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Abstract. The notion of weak truth-table reducibility plays an important role in re-
cursion theory. In this paper, we introduce an elaboration of this notion, where a
computable bound on the use function is explicitly specified. This elaboration enables
us to deal with the notion of asymptotic behavior in a manner like in computational
complexity theory, while staying in computability theory. We apply the elaboration
to sets which appear in the statistical mechanical interpretation of algorithmic infor-
mation theory. We demonstrate the power of the elaboration by revealing a critical
phenomenon, i.e., a phase transition, in the statistical mechanical interpretation, which
cannot be captured by the original notion of weak truth-table reducibility.
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1 Introduction

The notion of weak truth-table reducibility plays an important role in recursion theory (see e.g. [17,
16, 11]). For any sets A,B ⊂ N, we say that A is weak truth-table reducible to B, denoted A ≤wtt B,
if there exist an oracle Turing machine M and a total recursive function g : N → N such that A is
Turing reducible to B via M and, on every input n ∈ N, M only queries natural numbers at most
g(n). In this paper, we introduce an elaboration of this notion, where the total recursive bound g on
the use of the reduction is explicitly specified. In doing so, in particular we try to follow the fashion
in which computational complexity theory is developed, while staying in computability theory.
We apply the elaboration to sets which appear in the theory of program-size, i.e., algorithmic

∗A preliminary version of this work was presented under the title “One-wayness and two-wayness in algorithmic
randomness”, at the 5th Conference on Logic, Computability and Randomness, May 24-28, 2010, University of Notre
Dame, Notre Dame, Indiana, USA.
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information theory (AIT, for short) [9, 2, 16, 11]. The elaboration, called reducibility in query size
f , is introduced as follows.

Definition 1.1 (reducibility in query size f). Let f : N → N, and let A,B ⊂ {0, 1}∗. We say that
A is reducible to B in query size f if there exists an oracle deterministic Turing machine M such
that

(i) A is Turing reducible to B via M , and

(ii) on every input x ∈ {0, 1}∗, M only queries strings of length at most f(|x|).

For any fixed sets A and B, the above definition allows us to consider the notion of asymptotic
behavior for the function f which bounds the use of the reduction, i.e., which imposes the restriction
on the use of the computational resource (i.e., the oracle B). Thus, by the above definition, even
in the context of computability theory, we can deal with the notion of asymptotic behavior in a
manner like in computational complexity theory. Recall here that the notion of input size plays
a crucial role in computational complexity theory since computational complexity such as time
complexity and space complexity is measured based on it. This is also true in AIT since the
program-size complexity is measured based on input size. Thus, in Definition 1.1 we consider a
reduction between subsets of {0, 1}∗ and not a reduction between subsets of N as in the original weak
truth-table reducibility. Moreover, in Definition 1.1 we require the bound f(|x|) to depend only on
input size |x| as in computational complexity theory, and not on input x itself as in the original
weak truth-table reducibility. We pursue a formal correspondence to computational complexity
theory in this manner, while staying in computability theory.

In this paper we demonstrate the power of the notion of reducibility in query size f in the
context of AIT. In [8] Chaitin introduced Ω number as a concrete example of random real. His Ω
is defined as the probability that an optimal prefix-free machine U halts, and plays a central role
in the development of AIT. Here the notion of optimal prefix-free machine is used to define the
notion of program-size complexity H(s) for a finite binary string s. The first n bits of the base-two
expansion of Ω solve the halting problem of the optimal prefix-free machine U for all binary inputs
of length at most n. Using this property, Chaitin showed Ω to be a random real. Let domU be
the set of all halting inputs for U . Calude and Nies [5], in essence, showed the following theorem
on the relation between the base-two expansion of Ω and the halting problem domU .

Theorem 1.2 (Calude and Nies [5]). Ω and domU are weak truth-table equivalent. Namely,
Ω ≤wtt domU and domU ≤wtt Ω.

In [21] we generalized Ω to Z(T ) by

Z(T ) =
∑

p∈domU

2−
|p|
T (1)

so that the partial randomness of Z(T ) equals to T if T is a computable real with 0 < T ≤ 1.1

Here the notion of partial randomness of a real is a stronger representation of the compression rate
of the real by means of program-size complexity. The real function Z(T ) of T is a function of class
C∞ on (0, 1) and an increasing continuous function on (0, 1]. In the case of T = 1, Z(T ) results in
Ω, i.e., Z(1) = Ω. We can show Theorem 1.3 below for Z(T ). This theorem follows immediately
from stronger results, Theorems 6.1 and 6.2, which are two of the main results of this paper.

1In [21], Z(T ) is denoted by ΩT .
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Theorem 1.3. Suppose that T is a computable real with 0 < T < 1. Then Z(T ) and domU are
weak truth-table equivalent.

When comparing Theorem 1.2 and Theorem 1.3, we see that there is no difference between
T = 1 and T < 1 with respect to the weak truth-table equivalence between Z(T ) and domU .
In this paper, however, we show that there is a critical difference between T = 1 and T < 1 in
the relation between Z(T ) and domU from the point of view of the reducibility in query size f .
Based on the notion of reducibility in query size f , we introduce the notions of unidirectionality
and bidirectionality between two sets A and B in this paper. These notions enable us to investigate
the relative computational power between A and B.

Theorems 4.1 and 4.2 below are two of the main results of this paper. Theorem 4.1 gives
a succinct equivalent characterization of f for which Ω is reducible to domU in query size f and
reversely Theorem 4.2 gives a succinct equivalent characterization of f for which domU is reducible
to Ω in query size f , both in a general setting. Based on them, we show in Theorem 4.3 below that
the computation from Ω to domU is unidirectional and the computation from domU to Ω is also
unidirectional. On the other hand, Theorems 6.1 and 6.2 below are also two of the main results of
this paper. Theorem 6.1 gives a succinct equivalent characterization of f for which Z(T ) is reducible
to domU in query size f and reversely Theorem 6.2 gives a succinct equivalent characterization
of f for which domU is reducible to Z(T ) in query size f , both in a general setting, in the case
where T is a computable real with 0 < T < 1. Based on them, we show in Theorem 6.3 below
that the computations between Z(T ) and domU are bidirectional if T is a computable real with
0 < T < 1. In this way the notion of reducibility in query size f can reveal a critical difference of
the behavior of Z(T ) between T = 1 and T < 1, which cannot be captured by the original notion
of weak truth-table reducibility.

In our former work [25] we considered some elaboration of weak truth-table equivalence between
Ω and domU and showed the unidirectionality between them in a certain form. Compared with
this paper, however, the treatments of [25] were insufficient in the correspondence to computational
complexity theory. In this paper, based on the notion of reducibility in query size f , we sharpen the
results of [25] with a thorough emphasis on a formal correspondence to computational complexity
theory.

1.1 Statistical Mechanical Interpretation of AIT as Motivation

In this subsection we explain the motivation of this work. The readers can skip this subsection if
they are not interested in the motivation.

In [23] we introduced and developed the statistical mechanical interpretation of AIT. We there
introduced the thermodynamic quantities at temperature T , such as partition function Z(T ), free
energy F (T ), energy E(T ), statistical mechanical entropy S(T ), and specific heat C(T ), into AIT.
These quantities are real functions of a real argument T > 0, and are introduced based on domU
in the following manner.

In statistical mechanics, the partition function Zsm(T ), free energy Fsm(T ), energy Esm(T ),
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entropy Ssm(T ), and specific heat Csm(T ) at temperature T are given as follows:

Zsm(T ) =
∑

x∈X

e
− Ex

kBT , Fsm(T ) = −kBT lnZsm(T ),

Esm(T ) =
1

Zsm(T )

∑

x∈X

Exe
− Ex

kBT , Ssm(T ) =
Esm(T )− Fsm(T )

T
,

Csm(T ) =
d

dT
Esm(T ),

(2)

where X is a complete set of energy eigenstates of a quantum system and Ex is the energy of
an energy eigenstate x. The constant kB is called the Boltzmann Constant, and the ln denotes
the natural logarithm. For the meaning and importance of these thermodynamic quantities in
statistical mechanics, see e.g. Chapter 16 of [1] or Chapter 2 of [29].2

In [23] we introduced thermodynamic quantities into AIT by performing Replacements 1 below
for the thermodynamic quantities (2) in statistical mechanics.

Replacements 1.

(i) Replace the complete set X of energy eigenstates x by the set domU of all programs p for U .

(ii) Replace the energy Ex of an energy eigenstate x by the length |p| of a program p.

(iii) Set the Boltzmann Constant kB to 1/ ln 2.3

For example, based on Replacements 1, the partition function Z(T ) at temperature T is intro-
duced from (2) as Z(T ) =

∑

p∈domU 2−|p|/T . This is precisely Z(T ) defined by (1). In general, the
thermodynamic quantities in AIT are variants of Chaitin Ω number.

In [23] we proved that if the temperature T is a computable real with 0 < T < 1 then, for each
of the thermodynamic quantities Z(T ), F (T ), E(T ), S(T ), and C(T ), the partial randomness of its
value equals to T . Thus, the temperature T plays a role as the partial randomness (and therefore the
compression rate) of all the thermodynamic quantities in the statistical mechanical interpretation
of AIT. In [23] we further showed that the temperature T plays a role as the partial randomness
of the temperature T itself, which is a thermodynamic quantity of itself in thermodynamics or
statistical mechanics. Namely, we proved the fixed point theorem for partial randomness,4 which
states that, for every T ∈ (0, 1), if the value of the partition function Z(T ) at temperature T is
a computable real, then the partial randomness of T equals to T , and therefore the compression
rate of T equals to T , i.e., limn→∞H(T ↾n)/n = T , where T ↾n is the first n bits of the base-two
expansion of T .

In our second work [24] on the interpretation, we showed that a fixed point theorem of the same
form as for Z(T ) holds also for each of free energy F (T ), energy E(T ), and statistical mechanical
entropy S(T ). Moreover, based on the statistical mechanical relation F (T ) = −T log2 Z(T ), we

2 To be precise, the partition function is not a thermodynamic quantity but a statistical mechanical quantity.
3The so-called Boltzmann’s entropy formula has the form Ssm = kB lnW , where W is the number of microstates

consistent with a given macrostate. By setting kB = 1/ ln 2, the Boltzmann formula results in the form Ssm = log2 W .
Thus, since the logarithm is to the base 2 in the resultant formula, Replacements 1 (iii) is considered to be natural
from the points of view of AIT and classical information theory.

4The fixed point theorem for partial randomness is called a fixed point theorem on compression rate in [23].
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showed that the computability of F (T ) gives completely different fixed points from the computabil-
ity of Z(T ).

In the third work [27], we pursued the formal correspondence between the statistical mechanical
interpretation of AIT and normal statistical mechanics further, and then unlocked the properties
of the sufficient conditions (i.e., the computability of Z(T ), F (T ), E(T ), or S(T ) for T ) for the
fixed points for partial randomness further. Recall that the thermodynamic quantities in AIT are
defined based on the domain of definition of an optimal prefix-free machine U . In [27], we showed
that there are infinitely many optimal prefix-free machines which give completely different sufficient
conditions in all of the thermodynamic quantities in AIT. We did this by introducing the notion
of composition of prefix-free machines into AIT, which corresponds to the notion of composition of
systems in normal statistical mechanics.

How are Replacements 1 justified ? Generally speaking, in order to give a statistical mechanical
interpretation to a framework which looks unrelated to statistical mechanics at first glance, it is
important to identify a microcanonical ensemble in the framework. Once we can do so, we can
easily develop an equilibrium statistical mechanics on the framework according to the theoretical
development of normal equilibrium statistical mechanics. Here, the microcanonical ensemble is a
certain sort of uniform probability distribution. In fact, in the work [22] we developed a statistical
mechanical interpretation of the noiseless source coding scheme in information theory by identifying
a microcanonical ensemble in the scheme. Then, based on this identification, in [22] the notions in
statistical mechanics such as statistical mechanical entropy, temperature, and thermal equilibrium
are translated into the context of noiseless source coding.

Thus, in order to develop a total statistical mechanical interpretation of AIT, it is appropriate
to identify a microcanonical ensemble in the framework of AIT. Note, however, that AIT is not a
physical theory but a purely mathematical theory. Therefore, in order to obtain significant results
for the development of AIT itself, we have to develop a statistical mechanical interpretation of
AIT in a mathematically rigorous manner, unlike in normal statistical mechanics in physics where
arguments are not necessarily mathematically rigorous. A fully rigorous mathematical treatment of
statistical mechanics is already developed (see Ruelle [19]). At present, however, it would not as yet
seem to be an easy task to merge AIT with this mathematical treatment in a satisfactory manner.
In our former works [23, 24, 27] mentioned above, for mathematical strictness we developed a
statistical mechanical interpretation of AIT in a different way from the idealism above. We there
introduced the thermodynamic quantities at temperature T into AIT by performing Replacements 1
for the corresponding thermodynamic quantities (2) at temperature T in statistical mechanics. We
then obtained the various rigorous results, as reviewed in the above.

On the other hand, in the work [28] we showed that, if we do not stick to the mathematical
strictness of an argument, we can certainly develop a total statistical mechanical interpretation of
AIT which attains a perfect correspondence to normal statistical mechanics. In the total interpre-
tation, we identify a microcanonical ensemble in AIT in a similar manner to [22], based on the
probability measure which gives Chaitin Ω number the meaning of the halting probability actu-
ally. This identification clarifies the meaning of the thermodynamic quantities of AIT, which are
originally introduced by [23] in a rigorous manner based on Replacements 1.

In the present paper, we continue the rigorous treatment of the statistical mechanical interpre-
tation of AIT performed by our former works [23, 24, 27]. As a result, we reveal a new aspect of the
thermodynamic quantities of AIT. The work [23] showed that the values of all the thermodynamic
quantities, including Z(T ), diverge when the temperature T exceeds 1. This phenomenon may be
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regarded as phase transition in statistical mechanics. The present paper reveals a new aspect of
the phase transition by showing the critical difference of the behavior of Z(T ) between T = 1 and
T < 1 in terms of reducibility in query size f .

1.2 Organization of the Paper

We begin in Section 2 with some preliminaries to AIT and partial randomness. In Section 3 we
investigate simple properties of the notion of reducibility in query size f and introduce the notions
of unidirectionality and bidirectionality between two sets based on it. We then show in Section 4
the unidirectionality between Ω and domU in a general setting. In Section 5 we present theorems
which play a crucial role in establishing the bidirectionality in Section 6. Based on them, we show
in Section 6 the bidirectionality between Z(T ) and domU with a computable real T ∈ (0, 1) in a
general setting. We conclude this paper with the remarks on the origin of the phase transition of
the behavior of Z(T ) between T = 1 and T < 1 in Section 7.

2 Preliminaries

2.1 Basic Notation

We start with some notation about numbers and strings which will be used in this paper. N =
{0, 1, 2, 3, . . . } is the set of natural numbers, and N+ is the set of positive integers. Z is the set
of integers, and Q is the set of rationals. R is the set of reals. A sequence {an}n∈N of numbers
(rationals or reals) is called increasing if an+1 > an for all n ∈ N.

Normally, o(n) denotes any function f : N+ → R such that limn→∞ f(n)/n = 0. On the other
hand, O(1) denotes any function g : N+ → R such that there is C ∈ R with the property that
|g(n)| ≤ C for all n ∈ N+.

{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . } is the set of finite binary strings where λ de-
notes the empty string, and {0, 1}∗ is ordered as indicated. We identify any string in {0, 1}∗ with
a natural number in this order, i.e., we consider ϕ : {0, 1}∗ → N such that ϕ(s) = 1s − 1 where
the concatenation 1s of strings 1 and s is regarded as a dyadic integer, and then we identify s
with ϕ(s). For any s ∈ {0, 1}∗, |s| is the length of s. For any n ∈ N, we denote by {0, 1}n the
set { s | s ∈ {0, 1}∗ & |s| = n}. A subset S of {0, 1}∗ is called prefix-free if no string in S is a
prefix of another string in S. For any subset S of {0, 1}∗ and any n ∈ N, we denote by S↾n the set
{s ∈ S | |s| ≤ n}. For any function f , the domain of definition of f is denoted by dom f . We write
“r.e.” instead of “recursively enumerable.”

Let α be an arbitrary real. ⌊α⌋ is the greatest integer less than or equal to α, and ⌈α⌉ is the
smallest integer greater than or equal to α. For any n ∈ N, we denote by α↾n∈ {0, 1}∗ the first n
bits of the base-two expansion of α − ⌊α⌋ with infinitely many zeros. For example, in the case of
α = 5/8, α↾6= 101000. On the other hand, for any non-positive integer n ∈ Z, we set α↾n= λ.

A real α is called r.e. if there exists a computable, increasing sequence of rationals which
converges to α. An r.e. real is also called a left-computable real. We say that a real α is computable
if there exists a computable sequence {an}n∈N of rationals such that |α− an| < 2−n for all n ∈ N.
It is then easy to see that, for every real α, the following four conditions are equivalent: (i) α is
computable. (ii) α is r.e. and −α is r.e. (iii) If f : N → Z with f(n) = ⌈αn⌉ then f is a total
recursive function. (iv) If g : N → Z with g(n) = ⌊αn⌋ then g is a total recursive function.
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2.2 Algorithmic Information Theory

In the following we concisely review some definitions and results of AIT [8, 9, 2, 16, 11]. A
prefix-free machine is a partial recursive function F : {0, 1}∗ → {0, 1}∗ such that domF is a prefix-
free set. For each prefix-free machine F and each s ∈ {0, 1}∗, HF (s) is defined by HF (s) =
min

{

|p|
∣

∣ p ∈ {0, 1}∗ & F (p) = s
}

(may be ∞). A prefix-free machine U is said to be optimal if
for each prefix-free machine F there exists d ∈ N with the following property; if p ∈ domF , then
there is q ∈ domU for which U(q) = F (p) and |q| ≤ |p|+d. It is then easy to see that there exists an
optimal prefix-free machine. We choose a particular optimal prefix-free machine U as the standard
one for use, and define H(s) as HU(s), which is referred to as the program-size complexity of s,
the information content of s, or the Kolmogorov complexity of s [12, 14, 8]. For any s, t ∈ {0, 1}∗,
we define H(s, t) as H(b(s, t)), where b : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a particular bijective total
recursive function.

Chaitin [8] introduced Ω number as follows. For each optimal prefix-free machine V , the halting
probability ΩV of V is defined by

ΩV =
∑

p∈domV

2−|p|.

For every optimal prefix-free machine V , since domV is prefix-free, ΩV converges and 0 < ΩV ≤ 1.
For any α ∈ R, we say that α is weakly Chaitin random if there exists c ∈ N such that n−c ≤ H(α↾n)
for all n ∈ N+ [8, 9]. Chaitin [8] showed that ΩV is weakly Chaitin random for every optimal prefix-
free machine V . Therefore 0 < ΩV < 1 for every optimal prefix-free machine V .

Let M be a deterministic Turing machine with the input and output alphabet {0, 1}, and let F
be a prefix-free machine. We say that M computes F if the following holds: for every p ∈ {0, 1}∗,
when M starts with the input p, (i) M halts and outputs F (p) if p ∈ domF ; (ii) M does not
halt forever otherwise. We use this convention on the computation of a prefix-free machine by a
deterministic Turing machine throughout the rest of this paper. Thus, we exclude the possibility
that there is p ∈ {0, 1}∗ such that, when M starts with the input p, M halts but p /∈ domF . For
any p ∈ {0, 1}∗, we denote the running time of M on the input p by TM (p) (may be ∞). Thus,
TM (p) ∈ N for every p ∈ domF if M computes F .

We define LM = min{ |p| | p ∈ {0, 1}∗ & M halts on input p} (may be ∞). For any n ≥ LM ,
we define InM as the set of all halting inputs p for M with |p| ≤ n which take longest to halt
in the computation of M , i.e., as the set { p ∈ {0, 1}∗ | |p| ≤ n & TM (p) = T n

M } where T n
M is

the maximum running time of M on all halting inputs of length at most n. In the work [25], we
slightly strengthened the result presented in Chaitin [9] to obtain Theorem 2.1 below (see Note in
Section 8.1 of Chaitin [9]). We include the proof of Theorem 2.1 in Appendix A since the proof is
omitted in the work [25].

Theorem 2.1 (Chaitin [9] and Tadaki [25]). Let V be an optimal prefix-free machine, and let M
be a deterministic Turing machine which computes V . Then n = H(n, p) + O(1) = H(p) + O(1)
for all (n, p) with n ≥ LM and p ∈ InM .

2.3 Partial Randomness

In the work [21], we generalized the notion of the randomness of a real so that the degree of
the randomness, which is often referred to as the partial randomness recently [6, 18, 7], can be
characterized by a real T with 0 ≤ T ≤ 1 as follows.
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Definition 2.2. Let T ∈ [0, 1] and let α ∈ R. We say that α is weakly Chaitin T -random if there
exists c ∈ N such that, for all n ∈ N+, Tn− c ≤ H(α↾n).

In the case of T = 1, the weak Chaitin T -randomness results in the weak Chaitin randomness.

Definition 2.3. Let T ∈ [0, 1] and let α ∈ R. We say that α is T -compressible if H(α ↾n) ≤
Tn+ o(n), namely, if lim supn→∞H(α↾n)/n ≤ T . We say that α is strictly T -compressible if there
exists d ∈ N such that, for all n ∈ N+, H(α↾n) ≤ Tn+ d.

For every T ∈ [0, 1] and every α ∈ R, if α is weakly Chaitin T -random and T -compressible,
then limn→∞H(α↾n)/n = T , i.e., the compression rate of α equals to T .

In the work [21], we generalized Chaitin Ω number to Z(T ) as follows. For each optimal prefix-
free machine V and each real T > 0, the partition function ZV (T ) of V at temperature T is defined
by

ZV (T ) =
∑

p∈domV

2−
|p|
T .

Thus, ZV (1) = ΩV . If 0 < T ≤ 1, then ZV (T ) converges and 0 < ZV (T ) < 1, since ZV (T ) ≤ ΩV <
1. The following theorem holds for ZV (T ).

Theorem 2.4 (Tadaki [21]). Let V be an optimal prefix-free machine.

(i) If 0 < T ≤ 1 and T is computable, then ZV (T ) is an r.e. real which is weakly Chaitin
T -random and T -compressible.

(ii) If 1 < T , then ZV (T ) diverges to ∞.

An r.e. real has a special property on partial randomness, as shown in Theorem 2.6 below. For
any r.e. reals α and β, we say that α dominates β if there are computable, increasing sequences {an}
and {bn} of rationals and c ∈ N+ such that limn→∞ an = α, limn→∞ bn = β, and c(α−an) ≥ β− bn
for all n ∈ N [20].

Definition 2.5 (Tadaki [26]). Let T ∈ (0, 1]. An increasing sequence {an} of reals is called T -
convergent if

∑∞
n=0(an+1 − an)

T < ∞. An r.e. real α is called T -convergent if there exists a
T -convergent computable, increasing sequence of rationals which converges to α. An r.e. real α is
called Ω(T )-like if it dominates all T -convergent r.e. reals.

Theorem 2.6 (equivalent characterizations of partial randomness for an r.e. real, Tadaki [26]).
Let T be a computable real in (0, 1], and let α be an r.e. real. Then the following three conditions
are equivalent: (i) α is weakly Chaitin T -random. (ii) α is Ω(T )-like. (iii) For every T -convergent
r.e. real β there exists d ∈ N such that, for all n ∈ N+, H(β↾n) ≤ H(α↾n) + d.

3 Reducibility in Query Size f

In this section we investigate some properties of the notion of reducibility in query size f and
introduce the notions of unidirectionality and bidirectionality between two sets.

Note first that, for every A ⊂ {0, 1}∗, A is reducible to A in query size n, where “n” denotes the
identity function I : N → N with I(n) = n. We follow the notation in computational complexity
theory.

The following are simple observations on the notion of reducibility in query size f .
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Proposition 3.1. Let f : N → N and g : N → N, and let A,B,C ⊂ {0, 1}∗.

(i) If A is reducible to B in query size f and B is reducible to C in query size g, then A is
reducible to C in query size g ◦ f .

(ii) Suppose that f(n) ≤ g(n) for every n ∈ N. If A is reducible to B in query size f then A is
reducible to B in query size g.

(iii) Suppose that A is reducible to B in query size f . If A is not recursive then f is unbounded.

Definition 3.2. An order function is a non-decreasing total recursive function f : N → N such that
limn→∞ f(n) = ∞.

Let f be an order function. Intuitively, the notion of the reduction of A to B in query size f
is equivalent to that, for every n ∈ N, if n and B↾f(n) are given, then A↾n can be calculated. We
introduce the notions of unidirectionality and bidirectionality between two sets as follows.

Definition 3.3. Let A,B ⊂ {0, 1}∗. We say that the computation from A to B is unidirectional
if the following holds: For every order functions f and g, if B is reducible to A in query size f
and A is reducible to B in query size g then the function g(f(n)) − n of n ∈ N is unbounded. We
say that the computations between A and B are bidirectional if the computation from A to B is not
unidirectional and the computation from B to A is not unidirectional.

The notion of unidirectionality of the computation from A to B in the above definition is, in
essence, interpreted as follows: No matter how a order function f is chosen, if f satisfies that B↾n
can be calculated from n and A↾f(n), then A↾f(n) cannot be calculated from n and B↾n+O(1).

In order to apply the notion of reducibility in query size f to a real, we introduce the notion of
prefixes of a real as follows.

Definition 3.4. For each α ∈ R, the prefixes Pf(α) of α is the subset of {0, 1}∗ defined by Pf(α) =
{α↾n| n ∈ N}.

The notion of prefixes of a real is a natural notion in AIT. For example, the notion of weak
Chaitin randomness of a real α can be rephrased as that there exists d ∈ N such that, for every
x ∈ Pf(α), |x| ≤ H(x) + d. The following proposition is a restatement of the well-known fact that,
for every optimal prefix-free machine V , the first n bits of the base-two expansion of ΩV solve the
halting problem of V for inputs of length at most n.

Proposition 3.5. Let V be an optimal prefix-free machine. Then domV is reducible to Pf(ΩV ) in
query size n.

4 Unidirectionality

In this section we show the unidirectionality between ΩU and domU in a general setting. Theo-
rems 4.1 and 4.2 below are two of the main results of this paper.

Theorem 4.1 (elaboration of ΩU ≤wtt domU). Let V and W be optimal prefix-free machines, and
let f be an order function. Then the following two conditions are equivalent:

(i) Pf(ΩV ) is reducible to domW in query size f(n) +O(1).
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(ii)
∑∞

n=0 2
n−f(n) < ∞.

Theorem 4.1 is proved in Subsection 4.1 below. Theorem 4.1 corresponds to Theorem 4 of
Tadaki [25], and is proved by modifying the proof of Theorem 4 of [25]. Let V and W be optimal
prefix-free machines. The implication (ii) ⇒ (i) of Theorem 4.1 results in, for example, that Pf(ΩV )
is reducible to domW in query size n+ ⌊(1 + ε) log2 n⌋+ O(1) for every real ε > 0. On the other
hand, the implication (i) ⇒ (ii) of Theorem 4.1 results in, for example, that Pf(ΩV ) is not reducible
to domW in query size n+ ⌊log2 n⌋+O(1) and therefore, in particular, Pf(ΩV ) is not reducible to
domW in query size n+O(1).

Theorem 4.2 (elaboration of domU ≤wtt ΩU ). Let V and W be optimal prefix-free machines, and
let f be an order function. Then the following two conditions are equivalent:

(i) domW is reducible to Pf(ΩV ) in query size f(n) +O(1).

(ii) n ≤ f(n) +O(1).

Theorem 4.2 is proved in Subsection 4.2 below. Theorem 4.2 corresponds to Theorem 11 of
Tadaki [25], and is proved by modifying the proof of Theorem 11 of [25]. The implication (ii) ⇒ (i)
of Theorem 4.2 results in that, for every optimal prefix-free machines V and W , domW is reducible
to Pf(ΩV ) in query size n + O(1). On the other hand, the implication (i) ⇒ (ii) of Theorem 4.2
says that this upper bound “n+O(1)” of the query size is, in essence, tight.

Theorem 4.3. Let V and W be optimal prefix-free machines. Then the computation from Pf(ΩV )
to domW is unidirectional and the computation from domW to Pf(ΩV ) is also unidirectional.

Proof. Let V and W be optimal prefix-free machines. For arbitrary order functions f and g, assume
that domW is reducible to Pf(ΩV ) in query size f and Pf(ΩV ) is reducible to domW in query
size g. It follows from the implication (i) ⇒ (ii) of Theorem 4.2 that there exists c ∈ N for which
n ≤ f(n) + c for all n ∈ N. On the other hand, it follows from the implication (i) ⇒ (ii) of
Theorem 4.1 that

∑∞
n=0 2

n−g(n) < ∞ and therefore limn→∞ g(n) − n = ∞. Since g is an order
function, we have g(f(n)) − n ≥ g(n − c) − (n− c) − c for all n ≥ c. Thus, the computation from
Pf(ΩV ) to domW is unidirectional. On the other hand, we have f(g(n))− n ≥ g(n)− n− c for all
n ∈ N. Thus, the computation from domW to Pf(ΩV ) is unidirectional.

4.1 The Proof of Theorem 4.1

Theorem 4.1 follows from Theorem 4.4 and Theorem 4.5 below, and the fact that ΩV is a weakly
Chaitin random r.e. real for every optimal prefix-free machine V .

Theorem 4.4. Let α be an r.e. real, and let V be an optimal prefix-free machine. For every total
recursive function f : N → N, if

∑∞
n=0 2

n−f(n) < ∞, then there exists c ∈ N such that Pf(α) is
reducible to domV in query size f(n) + c.

Theorem 4.5. Let α be a real which is weakly Chaitin random, and let V be an optimal prefix-
free machine. For every order function f , if Pf(α) is reducible to domV in query size f then
∑∞

n=0 2
n−f(n) < ∞.

We first prove Theorem 4.4. For that purpose, we need Theorems 4.6 and 4.8 below.
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Theorem 4.6 (Kraft-Chaitin Theorem, Chaitin [8]). Let f : N → N be a total recursive function
such that

∑∞
n=0 2

−f(n) ≤ 1. Then there exists a total recursive function g : N → {0, 1}∗ such that (i)
g is an injection, (ii) the set { g(n) | n ∈ N} is prefix-free, and (iii) |g(n)| = f(n) for all n ∈ N.

We refer to Theorem 4.7 below from Tadaki [25]. Theorem 4.8 is a restatement of it.

Theorem 4.7 (Tadaki [25]). Let V be an optimal prefix-free machine. Then, for every prefix-free
machine F there exists d ∈ N such that, for every p ∈ {0, 1}∗, if p and the list of all halting inputs
for V of length at most |p| + d are given, then the halting problem of the input p for F can be
solved.

Theorem 4.8. Let V be an optimal prefix-free machine. Then, for every prefix-free machine F
there exists d ∈ N such that domF is reducible to domV in query size n+ d.

Based on Theorems 4.6 and 4.8, Theorem 4.4 is then proved as follows.

Proof of Theorem 4.4. Let α be an r.e. real, and let V be an optimal prefix-free machine. For an
arbitrary total recursive function f : N → N, assume that

∑∞
n=0 2

n−f(n) < ∞. In the case of α ∈ Q,
the result is obvious. Thus, in what follows, we assume that α /∈ Q and therefore the base-two
expansion of α− ⌊α⌋ is unique and contains infinitely many ones.

Since
∑∞

n=0 2
n−f(n) < ∞, there exists d0 ∈ N such that

∑∞
n=0 2

n−f(n)−d0 ≤ 1. Hence, by the
Kraft-Chaitin Theorem, i.e., Theorem 4.6, there exists a total recursive function g : N → {0, 1}∗

such that (i) the function g is an injection, (ii) the set { g(n) | n ∈ N} is prefix-free, and (iii)
|g(n)| = f(n)−n+d0 for all n ∈ N. On the other hand, since α is r.e., there exists a total recursive
function h : N → Q such that h(k) ≤ α for all k ∈ N and limk→∞ h(k) = α.

Now, let us consider a prefix-free machine F such that, for every n ∈ N and s ∈ {0, 1}∗,
g(n)s ∈ domF if and only if (i) |s| = n and (ii) 0.s < h(k) − ⌊α⌋ for some k ∈ N. It is easy to see
that such a prefix-free machine F exists. We then see that, for every n ∈ N and s ∈ {0, 1}n,

g(n)s ∈ domF if and only if s ≤ α↾n, (3)

where s and α↾n are regarded as a dyadic integer. Then, by the following procedure, we see that
Pf(α) is reducible to domF in query size f(n) + d0.

Given t ∈ {0, 1}∗, based on the equivalence (3), one determines α↾n by putting the queries g(n)s
to the oracle domF for all s ∈ {0, 1}n, where n = |t|. Note here that all the queries are of length
f(n) + d0, since |g(n)| = f(n)− n+ d0. One then accepts if t = α↾n and rejects otherwise.

On the other hand, by Theorem 4.8, there exists d ∈ N such that domF is reducible to domV in
query size n+d. Thus, by Proposition 3.1 (i), Pf(α) is reducible to domV in query size f(n)+d0+d,
as desired.

We next prove Theorem 4.5. For that purpose, we need Theorem 2.1 and the Ample Excess
Lemma below.

Theorem 4.9 (Ample Excess Lemma, Miller and Yu [15]). For every α ∈ R, α is weakly Chaitin
random if and only if

∑∞
n=1 2

n−H(α↾n) < ∞.

Proof of Theorem 4.5. Let α be a real which is weakly Chaitin random, and let V be an optimal
prefix-free machine. For an arbitrary order function f , assume that Pf(α) is reducible to domV in
query size f . Since f is an order function, Sf = {n ∈ N | f(n) < f(n+ 1)} is an infinite recursive
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set. Therefore there exists an increasing total recursive function h : N → N such that h(N) = Sf .
It is then easy to see that f(n) = f(h(k + 1)) for every k and n with h(k) < n ≤ h(k + 1). Thus,
for each k ≥ 1, we see that

h(k)
∑

n=h(0)+1

2n−f(n) =
k−1
∑

j=0

h(j+1)
∑

n=h(j)+1

2n−f(n) =
k−1
∑

j=0

2−f(h(j+1))

h(j+1)
∑

n=h(j)+1

2n

=

k−1
∑

j=0

2−f(h(j+1))
(

2h(j+1)+1 − 2h(j)+1
)

< 2

k
∑

j=1

2h(j)−f(h(j)).

(4)

On the other hand, let M be a deterministic Turing machine which computes V . For each
n ≥ LM , we choose a particular pn from InM . Note that, given (n, pf(n)) with f(n) ≥ LM , one
can calculate the finite set domV ↾f(n) by simulating the computation of M with the input q until
at most the time step TM (pf(n)), for each q ∈ {0, 1}∗ with |q| ≤ f(n). This can be possible

because TM (pf(n)) = T
f(n)
M for every n ∈ N with f(n) ≥ LM . Thus, since Pf(α) is reducible to

domV in query size f by the assumption, we see that there exists a partial recursive function
Ψ: N × {0, 1}∗ → {0, 1}∗ such that, for all n ∈ N with f(n) ≥ LM , Ψ(n, pf(n)) = α↾n. It follows
from the optimality of U that H(α↾n) ≤ H(n, pf(n)) +O(1) for all n ∈ N with f(n) ≥ LM . On the
other hand, since the mapping N ∋ k 7→ f(h(k)) is an increasing total recursive function, it follows
also from the optimality of U that H(h(k), s) ≤ H(f(h(k)), s) +O(1) for all k ∈ N and s ∈ {0, 1}∗.
Therefore, using Theorem 2.1 we see that

H(α↾h(k)) ≤ f(h(k)) +O(1) (5)

for all k ∈ N. Since α is weakly Chaitin random, using the Ample Excess Lemma, i.e., Theorem 4.9,
we have

∑∞
n=1 2

n−H(α↾n) < ∞. Note that the function h is injective. Thus, using (5) we have

∞
∑

j=1

2h(j)−f(h(j)) ≤
∞
∑

j=1

2h(j)−H(α↾h(j))+O(1) ≤
∞
∑

n=1

2n−H(α↾n)+O(1) < ∞.

It follows from (4) that limk→∞

∑h(k)
n=h(0)+1 2

n−f(n) < ∞. Thus, since 2n−f(n) > 0 for all n ∈ N and

limk→∞ h(k) = ∞, we have
∑∞

n=0 2
n−f(n) < ∞, as desired.

4.2 The Proof of Theorem 4.2

The implication (ii) ⇒ (i) of Theorem 4.2 follows immediately from Proposition 3.5 and Proposi-
tion 3.1 (ii). On the other hand, the implication (i) ⇒ (ii) of Theorem 4.2 is proved as follows.

Proof of (i) ⇒ (ii) of Theorem 4.2. Let V and W be optimal prefix-free machines, and let f be an
order function. Suppose that there exists c ∈ N such that domW is reducible to Pf(ΩV ) in query size
f(n)+c. Then, by considering the following procedure, we first see that n < H(n,ΩV ↾f(n)+c)+O(1)
for all n ∈ N.

Given n and ΩV ↾f(n)+c, one first calculates the finite set domW↾n. This is possible since domW
is reducible to Pf(ΩV ) in query size f(n) + c and f(k) ≤ f(n) for all k ≤ n. Then, by calculating
the set {W (p) | p ∈ domW↾n} and picking any one finite binary string s which is not in this set,
one can obtain s ∈ {0, 1}∗ such that n < HW (s).
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Thus, there exists a partial recursive function Ψ: N×{0, 1}∗ → {0, 1}∗ such that, for all n ∈ N,
n < HW (Ψ(n,ΩV ↾f(n)+c)). It follows from the optimality of W that

n < H(n,ΩV ↾f(n)+c) +O(1) (6)

for all n ∈ N.
Now, let us assume contrarily that the function n − f(n) of n ∈ N is unbounded. Recall

that f is an order function. Hence it is easy to show that there exists a total recursive function
g : N → N such that the function f(g(k)) of k is increasing and the function g(k) − f(g(k)) of k is
also increasing. For clarity, we define a total recursive function m : N → N by m(k) = f(g(k)) + c.
Since m is injective, it is then easy to see that there exists a partial recursive function Φ: N → N

such that Φ(m(k)) = g(k) for all k ∈ N. Therefore, based on the optimality of U , it is shown that
H(g(k),ΩV ↾m(k)) ≤ H(ΩV ↾m(k)) + O(1) for all k ∈ N. It follows from (6) that g(k) < H(ΩV ↾m(k)

) + O(1) for all k ∈ N. On the other hand, we can show that H(s) ≤ |s| + H(|s|) + O(1) for
all s ∈ {0, 1}∗. Therefore we have g(k) − f(g(k)) < H(m(k)) + O(1) for all k ∈ N. Then, since
the function g(k) − f(g(k)) of k is unbounded, it is easy to see that there exists a total recursive
function Θ: N+ → N such that, for every l ∈ N+, l ≤ H(Θ(l)). It follows from the optimality of U
that l ≤ H(l) + O(1) for all l ∈ N+. On the other hand, we can show that H(l) ≤ 2 log2 l + O(1)
for all l ∈ N+. Thus we have l ≤ 2 log2 l + O(1) for all l ∈ N+. However, we have a contradiction
on letting l → ∞ in this inequality. This completes the proof.

5 T -Convergent R.E. Reals

Let T be an arbitrary computable real with 0 < T ≤ 1. The parameter T plays a crucial role in the
present paper.5 In this section, we investigate the relation of T -convergent r.e. reals to the halting
problems. In particular, Theorem 5.7 below is used to show Theorem 6.1 in the next section, and
plays a major role in establishing the bidirectionality in the next section. On the other hand,
Theorem 5.5 below is used to show Theorem 6.2 in the next section.

Recently, Calude, Hay, and Stephan [4] showed the existence of an r.e. real which is weakly
Chaitin T -random and strictly T -compressible, in the case where T is a computable real with
0 < T < 1, as follows.

Theorem 5.1 (Calude, Hay, and Stephan [4]). Suppose that T is a computable real with 0 < T < 1.
Then there exist an r.e. real α ∈ (0, 1) and d ∈ N such that, for all n ∈ N+, |H(α↾n)− Tn| ≤ d.

We first show that the same r.e. real α as in Theorem 5.1 has the following property.

Theorem 5.2. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal prefix-
free machine. Then there exists an r.e. real α ∈ (0, 1) such that α is weakly Chaitin T -random and
Pf(α) is reducible to domV in query size ⌊Tn⌋+O(1).

Calude, et al. [4] use Lemma 5.3 below to show Theorem 5.1. We also use it to show Theorem 5.2.
We include the proof of Lemma 5.3 in Appendix B for completeness.

Lemma 5.3 (Reimann and Stephan [18] and Calude, Hay, and Stephan [4]). Let T be a real with
T > 0, and let V be an optimal prefix-free machine.

5 The parameter T corresponds to the notion of “temperature” in the statistical mechanical interpretation of AIT
introduced by Tadaki [23].
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(i) Suppose that T < 1. Then there exists c ∈ N+ such that, for every s ∈ {0, 1}∗, there exists
t ∈ {0, 1}c for which HV (st) ≥ HV (s) + Tc.

(ii) There exists c ∈ N+ such that, for every s ∈ {0, 1}∗, HV (s0
c) ≤ HV (s) + Tc − 1 and

HV (s1
c) ≤ HV (s) + Tc− 1.

The proof of Theorem 5.2 is then given as follows.

Proof of Theorem 5.2. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal
prefix-free machine. Then it follows from Lemma 5.3 that there exists c ∈ N+ such that, for every
s ∈ {0, 1}∗, there exists t ∈ {0, 1}c for which

HV (st) ≥ HV (s) + Tc. (7)

For each prefix-free machine G and each s ∈ {0, 1}∗, we denote by S(G; s) the set

{

u ∈ {0, 1}|s|+c
∣

∣ s is a prefix of u & HG(u) > T |u|
}

.

Now, we define a sequence {ak}k∈N of finite binary strings recursively on k ∈ N by ak := λ
if k = 0 and ak := minS(V ; ak−1) otherwise. First note that a0 is properly defined as λ and
therefore satisfies HV (a0) > T |a0|. For each k ≥ 1, assume that a0, a1, a2, . . . , ak−1 are properly
defined. Then HV (ak−1) > T |ak−1| holds. It follow from (7) that there exists t ∈ {0, 1}c for which
HV (ak−1t) ≥ HV (ak−1)+Tc, and therefore ak−1t ∈ {0, 1}|ak−1|+c and HV (ak−1t) ≥ T |ak−1t|. Thus
S(V ; ak−1) 6= ∅, and therefore ak is properly defined. Hence, ak is properly defined for every k ∈ N.
We thus see that, for every k ∈ N, ak ∈ {0, 1}ck , HV (ak) > T |ak|, and ak is a prefix of ak+1.
Therefore, it is easy to see that, for every m ∈ N+, there exists k ∈ N such that ak contains m
zeros. Thus, we can uniquely define a real α ∈ [0, 1) by the condition that α↾ck= ak for all k ∈ N+.
It follows that HV (α↾ck) > T |α↾ck| for all k ∈ N+. Note that there exists d0 ∈ N such that, for
every s, t ∈ {0, 1}∗, if |t| ≤ c then |HV (st)−HV (s)| ≤ d0. Therefore, there exists d1 ∈ N such
that, for every n ∈ N+, HV (α↾n) > Tn− d1, which implies that α is weakly Chaitin T -random and
therefore α ∈ (0, 1).

Next, we show that Pf(α) is reducible to domV in query size ⌈Tn⌉+O(1). For each k ∈ N, we
denote by Fk the set {s ∈ {0, 1}∗ | HV (s) ≤ ⌊Tck⌋}. It follows that

ak = min
{

u ∈ {0, 1}ck
∣

∣ ak−1 is a prefix of u & u /∈ Fk } (8)

for every k ∈ N+. By the following procedure, we see that Pf(α) is reducible to domV in query
size ⌊Tn⌋+O(1).

Given s ∈ {0, 1}∗ with s 6= λ, one first calculates the k0 finite sets F1, F2, . . . , Fk0 , where
k0 = ⌈|s| /c⌉, by putting queries to the oracle domV . Note here that all the queries can be of
length at most ⌊T (|s|+c)⌋. One then calculates a1, a2, . . . , ak0 in this order one by one from a0 = λ
based on the relation (8) and F1, F2, . . . , Fk0 . Finally, one accepts s if s is a prefix of ak0 and rejects
otherwise. This is possible since α↾ck0= ak0 and |s| ≤ ck0.

Finally, we show that α is an r.e. real. Let p1, p2, p3, . . . be a particular recursive enumeration
of the infinite r.e. set domV . For each l ∈ N+, we define a prefix-free machine V (l) by the following
two conditions (i) and (ii): (i) domV (l) = {p1, p2, . . . , pl}. (ii)V

(l)(p) = V (p) for every p ∈ domV (l).
It is easy to see that such prefix-free machines V (1), V (2), V (3), . . . exist. For each l ∈ N+ and each
s ∈ {0, 1}∗, note that HV (l)(s) ≥ HV (s) holds, where HV (l)(s) may be ∞. For each l ∈ N, we
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define a sequence {a
(l)
k }k∈N of finite binary strings recursively on k ∈ N by a

(l)
k := λ if k = 0 and

a
(l)
k := min(S(V (l); a

(l)
k−1) ∪ {a

(l)
k−11

c}) otherwise. It follows that a
(l)
k is properly defined for every

k ∈ N. Note, in particular, that a
(l)
k ∈ {0, 1}ck and a

(l)
k is a prefix of a

(l)
k+1 for every k ∈ N.

Let l ∈ N+. We show that a
(l)
k ≤ ak for every k ∈ N+. To see this, assume that a

(l)
k−1 = ak−1.

Then, since HV (l)(s) ≥ HV (s) holds for every s ∈ {0, 1}∗, based on the constructions of a
(l)
k and

ak from a
(l)
k−1 and ak−1, respectively, we see that a

(l)
k ≤ ak. Thus, based on the constructions of

{a
(l)
k }k∈N and {ak}k∈N we see that a

(l)
k ≤ ak for every k ∈ N+.

We define a sequence {rk}k∈N of rationals by rk = 0.a
(k)
k . Obviously, {rk}k∈N is a computable

sequence of rationals. Based on the result in the previous paragraph, we see that rk ≤ α for every
k ∈ N+. Based on the constructions of prefix-free machines V (1), V (2), V (3), . . . from V , it is also
easy to see that limk→∞ rk = α. Thus we see that α is an r.e. real.

Note that, using Theorem 2.1 and Theorem 5.2, we can give to Theorem 5.1 a different proof
from Calude, et al. [4] as follows.

Different Proof of Theorem 5.1 from Calude, et al. [4]. Suppose that T is a computable real with
0 < T < 1. We choose a particular optimal prefix-free machine V and a particular deterministic
Turing machine M such that M computes V . For each n with ⌈Tn⌉ ≥ LM , we choose a partic-

ular pn from I
⌈Tn⌉
M . By Theorem 5.2, there exist an r.e. real α ∈ (0, 1), an oracle deterministic

Turing machine M0, and c ∈ N such that α is weakly Chaitin T -random and, for all n ∈ N+,

M
domV ↾⌈Tn⌉

0 (n) = α ↾n−c. Then, by the following procedure, we see that there exists a partial
recursive function Ψ: N× {0, 1}∗ → {0, 1}∗ such that, for all n with ⌈Tn⌉ ≥ LM ,

Ψ(n, pn) = α↾n−c . (9)

Given (n, pn) with ⌈Tn⌉ ≥ LM , one first calculates the finite set domV ↾⌈Tn⌉ by simulating the
computation of M with the input q until at most the time step TM (pn), for each q ∈ {0, 1}∗ with

|q| ≤ ⌈Tn⌉. This can be possible because TM (pn) = T
⌈Tn⌉
M for every n with ⌈Tn⌉ ≥ LM . One then

calculates α↾n−c by simulating the computation of M0 with the input n and the oracle domV ↾⌈Tn⌉.
It follows from (9) that

H(α↾n−c) ≤ H(n, pn) +O(1) (10)

for all n with ⌈Tn⌉ ≥ LM .
On the other hand, given ⌈Tn⌉ with n ∈ N+, one only need to specify one of ⌈1/T ⌉ possibilities

of n in order to calculate n, since T is a computable real and T 6= 0. Thus, there exists a partial
recursive function Φ: N+ × {0, 1}∗ × N+ → N+ × {0, 1}∗ such that, for every n ∈ N+ and every
p ∈ {0, 1}∗, there exists k ∈ N+ with the properties that 1 ≤ k ≤ ⌈1/T ⌉ and Φ(⌈Tn⌉, p, k) = (n, p).
It follows that H(n, p) ≤ H(⌈Tn⌉, p) + max{H(k) | k ∈ N+ & 1 ≤ k ≤ ⌈1/T ⌉ } + O(1) for all
n ∈ N+ and all p ∈ {0, 1}∗. Hence, using (10) and Theorem 2.1 we have

H(α↾n−c) ≤ H(⌈Tn⌉, pn) +O(1) ≤ ⌈Tn⌉+O(1) ≤ Tn+O(1)

for all n with ⌈Tn⌉ ≥ LM . It follows that H(α↾n) ≤ Tn+ O(1) for all n ∈ N+, which implies that
α is strictly T -compressible. This completes the proof.

Using Theorem 2.6 and Theorem 5.1 we can prove the following theorem.
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Theorem 5.4. Suppose that T is a computable real with 0 < T < 1. For every r.e. real β, if β is
T -convergent then β is strictly T -compressible.

Proof. Suppose that T is a computable real with 0 < T < 1. It follows from Theorem 5.1 that
there exists an r.e. real α such that α is weakly Chaitin T -random and

H(α↾n) ≤ Tn+O(1) (11)

for all n ∈ N+. Since α is weakly Chaitin T -random, using the implication (i) ⇒ (iii) of Theorem 2.6
we see that, for every T -convergent r.e. real β, there exists d ∈ N such that, for all n ∈ N+, H(β↾n
) ≤ H(α↾n)+d. Thus, for each T -convergent r.e. real β, using (11) we see that H(β↾n) ≤ Tn+O(1)
for all n ∈ N+, which implies that β is strictly T -compressible.

Using Theorem 7 of Tadaki [26], Theorem 5.4, and Theorem 2.4 (i), we can prove the following
theorem.

Theorem 5.5. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal prefix-free
machine. Then there exists d ∈ N such that, for all n ∈ N+, |H(ZV (T )↾n)− Tn| ≤ d.

Proof. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal prefix-free ma-
chine. By Theorem 7 of Tadaki [26], ZV (T ) is a T -convergent r.e. real. It follows from Theorem 5.4
that ZV (T ) is strictly T -compressible. On the other hand, by Theorem 2.4 (i), ZV (T ) is weakly
Chaitin T -random. This completes the proof.

Calude, et al. [4], in essence, showed the following result. For completeness, we include its proof.

Theorem 5.6 (Calude, Hay, and Stephan [4]). If a real β is weakly Chaitin T -random and strictly
T -compressible, then there exists d ≥ 2 such that a base-two expansion of β has neither a run of d
consecutive zeros nor a run of d consecutive ones.

Proof. Let β be a real which is weakly Chaitin T -random and strictly T -compressible. Then there
exists d0 ∈ N such that, for every n ∈ N,

|H(β↾n)− Tn| ≤ d0. (12)

On the other hand, by Lemma 5.3 (ii) we see that there exists c ∈ N+ such that, for every s ∈ {0, 1}∗,
H(s0c) ≤ H(s)+Tc−1 and H(s1c) ≤ H(s)+Tc−1. We choose a particular k0 ∈ N+ with k0 > 2d.

Assume first that a base-two expansion of β has a run of ck0 consecutive zeros. Then β ↾n0

0ck0 = β↾n0+ck0 for some n0 ∈ N. Thus we have H(β↾n0+ck0)− T (n0 + ck0) + k0 ≤ H(β↾n0)− Tn0,
and therefore − |H(β↾n0+ck0)− T (n0 + ck0)| + k0 ≤ |H(β↾n0)− Tn0| where we used the triangle
inequality. It follows from (12) that −d0+k0 ≤ d0 and therefore k0 ≤ 2d0. This contradicts the fact
that k0 > 2d. Hence, a base-two expansion of β does not have a run of ck0 consecutive zeros. In a
similar manner we can show that a base-two expansion of β does not have a run of ck0 consecutive
ones, as well.

Theorem 5.7. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal prefix-free
machine. For every r.e. real β, if β is T -convergent and weakly Chaitin T -random, then Pf(β) is
reducible to domV in query size ⌊Tn⌋+O(1).
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Proof. Suppose that T is a computable real with 0 < T < 1. Let V be an optimal prefix-free
machine. Then, by Theorem 5.2, there exist an r.e. real α ∈ (0, 1) and d0 ∈ N such that α is weakly
Chaitin T -random and Pf(α) is reducible to domV in query size ⌊Tn⌋+ d0. Since α is an r.e. real
which is weakly Chaitin T -random, it follow from the implication (i) ⇒ (ii) of Theorem 2.6 that α
is Ω(T )-like.

Now, for an arbitrary r.e. real β, assume that β is T -convergent and weakly Chaitin T -random.
Then, by Theorem 5.4, β is strictly T -compressible. It follows from Theorem 5.6 that there exists
c ≥ 2 such that the base-two expansion of β has neither a run of c consecutive zeros nor a run
of c consecutive ones. On the other hand, since the r.e. real α is weakly Chaitin T -random,
from the definition of Ω(T )-likeness we see that α dominates β. Therefore, there are computable,
increasing sequences {ak}k∈N and {bk}k∈N of rationals and d1 ∈ N such that limk→∞ ak = α and
limk→∞ bk = β and, for all k ∈ N, α−ak ≥ 2−d1(β− bk) and ⌊β⌋ = ⌊bk⌋. Let d2 = d1+ c+2. Then,
by the following procedure, we see that Pf(β) is reducible to domV in query size ⌊T (n+ d2)⌋+ d0.

Given s ∈ {0, 1}∗, one first calculates α↾n+d2 by putting the queries t to the oracle domV ,
where n = |s|. This is possible since Pf(α) is reducible to domV in query size ⌊Tn⌋ + d0. Note
here that all the queries can be of length at most ⌊T (n + d2)⌋ + d0. One then find k0 ∈ N such
that 0.(α↾n+d2) < ak0 . This is possible since 0.(α↾n+d2) < α and limk→∞ ak = α. It follows that
2−(n+d2) > α− 0.(α↾n+d2) > α− ak0 ≥ 2−d1(β − bk0). Thus, 0 < β − bk0 < 2−(n+c+2). Let t be the
first n+ c+2 bits of the base-two expansion of the rational number bk0 −⌊bk0⌋ with infinitely many
zeros. Then, | bk0 − ⌊bk0⌋ − 0.t | ≤ 2−(n+c+2). It follows from | β − ⌊β⌋ − 0.(β↾n+c+2) | < 2−(n+c+2)

that | 0.(β↾n+c+2)− 0.tn | < 3 · 2−(n+c+2) < 2−(n+c). Hence, | β↾n+c+2 −t | < 22, where β ↾n+c+2

and t in {0, 1}n+c+2 are regarded as a dyadic integer. Thus, t is obtained by adding to β↾n+c+2 or
subtracting from β↾n+c+2 a 2 bits dyadic integer. Since the base-two expansion of β has neither a
run of c consecutive zeros nor a run of c consecutive ones, it can be checked that the first n bits
of t equals to β↾n. Thus, one accepts s if s is a prefix of t and rejects otherwise. Recall here that
|s| = n.

6 Bidirectionality

In this section we show the bidirectionality between ZU (T ) and domU with a computable real
T ∈ (0, 1) in a general setting. Theorems 6.1 and 6.2 below are two of the main results of this
paper.

Theorem 6.1 (elaboration of ZU (T ) ≤wtt domU). Suppose that T is a computable real with
0 < T < 1. Let V and W be optimal prefix-free machines, and let f be an order function. Then
the following two conditions are equivalent:

(i) Pf(ZV (T )) is reducible to domW in query size f(n) +O(1).

(ii) Tn ≤ f(n) +O(1).

Theorem 6.2 (elaboration of domU ≤wtt ZU (T )). Suppose that T is a computable real with
0 < T ≤ 1. Let V and W be optimal prefix-free machines, and let f be an order function. Then
the following two conditions are equivalent:

(i) domW is reducible to Pf(ZV (T )) in query size f(n) +O(1).
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(ii) n/T ≤ f(n) +O(1).

Theorem 6.1 and Theorem 6.2 are proved in Subsection 6.1 and Subsection 6.2 below, respec-
tively. Note that the function Tn in the condition (ii) of Theorem 6.1 and the function n/T in the
condition (ii) of Theorem 6.2 are the inverse functions of each other. This implies that the compu-
tations between Pf(ZV (T )) and domW are bidirectional in the case where T is a computable real
with 0 < T < 1. The formal proof is as follows.

Theorem 6.3. Suppose that T is a computable real with 0 < T < 1. Let V and W be optimal
prefix-free machines. Then the computations between Pf(ZV (T )) and domW are bidirectional.

Proof. Let V and W be optimal prefix-free machines. It follows from the implication (ii) ⇒ (i)
of Theorem 6.2 that there exists c ∈ N for which domW is reducible to Pf(ZV (T )) in query
size f with f(n) = ⌊n/T ⌋ + c. On the other hand, it follows from the implication (ii) ⇒ (i) of
Theorem 6.1 that there exists d ∈ N for which Pf(ZV (T )) is reducible to domW in query size g
with g(n) = ⌊Tn⌋ + d. Since T is computable, f and g are order functions. For each n ∈ N, we
see that g(f(n)) ≤ Tf(n) + d ≤ n+ Tc+ d. Thus, the computation from Pf(ΩV ) to domW is not
unidirectional. In a similar manner, we see that the computation from domW to Pf(ΩV ) is not
unidirectional. This completes the proof.

6.1 The Proof of Theorem 6.1

Let T be a computable real with 0 < T < 1, and let V be an optimal prefix-free machine. Then, by
Theorem 7 of Tadaki [26], ZV (T ) is a T -convergent r.e. real. Moreover, by Theorem 2.4 (i), ZV (T )
is weakly Chaitin T -random. Thus, the implication (ii) ⇒ (i) of Theorem 6.1 follows immediately
from Theorem 5.7 and Proposition 3.1 (ii).

On the other hand, the implication (i) ⇒ (ii) of Theorem 6.1 follows immediately from Theo-
rem 2.4 (i) and Theorem 6.4 below. In order to prove Theorem 6.4, we use Theorem 2.1.

Theorem 6.4. Suppose that T is a computable real with 0 < T ≤ 1. Let β be a real which is
weakly Chaitin T -random, and let V be an optimal prefix-free machine. For every order function
f , if Pf(β) is reducible to domV in query size f then Tn ≤ f(n) +O(1).

Proof. Suppose that T is a computable real with 0 < T ≤ 1. Let β be a real which is weakly
Chaitin T -random, and let V be an optimal prefix-free machine. For an arbitrary order function f ,
assume that Pf(β) is reducible to domV in query size f . Let M be a deterministic Turing machine

which computes V . For each n with f(n) ≥ LM , we choose a particular pn from I
f(n)
M . Then, by the

following procedure, we see that there exists a partial recursive function Ψ: N × {0, 1}∗ → {0, 1}∗

such that, for all n with f(n) ≥ LM ,

Ψ(n, pn) = β↾n . (13)

Given (n, pn) with f(n) ≥ LM , one first calculates the finite set domV ↾f(n) by simulating the
computation of M with the input q until at most the time step TM (pn), for each q ∈ {0, 1}∗ with

|q| ≤ f(n). This can be possible because TM (pn) = T
f(n)
M for every n with f(n) ≥ LM . One then

calculates β↾n using domV ↾f(n) and outputs it. This is possible since Pf(β) is reducible to domV
in query size f .
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It follows from (13) that
H(β↾n) ≤ H(n, pn) +O(1) (14)

for all n with f(n) ≥ LM .
Now, let us assume contrarily that the function Tn−f(n) of n ∈ N is unbounded. Recall that f

is an order function and T is computable. Hence it is easy to show that there exists a total recursive
function g : N → N such that the function f(g(k)) of k is increasing and the function Tg(k)−f(g(k))
of k is also increasing. Since the function f(g(k)) of k is injective, it is then easy to see that there
exists a partial recursive function Φ: N → N such that Φ(f(g(k))) = g(k) for all k ∈ N. Thus,
based on the optimality of U , it is shown that H(g(k), s) ≤ H(f(g(k)), s) +O(1) for all k ∈ N and
s ∈ {0, 1}∗. Hence, using (14) and Theorem 2.1 we have H(β↾g(k)) ≤ H(f(g(k)), pg(k)) + O(1) ≤
f(g(k)) + O(1) for all k with f(g(k)) ≥ LM . Since β is weakly Chaitin T -random, we have
Tg(k) ≤ H(β↾g(k))+O(1) ≤ f(g(k))+O(1) for all k with f(g(k)) ≥ LM . However, this contradicts
the fact that the function Tg(k) − f(g(k)) of k is unbounded, and the proof is completed.

6.2 The Proof of Theorem 6.2

The implication (i) ⇒ (ii) of Theorem 6.2 can be proved based on Theorem 5.5 as follows.

Proof of (i) ⇒ (ii) of Theorem 6.2. In the case of T = 1, the implication (i) ⇒ (ii) of Theorem 6.2
results in the implication (i) ⇒ (ii) of Theorem 4.2. Thus, we assume that T is a computable real
with 0 < T < 1 in what follows. Let V and W be optimal prefix-free machines, and let f is an order
function. Suppose that there exists c ∈ N such that domW is reducible to Pf(ZV (T )) in query size
f(n) + c. Then, by considering the following procedure, we first see that n < H(n,ZV (T )↾f(n)+c

) +O(1) for all n ∈ N.
Given n and ZV (T )↾f(n)+c, one first calculates the finite set domW ↾n. This is possible since

domW is reducible to Pf(ZV (T )) in query size f(n) + c and f(k) ≤ f(n) for all k ≤ n. Then, by
calculating the set {W (p) | p ∈ domW↾n} and picking any one finite binary string s which is not
in this set, one can obtain s ∈ {0, 1}∗ such that n < HW (s).

Thus, there exists a partial recursive function Ψ: N×{0, 1}∗ → {0, 1}∗ such that, for all n ∈ N,
n < HW (Ψ(n,ZV (T )↾f(n)+c)). It follows from the optimality of W that

n < H(n,ZV (T )↾f(n)+c) +O(1) (15)

for all n ∈ N.
Now, let us assume contrarily that the function n/T − f(n) of n ∈ N is unbounded. Recall

that f is an order function and T is computable. Hence it is easy to show that there exists a total
recursive function g : N → N such that the function f(g(k)) of k is increasing and the function
g(k)/T − f(g(k)) of k is also increasing. For clarity, we define a total recursive function m : N → N

by m(k) = f(g(k))+c. Since m is injective, it is then easy to see that there exists a partial recursive
function Φ: N → N such that Φ(m(k)) = g(k) for all k ∈ N. Therefore, based on the optimality of
U , it is shown that H(g(k), ZV (T )↾m(k)) ≤ H(ZV (T )↾m(k)) + O(1) for all k ∈ N. It follows from
(15) that g(k) < H(ZV (T )↾m(k)) +O(1) for all k ∈ N. On the other hand, since T is a computable
real with 0 < T < 1, it follows from Theorem 5.5 that H(ZV (T )↾n) ≤ Tn + O(1) for all n ∈ N.
Therefore we have g(k) < Tf(g(k)) + O(1) for all k ∈ N. However, this contradicts the fact that
the function g(k)/T − f(g(k)) of k is unbounded, and the proof is completed.
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On the other hand, the implication (ii) ⇒ (i) of Theorem 6.2 follows immediately from Theo-
rem 6.5 below and Proposition 3.1 (ii).

Theorem 6.5. Suppose that T is a computable real with 0 < T ≤ 1. Let V be an optimal prefix-free
machine, and let F be a prefix-free machine. Then domF is reducible to Pf(ZV (T )) in query size
⌈n/T ⌉+O(1).

Proof. In the case where domF is a finite set, the result is obvious. Thus, in what follows, we
assume that domF is an infinite set.

Let p0, p1, p2, p3, . . . be a particular recursive enumeration of domF , and let G be a prefix-free
machine such that domG = domF and G(pi) = i for all i ∈ N. Recall here that we identify {0, 1}∗

with N. It is also easy to see that such a prefix-free machine G exists. Since V is an optimal
prefix-free machine, from the definition of optimality of a prefix-free machine there exists d ∈ N

such that, for every i ∈ N, there exists q ∈ {0, 1}∗ for which V (q) = i and |q| ≤ |pi| + Td. Thus,
HV (i) ≤ |pi| + Td for every i ∈ N. For each s ∈ {0, 1}∗, we define ZV (T ; s) as

∑

V (p)=s 2
−|p|/T .

Then, for each i ∈ N,
ZV (T ; i) ≥ 2−HV (i)/T ≥ 2−|pi|/T−d. (16)

Then, by the following procedure, we see that domF is reducible to Pf(ZV (T )) in query size
⌈n/T ⌉+ d.

Given s ∈ {0, 1}∗, one first calculates ZV (T )↾⌈n/T ⌉+d by putting the queries t to the oracle

Pf(ZV (T )) for all t ∈ {0, 1}⌈n/T ⌉+d , where n = |s|. Note here that all the queries are of length
⌈n/T ⌉ + d. One then find ke ∈ N such that

∑ke
i=0 ZV (T ; i) > 0.(ZV (T )↾⌈n/T ⌉+d). This is possible

because 0.(ZV (T )↾⌈n/T ⌉+d) < ZV (T ), limk→∞
∑k

i=0 ZV (T ; i) = ZV (T ), and T is a computable real.
It follows that

∞
∑

i=ke+1

ZV (T ; i) = ZV (T )−
ke
∑

i=0

ZV (T ; i) < ZV (T )− 0.(ZV (T )↾⌈n/T ⌉+d)

< 2−⌈n/T ⌉−d ≤ 2−n/T−d.

Therefore, by (16),
∞
∑

i=ke+1

2−|pi|/T ≤ 2d
∞
∑

i=ke+1

ZV (T ; i) < 2−n/T .

It follows that, for every i > ke, 2
−|pi|/T < 2−n/T and therefore n < |pi|. Hence, domF↾n= { pi | i ≤

ke & |pi| ≤ n }. Thus, one can calculate the finite set domF↾n. Finally, one accepts if s ∈ domF↾n
and rejects otherwise.

7 Concluding Remarks

Suppose that T is a computable real with 0 < T ≤ 1. Let V be an optimal prefix-free machine. It
is worthwhile to clarify the origin of the difference of the behavior of ZV (T ) between T = 1 and
T < 1 with respect to the notion of reducibility in query size f . In the case of T = 1, the Ample
Excess Lemma [15] (i.e., Theorem 4.9) plays a major role in establishing the unidirectionality of
the computation from ΩV to domV . However, in the case of T < 1, this is not true because the
weak Chaitin T -randomness of a real α does not necessarily imply that

∑∞
n=1 2

Tn−H(α↾n) < ∞ [18].
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On the other hand, in the case of T < 1, Lemma 5.3 (i) plays a major role in establishing the
bidirectionality of the computations between ZV (T ) and domV . However, this does not hold for
the case of T = 1.
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A The proof of Theorem 2.1

We here prove Theorem 2.1. For that purpose, we need Lemma A.1 below. Let V be an optimal
prefix-free machine, and let M be a deterministic Turing machine which computes V throughout
this Appendix A.

Lemma A.1. There exists d ∈ N such that, for every p ∈ domV , there exists q ∈ domV for which
|q| ≤ |p|+ d and TM (q) > TM (p).

Proof. Consider the prefix-free machine F such that (i) domF = domV and (ii) for every p ∈
domV , F (p) = 12|p|+TM (p)+1. It is easy to see that such a prefix-free machine F exists. Then, since
V is an optimal prefix-free machine, from the definition of an optimal prefix-free machine there
exists d1 ∈ N with the following property; if p ∈ domF , then there is q for which V (q) = F (p) and
|q| ≤ |p|+ d1.

Thus, for each p ∈ domV with |p| ≥ d1, there is q for which V (q) = F (p) and |q| ≤ |p|+ d1. It
follows that

|V (q)| = 2 |p|+ TM (p) + 1 > |p|+ d1 + TM (p) ≥ |q|+ TM (p). (17)

Note that exactly |q| cells on the tapes of M have the symbols 0 or 1 in the initial configuration of
M with the input q, while at least |V (q)| cells on the tape of M , on which the output is put, have
the symbols 0 or 1 in the resulting final configuration of M . Since M can write at most one 0 or 1
on the tape, on which an output is put, every one step of its computation, the running time TM (q)
of M on the input q is bounded to the below by the difference |V (q)| − |q|. Thus, by (17), we have
TM (q) > TM (p).

On the other hand, since domV is not a recursive set, the function TM
n of n ≥ LM is not

bounded to the above. Therefore, there exists r0 ∈ domV such that, for every p ∈ domF with
|p| < d1, TM (r0) > TM (p). By setting d2 = |r0| we then see that, for every p ∈ domF with |p| < d1,
|r0| ≤ |p|+ d2.

Thus, by setting d = max{d1, d2} we see that, for every p ∈ domV , there is q ∈ domV for
which |q| ≤ |p|+ d and TM (q) > TM (p). This completes the proof.

Then the proof of Theorem 2.1 is given as follows.

Proof of Theorem 2.1. By considering the following procedure, we first show that n ≤ H(n, p) +
O(1) for all (n, p) with n ≥ LM and p ∈ InM .

Given (n, p) with n ≥ LM and p ∈ InM , one first calculates the finite set domV ↾n by simulating
the computation of M with the input q until at most TM (p) steps, for each q ∈ {0, 1}∗ with |q| ≤ n.
Then, by calculating the set {V (q) | q ∈ domV ↾n} and picking any one finite binary string s which
is not in this set, one can obtain s ∈ {0, 1}∗ such that n < HV (s).
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Hence, there exists a partial recursive function Ψ: N+ × {0, 1}∗ → {0, 1}∗ such that, for all
(n, p) with n ≥ LM and p ∈ InM , n < HV (Ψ(n, p)). It follows from the optimality of V and U that
n < H(n, p) +O(1) for all (n, p) with n ≥ LM and p ∈ InM .

We next show that H(n, p) ≤ H(p) + O(1) for all (n, p) with n ≥ LM and p ∈ InM . From
Lemma A.1 we first note that there exists d ∈ N such that, for every p ∈ domV , there exists
q ∈ domV for which |q| ≤ |p| + d and TM (q) > TM (p). Then, for each (n, p) with n ≥ LM and
p ∈ InM , |p| ≤ n due to the definition of InM , and also there exists q ∈ domV for which |q| ≤ |p|+ d
and TM (q) > TM (p). Note here that TM (q) > T n

M due to the the definition of InM again, and
therefore |q| > n due to the definition of T n

M . Thus |p| ≤ n < |p| + d and d ≥ 1. Hence, given p
such that n ≥ LM and p ∈ InM , one needs only ⌈log2 d⌉ bits more to determine n, since there are
still only d possibilities of n, given such a string p.

Thus, there exists a partial recursive function Φ: {0, 1}∗ × {0, 1}∗ → N+ × {0, 1}∗ such that,
for every (n, p) with n ≥ LM and p ∈ InM , there exists s ∈ {0, 1}∗ with the properties that
|s| = ⌈log2 d⌉ and Φ(p, s) = (n, p). It follows that H(n, p) ≤ H(p)+max{H(s) | s ∈ {0, 1}∗ & |s| =
⌈log2 d⌉} +O(1) for all (n, p) with n ≥ LM and p ∈ InM .

Finally, we show that H(p) ≤ n + O(1) for all (n, p) with n ≥ LM and p ∈ InM . Let us
consider the prefix-free machine F such that (i) domF = domV and (ii) for every p ∈ domV ,
F (p) = p. Obviously, such a prefix-free machine F exists. Then we see that, for every p ∈ domV ,
H(p) ≤ |p| + O(1). For each (n, p) with n ≥ LM and p ∈ InM , it follows from the definition of InM
that p ∈ domV and |p| ≤ n, and therefore we have H(p) ≤ |p|+O(1) ≤ n+O(1). This completes
the proof.

B The proof of Lemma 5.3

Proof of Lemma 5.3. Let T be a real with T > 0, and let V be an optimal prefix-free machine.
(i) Chaitin [8] showed that

H(s, t) = H(s) +H(t/s) +O(1) (18)

for all s, t ∈ {0, 1}∗. This is Theorem 3.9. (a) in [8]. For the definition of H(s/t), see Section 2 of
Chaitin [8]. We here only use the property that, for every s ∈ {0, 1}∗ and every n ∈ N, there exists
t ∈ {0, 1}n such that

H(t/s) ≥ n. (19)

This is easily shown from the definition of H(t/s) by counting the number of binary strings of
length less than n.

On the other hand, it is easy to show that

H(st, |t|) = H(s, t) +O(1) (20)

for all s, t ∈ {0, 1}∗. Since H(st) +H(|t|) ≥ H(st, |t|) − O(1) for all s, t ∈ {0, 1}∗, it follows from
(20), (18), and (19) that there exists d ∈ N such that, for every s ∈ {0, 1}∗ and every n ∈ N, there
exists t ∈ {0, 1}n for which H(st) ≥ H(s) + n −H(n) − d. Using the optimality of U and V , we
then see that there exists d′ ∈ N such that, for every s ∈ {0, 1}∗ and every n ∈ N, there exists
t ∈ {0, 1}n for which

HV (st) ≥ HV (s) + n−H(n)− d′. (21)
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Now, suppose that T < 1. It follows from the optimality of U that H(n) ≤ 2 log2 n+ O(1) for
all n ∈ N+. Therefore there exists c ∈ N+ such that (1 − T )c − H(c) − d′ ≥ 0. Hence, by (21)
we see that there exists c ∈ N+ such that, for every s ∈ {0, 1}∗, there exists t ∈ {0, 1}c for which
HV (st) ≥ HV (s) + Tc.

(ii) Since V is optimal, it is easy to show that there exists d ∈ N such that, for every s ∈ {0, 1}∗

and every n ∈ N,

HV (s0
n) ≤ HV (s) +H(n) + d,

HV (s1
n) ≤ HV (s) +H(n) + d.

(22)

Since T > 0, it follows from the optimality of U that there exists c ∈ N+ such that H(c)+d ≤ Tc−1.
Hence, by (22) we see that there exists c ∈ N+ such that, for every s ∈ {0, 1}∗, HV (s0

c) ≤
HV (s) + Tc− 1 and HV (s1

c) ≤ HV (s) + Tc− 1.

25


	1 Introduction
	1.1 Statistical Mechanical Interpretation of AIT as Motivation
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basic Notation
	2.2 Algorithmic Information Theory
	2.3 Partial Randomness

	3 Reducibility in Query Size f
	4 Unidirectionality
	4.1 The Proof of Theorem 4.1
	4.2 The Proof of Theorem 4.2

	5 T-Convergent R.E. Reals
	6 Bidirectionality
	6.1 The Proof of Theorem 6.1
	6.2 The Proof of Theorem 6.2

	7 Concluding Remarks
	A The proof of Theorem 2.1
	B The proof of Lemma 5.3

