Skip to main content

Learning Families of Closed Sets in Matroids

  • Chapter
Computation, Physics and Beyond (WTCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Included in the following conference series:

Abstract

In this paper it is studied for which oracles A and which types of A-r.e. matroids the class of all A-r.e. closed sets in the matroid is learnable by an unrelativised learner. The learning criteria considered comprise in particular criteria more general than behaviourally correct learning, namely behaviourally correct learning from recursive texts, partial learning and reliably partial learning. For various natural classes of matroids and learning criteria, characterisations of learnability are obtained.

Part of this paper was written during F. Stephan’s sabbatical leave to the University of Kyoto. F. Stephan is partially supported by grant R252-000-420-112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of Closed Set Systems from Positive Data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi, A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. de Brecht, M., Yamamoto, A.: Topological properties of concept spaces. Information annd Computation 208, 327–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calude, C.S.: Relativized topological size of sets of partial recursive functions. Theoretical Computer Science 87, 347–352 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calude, C.S.: Information and Randomness - An Algorithmic Perspective, 2nd edn. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  6. Case, J., Jain, S.: Synthesizing learners tolerating computable noisy data. Journal of Computer and System Sciences 62, 413–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Case, J., Lynes, C.: Machine Inductive Inference and Language Identification. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  8. Case, J., Smith, C.H.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 193–220 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulk, M.: Prudence and other conditions on formal language learning. Information and Computation 85, 1–11 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Groszek, M.J., Slaman, T.A.: \(\Pi^0_1\) classes and minimal degrees. Annals of Pure and Applied Logic 87, 117–144 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mark Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harizanov, V.S., Stephan, F.: On the learnability of vector spaces. Journal of Computer and System Sciences 73, 109–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Introduction to Learning Theory, 2nd edn. MIT-Press, Boston (1999)

    Google Scholar 

  14. Jockusch, C.: Degrees in which recursive sets are uniformly recursive. Canadian Journal of Mathematics 24, 1092–1099 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jockusch, C., Soare, R.: \(\Pi^0_1\) classes and degrees of theories. Transactions of the American Mathematical Society 173, 33–56 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Kalantari, I., Retzlaff, A.: Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces. The Journal of Symbolic Logic 42, 481–491 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kasprzik, A., Kötzing, T.: String Extension Learning Using Lattices. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 380–391. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Metakides, G., Nerode, A.: Recursively enumerable vector spaces. Annals of Mathematical Logic 11, 147–171 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Metakides, G., Nerode, A.: Recursion theory on fields and abstract dependence. Journal of Algebra 65, 36–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Minicozzi, E.: Some natural properties of strong-identification in inductive inference. Theoretical Computer Science 2, 345–360 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  22. Odifreddi, P.: Classical Recursion Theory II. Studies in Logic and the Foundations of Mathematics, vol. 143. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  23. Osherson, D.N., Stob, M., Weinstein, S.: Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press (1986)

    Google Scholar 

  24. Osherson, D., Weinstein, S.: Criteria of language learning. Information and Control 52, 123–138 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Raichev, A., Stephan, F.: A minimal rK-degree. Computational Prospects of Infinity, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 15, 261–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  27. Soare, R.I.: Recursively enumerable sets and degrees. In: Perspectives in Mathematical Logic, Springer, Berlin (1987)

    Google Scholar 

  28. Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoretical Computer Science 268, 221–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gao, Z., Stephan, F., Wu, G., Yamamoto, A. (2012). Learning Families of Closed Sets in Matroids. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics