA = 5km. As predicted in [19], the anonymity set size is low especially when a small
radius is used and revealing the home and work locations is much more identifying than
only revealing one of them. In general, we observe that more users share a common
work place than home. In the Lausanne data set, many users have a larger anonymity
set than in the Borlange data set due to the larger number of users.

Privacy Erosion We evaluate the privacy erosion of users from the Borlange and Lau-
sanne data sets in multiple scenarios. We measure the probability that an LBS success-
fully identifies the home location, the work location, or both. In the case of a successful
home and work identification, the LBS successfully identifies its users. We consider
different data collection scenarios as described earlier (UF, HW, PO and PF) with three
selection probabilities: ρ = 0.1, ρ = 0.5 and ρ = 0.9. We also vary λ, the amount of
information shared with LBSs.

In Fig. 7 and Fig. 8, we show the erosion of privacy in Borlange and Lausanne for
various ρ, λ and selection strategies. We observe that with HW selection, the probability
of identification of a home, work, or home/work pair increases the fastest with respect
to the number of sent queries indicating that LBSs uniquely identify users with few lo-
cations: in Borlange, if ρ = 0.9, 20 queries are sufficient to identify 65% of users. We
observe that as ρ increases, so does the identification success. In Lausanne, the identifi-
cation success is slightly higher but still leads to the same conclusions. We observe that
PF selection with ρ = 0.1 makes de-anonymization particularly difficult. In this case,
users share their location only in unfamiliar areas and it is thus difficult for LBSs to
infer users’ identity. For other selection strategies, the identification success saturates
around 20 to 40% and increases slowly with the number of queries.

Inferred User Points of Interest Table 1 shows the average fraction of visits to uPOIs.
Each uPOI identifies a region of 200 meters radius frequently visited by each user. In
both data sets, the distribution is long tail showing that few uPOIs are frequently visited.
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Fig. 8: Privacy erosion in Lausanne with varying selection probability ρ and number of queries
λ. (a) Home identification. (b) Work identification. (c) Home and work identification (Ps).

Table 1: Average probability E[P i
v] of visiting a uPOI.

Data Set uPOIs
1 2 3 4 5 6 7 8 9 10

Borlange 0.357 0.209 0.112 0.078 0.052 0.031 0.021 0.017 0.015 0.012
Lausanne 0.401 0.14 0.092 0.063 0.045 0.035 0.028 0.023 0.019 0.016

In Figure 10, we show the ability of LBSs to infer the top ten uPOIs of each user:
we compute the average fraction of uPOIs identified E[P i

uPOI ] within a 100 meters
error margin and evaluate the average divergence E[DKL(P i

v||Qi
v]. We observe that

the adversary can infer a large number of uPOIs with a small number of samples: with
30 samples, it can learn up to 65% of uPOIs in the case of PF ρ = 0.9. The best
selection strategies are PF ρ = 0.9, HW ρ = 0.1 and UF. Intuitively, revealing preferred
visited locations reveals clusters, similarly, uniform across visited locations will have
high probability to sample from frequently visited location. On the contrary, with PO
ρ = 0.9, HW ρ = 0.9 or PF ρ = 0.1, the attack works less efficiently. Hence, even with
a few location samples, the adversary is also able to infer most uPOIs.

In terms of divergence, a divergence of zero indicates a perfect match. We observe
that the divergence decreases fast indicating that the adversary obtains a probability
distribution similar to the true one and identifies the most probable uPOIs. We observe
a similar behavior with the Lausanne data set. Note that the ability to infer uPOIs is at
odds with the ability to infer users’ identity: with HW ρ = 0.9, it is harder to identify
uPOIs and easier to identify users.

6 Conclusion
We have considered the problem of privacy erosion when using location-based services.
We identify the quantity and type of location information that statistically helps LBSs
find users’ real identity and points of interest. In contrast with previous work (mostly
showing that de-anonymization based on location information is possible), we push the
understanding of the threat further by showing how de-anonymization depends on the
collected data. We experiment with two real data sets of mobility traces, model the col-
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Fig. 9: Inferring the top ten uPOIs in Borlange data set. (a) Average fraction of uPOIs identified
E[P i

uPOI ]. (b) Average divergence E[DKL(P i
v||Qi

v)].
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Fig. 10: Inferring the top ten uPOIs in Lausanne data set. (a) Average fraction of uPOI identified
E[P i

uPOI ]. (b) Average divergence E[DKL(P i
v||Qi

v)].

lection of traces by LBSs and implement various attacks. Our results show that in many
scenarios a small amount of information shared with LBSs may enable to uniquely
identify users. These results stem from the fact that the spatio-temporal correlation of
location traces tends to be unique to individuals and persistent. We also show that in
some scenarios, users have high privacy without using privacy-preserving mechanisms.

The results of this work can help prevent the false sense of anonymity that users of
LBSs might have by increasing the awareness of location privacy threats. In particular,
it may encourage users to stop revealing sensitive information to third-parties, such as
their home and work locations, and adopt privacy-preserving mechanisms. These results
notably question the ability of privacy-preserving mechanisms to obfuscate highly cor-
related information such as users’ whereabouts. These results can thus help design more
efficient privacy-preserving mechanisms [15,16,17] and may also encourage the use of
distributed solutions in which users store maps and the related information directly on
their mobile devices.
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