Skip to main content

Cryptography from Learning Parity with Noise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

The Learning Parity with Noise (LPN) problem has recently found many applications in cryptography as the hardness assumption underlying the constructions of “provably secure” cryptographic schemes like encryption or authentication protocols. Being provably secure means that the scheme comes with a proof showing that the existence of an efficient adversary against the scheme implies that the underlying hardness assumption is wrong.

LPN based schemes are appealing for theoretical and practical reasons. On the theoretical side, LPN based schemes offer a very strong security guarantee. The LPN problem is equivalent to the problem of decoding random linear codes, a problem that has been extensively studied in the last half century. The fastest known algorithms run in exponential time and unlike most number-theoretic problems used in cryptography, the LPN problem does not succumb to known quantum algorithms. On the practical side, LPN based schemes are often extremely simple and efficient in terms of code-size as well as time and space requirements. This makes them prime candidates for light-weight devices like RFID tags, which are too weak to implement standard cryptographic primitives like the AES block-cipher.

This talk will be a gentle introduction to provable security using simple LPN based schemes as examples. Starting from pseudorandom generators and symmetric key encryption, over secret-key authentication protocols, and, if time admits, touching on recent constructions of public-key identification, commitments and zero-knowledge proofs.

This survey paper accompanies an invited talk at SOFSEM 2012.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different assumptions. In: Schulman, L.J. (ed.) 42nd ACM STOC, pp. 171–180. ACM Press (2010)

    Google Scholar 

  2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS, pp. 298–307. IEEE Computer Society Press (2003)

    Google Scholar 

  5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Blum, A., Adam Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Information Theory IT-24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Cryptology ePrint Archive, Report 2011/401 (2011), http://eprint.iacr.org/

  9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press (1993)

    Google Scholar 

  10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Coppersmith, D.: Rapid multiplication of rectangular matrices. SIAM J. Comput. 11(3), 467–471 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited (manuscript, 2011)

    Google Scholar 

  14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning noisy parities and halfspaces. In: 47th FOCS, pp. 563–574. IEEE Computer Society Press (2006)

    Google Scholar 

  16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

    Google Scholar 

  17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33, 792–807 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS, pp. 230–240 (2010)

    Google Scholar 

  19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 691–729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (2008)

    Google Scholar 

  22. Gilbert, H., Robshaw, M., Sibert, H.: An active attack against hb+ - a provably secure lightweight authentication protocol. Cryptology ePrint Archive, Report 2005/237 (2005), http://eprint.iacr.org/

  23. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB\(^{\sharp}\): Increasing the Security and Efficiency of HB + . In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to Encrypt with the LPN Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: An efficient authentication protocol based on ring-lpn (manuscript, 2011)

    Google Scholar 

  28. Jain, A., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge from hard learning problems (manuscript, 2011)

    Google Scholar 

  29. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentication from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors Over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2) (1988)

    Google Scholar 

  36. Lyubashevsky, V.: The Parity Problem in the Presence of Noise, Decoding Random Linear Codes, and the Subset Sum Problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 378–389. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  37. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network Progress Report 44, 114–116 (1978)

    Google Scholar 

  38. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in o(20.054n). In: ASIACRYPT (2011)

    Google Scholar 

  39. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (2009)

    Google Scholar 

  41. Pietrzak, K.: Subspace LWE (2010) (manuscript)

    Google Scholar 

  42. Pointcheval, D., Poupard, G.: A new np-complete problem and public-key identification. Des. Codes Cryptography 28(1), 5–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)

    Google Scholar 

  44. Regev, O.: The learning with errors problem (invited survey). In: IEEE Conference on Computational Complexity, pp. 191–204 (2010)

    Google Scholar 

  45. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  46. Shamir, A.: An Efficient Identification Scheme based on Permuted Kernels (Extended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)

    Google Scholar 

  47. Stern, J.: A Method for Finding Codewords of Small Weight. In: Cohen, G., Godlewski, P. (eds.) Coding Theory 1986. LNCS, vol. 311, pp. 106–113. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  48. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pietrzak, K. (2012). Cryptography from Learning Parity with Noise. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics