
Distributed Policy Specification and

Interpretation with Classified Advertisements

Nicholas Coleman

West Virginia University Institute of Technology
405 Fayette Pike, Montgomery, WV 25136

Nicholas.Coleman@mail.wvu.edu

Abstract. In a distributed system, the principle of separation of pol-
icy and mechanism provides the flexibility to revise policies without al-
tering mechanisms and vice versa. This separation can be achieved by
devising a language for specifying policy and an engine for interpret-
ing policy. In the Condor [14] high throughput distributed system the
ClassAd language [16] is used to specify resource selection policies and
matchmaking algorithms are used to interpret that policy by matching
jobs with available machines. We extend this framework to specify and
interpret authorization policies using the SPKI/SDSI [6] public key in-
frastructure. SPKI/SDSI certificates are represented using the ClassAd
language and certificate chain discovery is implemented using a modi-
fied matchmaking algorithm. This extension complements the resource
selection policy capabilities of Condor with the authorization policy ca-
pabilities of SPKI/SDSI. Techniques for policy analysis in the context of
resource selection and authorization are also presented.

1 Introduction

One of the challenges of distributed computing environments is the specification
and interpretation of policy. The separation of policy and mechanism has long
been one of the key principles in systems design. This principle simplifies the
specification of policies and keeps them independent of implementation changes.
One way of achieving separation is to provide a policy framework consisting of a
language for specifying policies and an engine for interpreting these policies in the
context of a given set of system conditions. The flexibility of such a framework
is particularly suitable for resource allocation policy in a distributed system.

Distributed systems are dynamic in that principals and resources may join
or leave the federation at any time. Allocation of resources in a decentralized
environment requires policy for resource selection and access control. Resource
selection is the process of finding resources that satisfy a principal’s requests.
Access control policies determine whether the principal is permitted to access
the resources. Currently there is no single language or framework that deals with
authorization and resource selection policies.

C. Russo and N.-F. Zhou (Eds.): PADL 2012, LNCS 7149, pp. 198–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed Policy Specification and Interpretation 199

The ClassAd language is based on the concept of classified advertisements.
Entities in Condor are represented by classified advertisements or ClassAds.
Each job submitted by a condor user has a corresponding ClassAd as does each
compute machine. The matchmaking process pairs jobs with machines based
on the policies expressed in their ClassAds. Since the bilateral matchmaking
framework is not sufficient for assembling three or more parties a multilateral
matchmaking framework, gangmatching, is required in such cases. A collection
of three or more ClassAds that satisfy each others Requirements expressions is
called a gang.

SPKI/SDSI is an infrastructure for expressing authorization policy using pub-
lic key encryption. Two kinds of certificates can be issued by a principal. An
authorization certificate grants another principal a set of access rights for a re-
source as well as the permission to delegate these rights to other principals. A
name certificate creates a name for another principal or set of principals. A com-
bination of several certificates that authorize a principal to access a resource is
called a certificate chain. The problem of assembling a suitable certificate chain
for a given authorization is called the certificate chain discovery problem [2].

SPKI/SDSI certificates may be represented using the ClassAd language in
a gangmatching context. A ClassAd representing a certificate is composed of
several nested ClassAds called ports. One of these ports offers the certificate for
use in a chain. If needed, additional ports request other certificates to resolve a
SPKI/SDSI name or delegate an authorization. A gang of such ClassAds corre-
sponds to a chain of certificates. In order to support the capability to reuse a
certificate indefinitely in a chain while avoiding infinite loops, a modified algo-
rithm for gangmatching is presented.

In the case of multilateral matching, two matchmaking analysis problems are
presented along with their solutions: Break the Chain and Missing Link. The
Break the chain problem occurs when an authorization policy grants an access
that needs to be revoked. To revoke an authorization, a set of certificates must
be invalidated such that no chain can be constructed granting the authorization.
A new algorithm using the results of the gangmatching algorithm identifies a
set of ClassAds representing such certificates. The Missing Link problem occurs
when a desired authorization is not granted by any certificate chain. A modified
version of the gangmatching algorithm identifies the additional certificate Class-
Ads needed to complete a gang representing a chain of certificates granting the
desired authorization.

Section 2 describes the ClassAd language and the gangmatching paradigm.
Section 3 provides an introduction to the SPKI/SDSI trust management sys-
tem and describes a ClassAd language representation of SPKI/SDSI certificates.
Section 4 discusses the structures and concepts necessary for extending the gang-
matching algorithm. The algorithm itself is presented in Sect. 5. Techniques for
gangmatching analysis are explored in Sect. 6. Section 7 surveys related work
and Sect. 8 concludes the paper.

200 N. Coleman

2 The ClassAd Language and Gangmatching

The ClassAd language is used by Condor primarily to advertise resources and
requests for those resources in a distributed environment. An advertisement,
called a ClassAd, represents an offer of or request for a resource and consists
of named descriptive attributes, constraints and preferences. The constraints
are expressed by an attribute named Requirements, and the expression of the
preferences is named Rank. 1 A matchmaking process is used to discover offers
and requests that satisfy one another’s constraints and best suit one another’s
preferences. If more than two parties are involved – such as a job, a machine,
and a license – a bilateral matchmaking scheme is insufficient and a multilateral
framework, called gangmatching [15], must be used.

In the gangmatching framework a multilateral match is broken down into
several bilateral matches. A set of ClassAds that satisfy one another’s constraints
is called a gang. Each ClassAd contains a list of nested ClassAds called ports,
each of which represents a single bilateral match. A gang is complete if all ports
of all ClassAds in the gang have been successfully matched to ports of other
ClassAds in the gang. A port that has not been matched is an open port. Given
a port P of a ClassAd and a potentially matching port P ′ of another ClassAd, a
reference in P to an attribute attr defined in P ′ is represented as other.attr to
distinguish it from a reference to an attribute in P . In addition, P has a label that
is used by subsequent ports in the same ClassAd to reference attributes defined
in P ′. If P ’s label is label, a reference in a subsequent port to an attribute attr
defined in P ′ is represented as label.attr. The attribute attr is imported from
P ′ and is called an imported attribute.

Figure 1 shows a gangmatching ClassAd representing a job. The ClassAd has
two ports: the first requests a machine to run the job, and the second requests a
license to run a particular application on that machine. In the Requirements ex-
pression of the first port of the job ClassAd, a reference to the attribute Memory,
imported from a matching ClassAd representing a machine, is expressed as
other.Memory. The port is labeled cpu, and the subsequent port contains a ref-
erence to the Name attribute imported from the ClassAd matching the first port
expressed as cpu.Name. In contrast, a locally defined attribute like ImageSize
is referenced locally without using a prefix.

A gang is tree-structured, which means that some ClassAds may not express
constraints on other ClassAds directly. For example, in Fig. 1 the job ClassAd
contains a port requesting a machine and another port requesting a license. The
license and machine ClassAds that match may each contain a port expressing
constraints on the job, but may not have ports expressing constraints on one an-
other. This restriction can be circumvented if the job exports attributes imported
from the machine ClassAd in the license port. In Fig. 1 the Name attribute of
the cpu ad is exposed in the license port by the definition CPUName = cpu.Name.
The matching license ClassAd can indirectly reference the Name attribute of

1 To simplify matters this paper deals only with Requirements expressions and omits
Rank expressions from example ClassAds.

Distributed Policy Specification and Interpretation 201

[Ports = {

[// request a workstation

other = cpu; Type = "cpu_request"; ImageSize = 28M;

Requirements = other.Type == "Machine" && other.Arch == "INTEL" &&

other.OpSys == "LINUX" && other.Memory >= ImageSize

],

[// request a license

other = license; Type = "license_request"; CPUName = cpu.Name;

Cmd = "run_sim";

Requirements = other.Type == "License" && other.App == Cmd

]}

]

Fig. 1. A gangmatching ClassAd for a job

the machine ClassAd as other.CPUName. Circular dependencies are avoided by
the restriction that a port may only use imported attributes from previous
ports.

3 SPKI/SDSI

SPKI/SDSI is a trust management system that specifies access control policies
using certificates. A SPKI/SDSI certificate is a declaration by a principal, the
issuer of the certificate, about the naming of another principal, the subject of
the certificate, or the authorization for the subject to access a resource.

Principals are represented by a unique public key. They may also be referred
to indirectly by a SPKI/SDSI name. A SPKI/SDSI name consists of a public key
followed by zero or more identifiers. The identifiers navigate a hierarchical name
space, similar to a hierarchical directory structure. For example, if KA represents
the principal named Alice, then the SPKI/SDSI name “KA Bob Carol” can be
resolved by looking up the identifier “Bob” in Alice’s namespace. Assuming that
KA Bob resolves to KB, Bob’s public key, the identifier “Carol” must now be
looked up in Bob’s namespace. If Bob has defined the identifier “Carol” to resolve
to KC , Carol’s public key, then “KA Bob Carol” is equivalent to the SPKI/SDSI
names “KB Carol” and “KC .”

A name certificate (name cert) defines a name in the issuer’s local name space
by assigning an identifier to a SPKI/SDSI name that represents the subject of
the certificate. An authorization certificate (auth cert) indicates that the issuer
(represented by a public key) authorizes the subject (represented by a SPKI/SDSI
name) to access a resource. Both the resource and the permission being granted
are specified in an auth cert. For the purposes of this paper we are only concerned
with a single anonymous resource and a generic operation on that resource. An
auth cert also indicates whether or not the authorization may be delegated. In the
discussion that follows, we shall adopt the representation of certificates as rewrite

202 N. Coleman

rules with the issuer on the left and the subject on the right as introduced in [2].
Four examples of this rewrite rule representation are shown in Fig. 2.

There are four principals involved in the example certificates in Fig. 2: the
administrator of resource R (identified by the public key KR), Alice, Bob, and
Carol (identified by their public keys KA, KB, and KC). Certs (2) and (4)
are name certs that indicate that the identifier “Bob” in Alice’s name space
represents Bob’s key, and the identifier “Carol” in Bob’s name space represents
Carol’s key. Certs (1) and (3) are auth certs, denoted by the � after the subject.
In cert (1), the subject “KA Bob” is granted access to the resource R. The � at
the end indicates that the subject may delegate this access right. Similarly, cert
(3) grants the subject “KB Carol” access to whatever KB has access to. The �
at the end of this cert indicates that the subject may not delegate this access
right.

(1) KR � → KA Bob �
(2) KA Bob → KB

(3) KB � → KB Carol �
(4) KB Carol → KC

Fig. 2. SPKI/SDSI certificates as rewrite rules

The use of delegation and an indirect naming scheme means that more than
one certificate may be necessary for a principal to access a resource. Such a set of
one or more certificates is called a certificate chain. A certificate chain may also
be represented by a rewrite rule, derived from the composition of compatible
certificates. As defined in [2], certs C1 = K1 A1 → S1 and C2 = K2 A2 → S2

are compatible if S1 = K2 A2 X for some sequence of zero or more identifiers X
(that is K2 A2 is a prefix of S1). The composition of C1 and C2, written as C1

◦ C2 is defined by replacing the prefix of S1 with S2. Using the term rewriting
notation:

C1 = K1 A1 → K2 A2 X
C2 = K2 A2 → S2

C1 ◦ C2 = K1 A1 → S2 X

Certificate chains are built by repeated use of composition.
Returning to the examples in Fig. 2, we can form cert chains by composing

compatible certificates. (1) ◦ (2) = KR � → KB � authorizes KB to access
resource R and to delegate that access right; (3) ◦ (4) = KB � → KC � grants
KC access to whatever KB has access to. Putting these two chains together
we get the chain ((1) ◦ (2)) ◦ ((3) ◦ (4)) = KR � → KC � that authorizes
KC to access resource R, but not to delegate that access right. The problem
of assembling such a chain is called the certificate chain discovery problem.
Solutions based on formal language techniques can be found in [2, 11].

The ClassAd representation of SPKI/SDSI certificates is fairly simple. Each
certificate ClassAd consists zero or more cert request ports and a cert offer port.

Distributed Policy Specification and Interpretation 203

A cert offer port contains attributes corresponding to the type (name or auth),
issuer, identifier (name certs only), and subject of the cert. The Subject at-
tribute is a literal value if the subject of the cert is directly specified using a
public key, or an attribute reference if the subject is indirectly specified using a
SPKI/SDSI name with one or more identifiers. In the indirect case the ClassAd
also contains one or more cert request ports, each of which requests a name cert
(or chain of certs) to resolve the SPKI/SDSI name. If the ClassAd represents an
auth cert with the delegation bit turned on, there is an additional cert request
port requesting an additional auth cert (or chain of certs) issued by the subject
of the cert.

For example, the authorization certificate designated as (1) in Fig. 2 would
be represented by the ClassAd shown in Fig. 3. The name certificate designated
as (2) in Fig. 2 would be represented by the ClassAd shown in Fig. 4.

[Ports = {

[other = chain1; Type = "cert_request";

Requirements = other.Type == "cert_offer" && other.CertType == "Name" &&

other.Issuer == "K_A" && other.Identifier == "Bob";

],

[other = chain2; Type = "cert_request";

Requirements = other.Type == "cert_offer" &&

other.CertType == "Auth" && other.Issuer == chain1.Subject

],

[other = request; Type = "cert_offer"; CertType = "Auth";

Issuer = "X"; Subject = chain2.Subject;

Requirements = other.Type == "cert_request"

]}

]

Fig. 3. The ClassAd for cert(1)

[Ports = {

[other = request; Type = "cert_offer"; CertType = "Name";

Issuer = "K_A"; Identifier = "Bob"; Subject = "K_B";

Requirements = other.Type == "cert_request"

]}

]

Fig. 4. ClassAd for certificate (2)

4 Gangmatching Structures and Concepts

As we have seen in the examples above, a gangmatching ClassAd is made up
of a set of ports, each of which represents a request for another ClassAd. We

204 N. Coleman

formally define a port P as a 5-tuple (EP , IP , JP , δP , φP) where EP is the
set of all attributes defined or exported by P , IP is the set of all attributes
imported from the ClassAd that is matched with P , JP is the set of all attributes
referenced in P that are imported via other ports in the same ClassAd, δP is a
function representing the attribute definitions in P , φP is a Boolean expression
in disjunctive normal form (DNF) over IP , JP representing the Requirements
expression of P . A ClassAd C is defined as an ordered list of ports.

The gangmatching process assembles a gang of ClassAds that is complete
when all ports of all ClassAds in the gang have been matched with ports of other
ClassAds in the gang. A gangster is an intermediate structure formed during
gangmatching that represents an open or unmatched port in an incomplete gang.
We define a gangster G as a triple (P , β, L) where P =(EP , IP , JP , δP , φP)
is a port, β is a function that binds the attributes in JP to literal values, and
L associates attributes imported from elsewhere in the gang with attributes
imported from the ClassAd that will ultimately be matched with P . A port
connecting a ClassAd C to one of its children is called a child port, and the port
connecting C to its parent is the parent port. A gang can be thought of as a
tree of ClassAds where each ClassAd is connected to its parent or child through
one of its ports. The ClassAd at the root of the tree is referred to as the root
ClassAd.

The gangmatching algorithm relies heavily upon the concepts of equivalence,
partial evaluation and validity. Two gangsters are equivalent if they are struc-
turally the same, but contain attributes from different ClassAds. An individual
match is conditionally valid if one or both of the Requirements expressions in-
volved unresolved attribute references. Partial evaluation is used to condense
these expressions, which must then be satisfied by bindings generated by subse-
quent matches. A gang in which all of these expressions have been satisfied is
considered a valid gang.

The input to the algorithm is the root ClassAd C0 and a set of additional
ClassAds C that will be used to build the rest of the gang. Beginning with the
gangster consisting of the single port of C0, the algorithm creates new gangsters
by matching existing gangsters to parent ports of other ClassAds. Whenever a
new gangster is created, a new rule in a regular grammar is generated. When the
algorithm terminates, this grammar generates all complete valid gangs built from
C0 and the ClassAds in C. In order to avoid repeated work and infinite loops
caused by the reuse of ClassAds, the algorithm must test each new gangster
for equivalence to previously encountered gangsters. If an equivalent gangster is
found, the algorithm adds a new rule to the grammar, but does not attempt to
match the new gangster. Otherwise, the new gangster is tested against the par-
ent port of each ClassAd in C for a potential match. If the match is conditionally
valid, the Requirements expressions of the respective ports are partially eval-
uated, and the resulting expression is passed to the first new gangster created
by the match. Further matches must satisfy this expression in addition to the
Requirements expressions of other ports encountered later.

The structures and concepts described here are examined in more detail in [4].

Distributed Policy Specification and Interpretation 205

5 Gangmatching Algorithm

The gangmatching algorithm builds individual gangs in a top-down (root to
leaves) fashion. The premise of the algorithm is that if an infinite number of
gangs can be composed from a finite set of ClassAds, then there must be a
repeating pattern – in the same way that a finite automaton can define an
infinite but regular language. These repetitions can be prevented by detecting
new gangsters that are equivalent to previously encountered gangsters. Thus, we
can assemble a finite grammar that may produce an infinite number of gangs.
In addition, this algorithm makes use of the partial evaluation facility described
in Sect. 4 to build gangs that satisfy conditionally valid matches.

The algorithm takes as input a set C of ClassAds, and a root ClassAd C0.
Without loss of generality we will assume C0 has only one port. We also assume
that each ClassAd C ∈ C ∪ {C0} satisfies the following properties:

1. The Requirements expression φP of each port P of C consists of a con-
junction of binary or unary predicates over attributes imported via P (IP),
attributes imported via previous ports in C (JP) and literal values (repre-
sented by the set V) in which no predicate contains attributes imported from
more than one previous port in C and every predicate contains at least one
attribute imported via P .

2. The last port in C is the parent port of C, and all other ports are child ports.
3. C has no more than 2 child ports.

In order to facilitate the handling of conditionally valid matches we will add an
additional component ψG to each gang G. The purpose of ψG will become clear
as we discuss the algorithm.

The following methods are not explicitly defined here:

1. AddGangster - adds a new gangster to a queue to be processed later
2. AddRule - adds a new rule to the grammar
3. MoreGangsters - returns true if more unprocessed gangsters are avail-

able, false otherwise
4. RemoveGangster - removes a gangster from the queue
5. CheckSeen - checks if a gangster is equivalent to a previously encountered

gangster, and adds it to the previously seen gangsters if it hasn’t
6. AddExtraRules - finds any rules containing a gangster equivalent to given

gangster, and creates duplicates of those rules for the given gangster
7. MatchResults - tests a match between a gangster and a ClassAd, and

returns an expression generated by partially evaluating and conjoining the
Requirements expressions of the gangster and ClassAd

8. ValidMatch - determines if the result of a match indicates that it is valid
(both Requirements expressions evaluate to true, or can be partially evalu-
ated to satisfiable expressions)

9. SetNext - adds a link to a list of gangsters in an incomplete gang
10. GetNext - gets then next gangster in the list of gangsters.

206 N. Coleman

The GangMatch method shown in Fig. 5 adds a gangster created from the sin-
gle port of C0. The algorithm then enters a loop in which gangsters are removed
and added to a list of gangs using the AddGangster and RemoveGangster
methods. At the beginning of each loop, a gangsterG is selected and tested to see
if an equivalent gangster has been previously encountered using the CheckSeen
method. If CheckSeen returns true, the AddExtraRules method is called,
adding new rules containing G to the grammar based on existing rules containing
equivalent gangsters. If CheckSeen returns false, the ProcessMatch method
is called on each C ∈ C to see if it matches G. When the GangMatch method
has completed, the generated grammar will produce a set of matches represent-
ing all complete valid gangs rooted at C0. Each gang is a list of ClassAds in
order of appearance in the gang, with the parent port of each ClassAd matching
the first open port of the gang made up of the previous ClassAds.

GangMatch(C0, C)
1 P ← C0’s port
2 G ← (P ,∅,∅,T)
3 AddGangster(G)
4 AddRule(G → C0)
5 while MoreGangsters()
6 G ← RemoveGangster()
7 if CheckSeen(G)
8 AddExtraRules(G)
9 else

10 for each C ∈ C
11 ProcessMatch(G, C)

Fig. 5. The GangMatch algorithm

The ProcessMatch method shown in Fig. 6 tests the match between G and
C using the MatchResults method. The ValidMatch method is then used
on the resulting expression to determine whether or not the match was valid
or conditionally valid (i.e. further matches will be needed). If ValidMatch re-
turns true, the MatchBindings, ProcessPorts, and ProcessNextGang-
ster methods are called to process any new gangsters generated by the match.

The MatchBindings method shown in Fig. 7 creates a set of bindings to
be used by ProcessPorts and ProcessNextGangster. The bindings are
produced using the set of attribute definitions δP contained in C’s parent port
P . If any attribute defined in δP (attr, Y) corresponds to an attribute referenced
in the set LG of existing bindings in G (X , attr), a new binding (X , Y)is created
and added to the set LM . Additionally, a binding is created from the attribute
definition itself (attr, Y). Once all attribute definitions in δP are checked, the
set of bindings LM is returned.

Distributed Policy Specification and Interpretation 207

ProcessMatch(G, C)
1 ψM ← MatchResults(G, C)
2 if ValidMatch(ψM)
3 LM ← MatchBindings(G, C)
4 Glast ← ProcessPorts(G, C, ψM , LM)
5 ProcessNextGangster(G, C, LM , Glast)

Fig. 6. The ProcessMatch method

MatchBindings(G, C)
1 P ← C’s parent port
2 LM ← ∅

3 for each (attr, Y) ∈ δP

3 if (X, attr) ∈ LG

4 LM ← LM ∪ {(X, Y)}
5 LM ← LM ∪ {(attr, Y)}
6 return LM

Fig. 7. The MatchBindings method

The ProcessPorts method shown in Fig. 8 goes through each port in C
and creates a new gangster corresponding to that port based on the results
of the match. The method takes as arguments G, C, the resulting expression
ψM from the match between them, and the set of bindings LM generated by
MatchBindings. First, LM is searched for any binding (X , Y) where Y is a
member of the set IP of imported attributes in P , and the resulting bindings are
added to the set L. Second, psiM is searched for any predicates containing an
attribute in IP , and the results are conjoined to form the expression psi. A new
gangster Gnew is then created from P , L, and psi, and is added to the queue of
new gangsters. If there are no prior gangsters in the gang, a new rule Gnew → G
C is added to the grammar to indicate that Gnew is a result of matching G and
C. Finally, Gnew is added to the linked list of gangsters comprising the current
gang. The last gangster generated is returned by the method.

The ProcessNextGangster method shown in Fig. 9 updates the next
gangster in the gang after G to reflect the results of the match between G and
C. Like ProcessPorts the ProcessNextGangster method takes G, C, and
LM as arguments, along with the last gangster Glast created by ProcessPorts.
The method begins by checking if there are any more gangsters in the gang after
G. If there are no more gangsters, Glast is set as the last gangster in the gang. If
there was no Glast the gang must be complete and the rule S → G C is added
to complete the grammar. If there is a next gangster G′ it must be updated.

The update of G′ proceeds in a manner similar to the generation of new
gangsters in ProcessPorts. First, LM is searched for any binding (X , Y) where
Y is a literal value, and X is a member of the set of attributes JPG′ imported in
PG′ from previous ports in the ClassAd containing PG′ . The resulting bindings

208 N. Coleman

ProcessPorts(G, C, ψM , LM)
1 Glast ← null
2 for each child port P of C
3 L ← {(X, Y) ∈ LM | Y ∈ IP }
4 ψ ← ∧ {preds in ψM over i ∈ IP}
5 Gnew ← (P , ∅, L, ψ)
6 AddGangster(Gnew)
7 if Glast = null
8 AddRule(Gnew → G C)
9 else

10 SetNext(Glast, Gnew)
11 Glast ← Gnew

12 return Glast

Fig. 8. The ProcessPorts method

ProcessNextGangster(G, C, LM , Glast)
1 G′ ← GetNext(G)
2 if G′ �= null
3 β ← {(X, Y) ∈ LM | X ∈ JPG′ , Y ∈ V}
4 Gnew ← (PG′ , β, LG′ , ψG′)
5 AddGangster(Gnew)
6 if Glast = null
7 AddRule(Gnew → G C)
8 else SetNext(Glast, Gnew)
9 SetNext(Gnew, GetNext(G′))

10 elsif Glast �= null
11 SetNext(Glast, null)
12 else
13 AddRule(S → G C)

Fig. 9. The ProcessNextGangster method

are stored in the set of bindings β, which is added toG′ to create the new gangster
Gnew. The remainder of the method is similar to lines 7-10 in ProcessPorts
in which the rule Gnew → G C is added to the grammar if it is the first gangster
in the gang, and the linked list of gangs is adjusted to include Gnew .

6 Gangmatching Analysis

Gangmatching analysis is essentially an extension of bilateral matching analy-
sis [3]. Between any two given ports, the same techniques can be used to deter-
mine why the first port does not match the second and vice versa. However, the
presence of prior ports in a ClassAd introduces the possibility that one match
may be dependent on the results of other matches. In addition, new problems
arise from the more complex structure of a gang as opposed to two matching
ClassAds.

Distributed Policy Specification and Interpretation 209

A common problem in authorization systems is how to revoke a principal’s
access to a resource. For example, in SPKI/SDSI a principal may have access
to a resource via several different certificate chains containing certificates issued
by several different principals. In order to revoke the principal’s access to the
resource, at least one certificate in each such chain must be revoked. To avoid
unnecessary disruption caused by certificate revocation, the set of certificates
revoked should be minimal.

The Break the Chain problem may be abstracted to the problem of finding
a minimal element in a subset lattice that passes a given test. In this case the
top set in the lattice is the set of all certificates in C. The test on a given C′

⊆ C is whether the certificates in C′ grant the principal access to the resource.
The problem of finding all such minimal elements has been shown to be NP-
hard [10], but the problem of finding one such element is linear. Furthermore,
finding k such elements for a constant k is polynomial: for k > 1 the complexity
is O(nk−1). The algorithm itself [4] applies this abstraction, then improves the
performance by optimizing to reduce repeated work.

The Missing Link problem is the opposite of the Break the Chain problem. In
this case a principal has no access to a resource, but may have elements of a cer-
tificate chain that would grant access. The problem is to find which certificates
are needed to complete a chain that will authorize the principal to access the
resource. The gangmatching equivalent of this problem is finding which Class-
Ads are needed to complete a gang. The solution to this problem is to run the
gangmatching algorithm with a slight modification: When a port does not match
any other ports, the gang is not abandoned; instead, the algorithm continues to
match the rest of the ports in the gang and any dependencies on the unmatched
port are ignored. When a partial gang has been completed, the “missing links”
in the gang can be determined by using the Requirements expressions of the un-
matched ports, and the references to imported attributes in these ports. Satisfied
Requirements expressions elsewhere in the gang that contain such references can
be partially evaluated to produce additional constraints for missing links. The
gangmatching algorithm can be modified [4] to accept prototype ClassAds that
will capture these additional constraints.

7 Related Work

There are some similarities between ClassAds and agent communication lan-
guages [9, 7, 17], though ClassAds employ a representation more akin to a
database record than the rule-based representation used by these languages.
There are also similarities between ClassAds matchmaking and the unification-
based matching used by Linda [8] and Datalog. Linda uses tuples containing
variables or literals to search a tuple space for a matching tuple. Datalog oper-
ates similarly on relational databases.

The term rewriting approach to SPKI/SDSI was introduced in [2] along with
an algorithm for certificate chain discovery. It is also possible to use pushdown
systems (PDS) to represent SPKI/SDSI rewrite rules [11, 12]. The enhanced

210 N. Coleman

gangmatching algorithm in Sect. 5 began as a generalization of the post* algo-
rithm for PDS reachability.

The resource selection and authorization policies discussed in this paper both
fall under the category of provisions. Provisions are conditions that must be
satisfied or actions that must occur before a decision takes place. In contrast
obligations are conditions or actions that must be fulfilled after a decision has
been made [1]. An SLA is an agreement between a service provider and a cus-
tomer that specifies certain attributes of the service such as availability, service-
ability, performance and operation [19]. PDL [13] expresses obligation policies
as event-condition-action rules. The Ponder policy language [5] can also be used
to express both obligation and authorization policies.

Several other policy languages – such as Rei and Kaos have been developed
specifically for the semantic web and grid computing applications. These lan-
guages are typically based on description logics such as DAML and OWL. A
comparison of Rei, Kaos and Ponder is presented here [18].

8 Conclusions

Distributed computing environments provide users with a wide range of ser-
vices that a single isolated system can not provide. Policies must be designed
and enforced to protect the interests of users and providers of these services.
Resource selection policies address the question: What kind of resource does a
principal want, and is such a resource available? Access control policies address
the question: Can a principal be trusted to have access to a given resource?

The framework for policy specification and interpretation presented in this
paper provides a clearing house for both types of policies. It is built on the simple
yet powerful concept of matchmaking. The ClassAd language and matchmaking
algorithms were initially developed to solve resource selection problems in a
distributed system. As we have shown, the same framework with some minor
modifications is applicable to managing access control policies.

We have demonstrated that the ClassAd language can be used to specify
SPKI/SDSI authorization policies, and an enhanced gangmatching algorithm
can be used to assemble SPKI/SDSI certificate chains correctly and efficiently.
We have also presented the necessary theoretical underpinnings of the enhanced
gangmatching algorithm which generalize beyond the specific instance of
SPKI/SDSI certificate chain discovery. Finally, we have demonstrated analy-
sis techniques for bilateral and multilateral matchmaking that serve as essential
tools for comprehending matchmaking results. Taken together these contribu-
tions provide a robust framework for specifying and interpreting resource allo-
cation policies.

References

[1] Bettini, C., Jajodia, S., Wang, S., Wijesekera, D.: Provisions and obligations in
policy rule management and security applications. In: Proceedings of 28th Inter-
national Conference on Very Large Data Bases (VLDB), Hong Kong, China, pp.
502–513 (August 2002)

Distributed Policy Specification and Interpretation 211

[2] Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.: Certifi-
cate chain discovery in SPKI/SDSI. Journal of Computer Security 9(4), 285–322
(2001)

[3] Coleman, N., Raman, R., Livny, M., Solomon, M.: Distributed policy management
and comprehension with classified advertisements. Technical Report UW-CS-TR-
1481, University of Wisconsin (April 2003)

[4] Coleman, N.: A Matchmaking Approach to Distributed Policy Specification and
Interpretation. PhD thesis, University of Wisconsin-Madison (August 2007)

[5] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

[6] Ellison, C., Frantz, B., Lampson, B., Rivest, R.L., Thomas, B., Ylonen, T.: SPKI
certificate theory. RFC 2693 (September 1999)

[7] Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communi-
cation language. In: Proc. of the Third Int’l Conf. on Information and Knowledge
Management, CIKM 1994. ACM Press (November1994)

[8] Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

[9] Genesereth, M., Singh, N., Syed, M.: A distributed anonymous knowledge sharing
approach to software interoperation. In: Proc. of the Int’l Symposium on Fifth
Generation Computing Systems, pp. 125–139 (1994)

[10] Godfrey, P.: Minimization in cooperative response to failing database queries.
International Journal of Cooperative Information Systems (IJCIS) 6(2), 95–149
(1997)

[11] Jha, S., Reps, T.: Analysis of SPKI/SDSI certificates using model checking. In:
Proceedings of IEEE Computer Security Foundations Workshop (CSFW). IEEE
Computer Society Press (2002)

[12] Jha, S., Reps, T.W.: Model checking spki/sdsi. Journal of Computer Security 12(3-
4), 317–353 (2004)

[13] Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: AAAI/IAAI,
pp. 291–298 (1999)

[14] Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource man-
agement for high-throughput computing. In: Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, HPDC7
(July 1998)

[15] Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource co-
allocation with gangmatching. In: Proceedings of the Twelfth IEEE International
Symposium on High Performance Distributed Computing (HPDC12), Seattle, WA
(June 2003)

[16] Solomon, M.: The ClassAd language reference manual version 2.4 (May 2004),
http://www.cs.wisc.edu/condor/classad/refman/

[17] Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelli-
gent agents. IEEE Expert, 36–46 (December 1996)

[18] Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Se-
mantic Web Languages for Policy Representation and Reasoning: A Comparison
of KAoS, Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

[19] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S.,
Huynh, A., Carlson, M., Perry, J., Waldbusser, S.: Policy terminology. RFC 3198
(November 2001)

http://www.cs.wisc.edu/condor/classad/refman/

	Distributed Policy Specification and
Interpretation with Classified Advertisements
	Introduction
	The ClassAd Language and Gangmatching
	SPKI/SDSI
	Gangmatching Structures and Concepts
	Gangmatching Algorithm
	Gangmatching Analysis
	Related Work
	Conclusions
	References

