The Correctness-by-Construction Approach
to Programming

Derrick G. Kourie ¢ Bruce W. Watson

The
Correctness-by-Construction
Approach to Programming

@ Springer

Derrick G. Kourie

University of Pretoria
Department of Computer Science
Pretoria

South Africa

Bruce W. Watson

Stellenbosch University

FASTAR Group, Information Science
Stellenbosch

South Africa

ISBN 978-3-642-27918-8 e-ISBN 978-3-642-27919-5
DOI 10.1007/978-3-642-27919-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012935686
ACM Codes: D.2, F3, F4

(© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Software correctness is a perennial concern. It can and should be addressed as
well as possible at various levels and in various complimentary ways. This book
is devoted to software correctness at the programming-in-the-small level—down at
the point where the developer is in the process of giving birth, so to speak, to an
algorithm or part of an algorithm. Its concern lies with that which Brooks [15] calls
the essentials:

Those aspects of the programming task which are inescapably error-prone; which confound
and confuse our minds, even though individual programming commands in isolation seem
quite simple; those uncomfortable points in the code where we are inclined to behave
intuitively, guessing at or making little leaps in logic—just tiny little leaps—in an effort to
speed up the coding effort. And when we are done with coding and everything compiles
nicely, then we hold our breath and live in faith and hope that if there were small
misjudgments, they will be exposed during testing.

The book advocates a development style known as correctness by construction. The
idea is to start with a succinct specification of the problem, which is progressively
evolved into code in small, tractable refinement steps. Experience has shown that
the resulting algorithms are invariably simpler and more efficient than solutions that
have been hacked into correctness. Furthermore, such solutions are guaranteed to
be correct (i.e. they are guaranteed to comply with their specifications) in the same
sense that the proof of a mathematical theorem is guaranteed to be correct.

The idea is not new. It emerged from earlier attempts in computer science to
prove programs to be correct after the code had been written. By the mid-eighties,
hopes that such ex post facto correctness proofs could contribute practically to
software correctness more or less reached a dead end. Without imposing some
restraint on how code is to be produced, proofs rapidly become too complex—both
for the human mind, and for computers. Instead, a tradition built up, starting with
some of the most prominent founding personalities in computer science (Dijkstra,
Hoare, Knuth, Wirth) of methodically evolving correct code from specifications in
a disciplined step-wise fashion.

Dijkstra was arguably the most vociferous proponent of these ideas. He posi-
tioned himself as a prophetic voice crying out in the wilderness that the only path to

vi Preface

creating enlightened software developers was through “the cruelty of really teaching
computer science” [13]. He contrasted this approach with software engineering,
whose charter he disparagingly characterised as “How to program if you cannot.”
This kind of polarising language has led to unfortunate caricatures around two
computer science stereotypes: industry-based developers who supposedly hack
around in the real world producing lots of flakey code; and head-in-the-clouds
academia engaging in impractical esoteric scientific research. In this caricatured
world, the former call themselves software engineers and the latter call their research
“formal methods”.

We vigourously contest these polarised stereotypes and we hope that this book
will contribute to their erosion. We aim to convince the reader that the kind of
methodical formal approach that Dijkstra and others have advocated is well within
the reach of the average computer scientist and software engineer. Not only that:
we hope that the reader will discover that, when confronted with algorithmic
problems whose logic is unusually complicated or confusing, it is both satisfying
and profitable to develop the code by engaging in a correctness by construction
style of programming. We have therefore pitched this text at those who actually
develop code, rather than at the formal method purists. At the risk of being accused
of being insufficiently formal, we have avoided the kind of presentation style which
has given formal methods the reputation of being the domain of an elite few.

The way in which we set about achieving our purpose is by a series of graded
examples, rather than by an over-emphasis on the theory that drives the correctness
by construction development method. However, a modicum of theoretical and
notational background is unavoidable, and this we provide in Chap. 2. After rapidly
reviewing first-order predicate logic in this chapter, we relate it to the idea of (total)
correctness of Hoare pre-post formulae. This allows us to define the notion of the
weakest precondition which, in turn, allows for precisely defining the semantics
of the commands used in Dijkstra’s Guarded Command Language (GCL)—the
notation used throughout the book. Initially we rely on Hoare pre-post notation
for expressing the refinement laws of Morgan’s refinement calculus [32], but later
also introduce Morgan’s somewhat more concise notation. We restrict ourselves to
a small but useful set of the refinement laws, thus shielding the average computer
scientist from the more obscure refinement rules which will only interest theoretical
computer scientists.

Chapter 3 illustrates the correctness by construction development method on
a number of simple algorithms, many of which might have already been seen
in the first or second year of study. Chapter 4 looks at a variety of intermediate
range algorithms across a broad spectrum of application domains: analysing array
properties (such as finding the longest segment of different elements); raster
graphics applications; computational geometry; the majority voting problem; etc.
Chapter 5 considers the development method in the context of procedure calls,
including recursive procedure calls.

Chapters 6 and 7 are intended as case studies. Chapter 6 shows how the cor-
rectness by construction method was used to derive an elegant recursive algorithm
for constructing the cover graph of a so-called set intersection closed lattice. The

Preface vii

formal concept analysis (FCA) research community are discovering how variants of
these lattices can be used in a numerous applications such as machine learning and
data clustering. The derived algorithm turns out to be significantly superior to many
other competing algorithms in the domain. Although a version of the algorithm
had been intuitively discovered in the nineties, its articulation was so obscure that
even domain specialists found it difficult to understand and verify. As a result,
there were niggling doubts about its correctness, despite thorough testing. The case
study highlights the fact that the correctness by construction derivation leads to a
clear, comprehensible version of the algorithm. Its correctness can thus be readily
apprehended and accepted by the user community.

The Chap.7 case study illustrates yet another useful feature of correctness by
construction: it offers a rational basis for articulating algorithm taxonomies. The
chapter shows how, when a number of related algorithms are developed in this style,
their commonalities are clearly exposed, thus offering a basis for taxonomising the
related algorithms. The resulting taxonomies are not only useful from a pedagogical
perspective; they also tend to expose algorithmic “gaps” in the derived taxonomy,
thus suggesting further areas of algorithmic research. In this text we have chosen
to illustrate the idea in respect of algorithms to construct minimal acyclic finite
automata. Such automata are widely used for in domains such as natural language
processing, voice recognition and intrusion detection. This is but one of several other
studies which have relied on correctness by construction as a basis for taxonomising.

Although these last two chapter are specialist in nature, we consider them
important in that they dispel the myth that correctness by construction should be
positioned in the domain of dilettante formal methods theoreticians. On the contrary,
we think that any respectable computer science/software engineering university
curriculum ought to cover the basic material to be found in this book and that
every well-educated computer scientist/software engineering graduate should know
something about its major themes. It is becoming increasingly apparent that in
universities where such material is casually bypassed under the pretext of focussing
the curriculum on industry needs, the better-informed students feel cheated by what
they perceive as a dumbing down of courses—and they would be right! Such a
viewpoint directly contradicts IEEE’s Guide to the Software Engineering Body of
Knowledge (SWEBOK)'! which identifies themes covered in this book as part of the
software engineer’s armory of tools and methods. Similarly, this book’s material
will be seen to be consonant with the aspirations of the Software Engineering
Method and Theory (SEMAT) initiative which, in its call to action?, somewhat
controversially aims to “refound software engineering based on a solid theory”.

The first four chapters of the book, as well as Chap. 6 has formed the core of
a fourth year course (involving about 30 contact hours) that we have presented for
more than a decade. More of the book can be covered in this time if the instructor

ISee Chap. 10 of the SWEBOK specifications available from http://www.computer.org/portal/web/
swebok/home.

2See http://www.semat.org/bin/view.

http://www.computer.org/portal/web/swebok/home
http://www.computer.org/portal/web/swebok/home
http://www.semat.org/bin/view

viii Preface

selectively omits and/or assigns as self-study, some of the material in Chaps. 3, 4
and 6. We have found that students are well-able to cope with self-studying many
of the examples in Chaps. 3 and 4, provided that the instructor has initiated them
into the approach by walking through a representative number of examples. Such
self-study-based fast tracking through Chaps. 3, 4 and 6 enables one to cover the
main ideas in Chap. 7 as well—something that is well worth doing.

Students who wish to take the course are advised that they should have a basic
background in logic. Subject to this proviso, we believe that much of the material
can be taught at third year level and probably even earlier. Indeed, because of
Dijkstra’s influence, this approach to programming was taught at an introductory
level at Eindhoven University of Technology.

Many people have contributed to this book in many different ways. They all
deserve our sincerest thanks:

* Numerous students whose feedback over the years has helped improve the quality
of text.

* Loek Cleophas, who has read and critiqued earlier drafts of the book.

* Alexander Skelton, who wrote the first draft of Chap. 5 as a student project.

e Our many colleagues and friends who have constantly inspired and encouraged
us in various ways to produce this book.

e Last, but not least, our respective families who have been a constant source of
support and encouragement to us.

Pretoria, South Africa Derrick G. Kourie
Eindhoven, Netherlands Bruce W. Watson

Contents

1 Introduction ... 1
1.1 Invariance Examplesooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 2
1.1. A Chess Board Problem............ccooiiiiiiiiiiiiiinnn, 2

1.1.2 A Black and White Balls Gameccovvvviiin. 4

1.2 The Way Ahead ... 5
2 Back@round...............oooiiii 7
2.1 Predicates.....oooiiiii i 8
2.1.1 Propositional Calculus ... 8

2.1.2 Predicate Calculus..........ovviiiiiiiiiiiiiiiiiiiiiiiie 10

2.1.3 Predicates Define Sets of Statesccoeeena. 10
2.1.4 Strong and Weak Predicatescooeeiiiiii 11

2.2 Specifying Pre- and PostconditionscooiiiiiiL. 14
2.2.1 Hoare Triples as Specifications of Total Correctness........ 14
2.2.2 Weakest Preconditions and Semantics 16

2.3 Guarded Command Language..............cccoviiiiiiiinniiiiinn.... 17
2.3.1 EmptyCommand...........ooeiiiiiiiiiiiieiiiiiiii e 18

2.3.2 Diversion: Some Extreme Cases..............oocvvieieennn. 18
2.3.3 ASSIZNMENT ottt ettt e e e 24
234 COMPOSIEION .. .uueetteee et e e e e e e e e 27
2.3.5 SeleCtON ..ottt e 30
2.3.6 RePetitionouuuiiiiiiii e 32

2.4 RefinementRules ... 34
2.4.1 Strengthen PostconditionRule........................oo.. 35
2.4.2 Weaken PreconditionRule ... 36

243 SkipRule ... 36
2.4.4 Sequences of Refinementscooiiiiiiiiina. 37
2.4.5 Refinement and Weakest Preconditions 37
24.6 AssignmentRule ... 37
2477 CompositionRule ... 38
2.4.8 Following AssignmentRuleooiiiiin 40

ix

Contents

249 SelectionRule ... 41
2.4.10 RepetitionRule ... 42
2.4.11 Procedures and Procedure Callsoooeena. 45
2.5 Object Orentationo.ueeeeeeenniiiieeeeaieeenaiaeeen. 45
2.6 Supplementary Notationooviiiiiiiiiiiiiiieiiiiieeeeeeenen... 48
2.6.1 Morgan’s Refinement Calculusoooiiinn 48
2.6.2 Arraysand SEqUENCES........ovvviiiiiiiiiiiiiiiiiiiiiaaann.. 49
2.6.3 Additional GCL Commandsccovviuiiieeeennnnnn. 50
2.7 Revision EXerCisSescouvuuiiiiiiiiiii i 51
Simple Examples 55
3.1 Linear Search...........cooiiiiiii i 56
3.1.1 Formulating the Problem...................................... 56
3.1.2 Choosing the Invariantoeeiiiiiiien.... 56
3.1.3 Establishing the Invariant 57
3.1.4 RefiningtoCreateaLoop..............cooovviiiiiii.... 58
3.1.5 Puttingit All Togethereiiiiiiiin.... 60
3.2 Finding the Maximal Element..........................ooeaLL. 60
3.2.1 Formulating the Problem................................oL L. 60
3.2.2 Choosing the Invariantcoviiiiiiiiie... 61
3.2.3 Establishing the Invariant 62
3.24 RefiningtoCreateaLoop..............ooviiiiii. s, 63
3.2.5 Puttingit All Togetherciiiiiin.... 66
3.3 Binary Search ... 66
3.3.1 Formulating the Problem..........................oooo 66
3.3.2 Decomposing the Problemooo 67
3.3.3 Generating the Binary Search Code 68
334 Afterthe Binary Search ... 72
3.3.5 Puttingit All Together ..., 73
3.4 Pattern Matching ... 74
3.4.1 Formulating the Problem...........................oooL. 75
34.2 Developingthe Loopccovviiiiiiiiiiiiiiii i, 75
343 Puttingit All Together ..., 77
3.5 EXponentiationooooiiiiiiiiiiiiiii e 77
3.5.1 Formulating the Problem..............................oole. 78
3.5.2 Establishing the Invariantoole. 78
3.5.3 RefiningtoCreateaLoop..............ooooiiiiiiiiiiiin.. 79
354 DISCUSSION .uutiiiittii e 83
3.6 Integer Logarithm Approximationc.oovvvviieeeennnn... 84
3.6.1 Problem Statement and Invariant 84
3.6.2 Refinement Stepsoovviiiiiiiiiiiii e 85
3.6.3 Justifying the Assignmentcooovviiiiiiiinnnn... 85
3.6.4 Strengthening Predicates by Decreasing Ranges 86
3.6.5 DISCUSSION .uuuiiiteteti et 87
3.7 Revision EXEICiSeccovviuiiiiiiiiiiiii i 88

Contents xi

4 Intermediary Examples 95
4.1 Dutch National Flag...........oooiiiiiiiiiiiii s 95
4.1.1 Formulating the Problem......................cooot. 96
4.1.2 Choosing the Invariantcooiiiiiiiiiiiie. .. 98
4.1.3 Refining the Specification..................oooeeiiiiiiie... 99
4.1.4 Proving the Third Guard Command 100
4.1.5 Putting it All Togetherccooiiiiiiiiiiiiiiiiiiinn. 102
4.1.6 DISCUSSION ..eettiinitiiie ettt 102

4.2 LoNgesSt SEZMENTttt eeeeeeeeeeeeeeeeees 103
4.2.1 Formulating the Problem...................coooiiiiiiiiiinn. 104
4.2.2 A First Attempt at Refinement....................ooooiinnn 105
4.2.3 A Revised Attempt at Refinemento...e. 107
4.2.4 Putting it All Togethercooiiiiiiiiiiiiiiiiiiinn, 111

425 DISCUSSION ..ttt et 112

4.3 Palindromesuieiiiiiii 112
4.3.1 The Outer LoOp.......uuuuiiiii e 113
4.3.2 Formulating the Problem...................coooiiiiiiiiiin.. 113

4.3.3 Refining the Specification.................coovviiiiiiinnnnn. 115
4.3.4 Putting it All Togethercoooiiiiiiiiiiiiiiiiinn. 116

4.3.5 DISCUSSION ..eetiiiitt ettt 117

4.4 Raster LiNescooviuiiiiiiiiii 117
4.4.1 Formulating the Problem...................coooiiiiiiiiiin 118
4.4.2 Deriving the LoOopuuuuiiiiiiiiiiiiiiiiiiia 121

4.43 Developing the Loop’s Bodyoooooiiiiit. 122
444 Putting it All Together ..., 125
4.4.5 DISCUSSION ...ttt 126

4.5 Raster Circle.......ouuiiiiiii s 127
4.5.1 Problem Statementcooiiiiiiiiiiiiii 127
4.5.2 From Invariantto Loop...............oooiiiiiii . 129

4.5.3 Refining the Loop’sBody ..., 129
454 Determining the Guards...............ccooiiiiiiiiiiii... 132

455 Derivingthe Guardscooociiiiiiiiiiiiii 133
4.5.6 Putting it All Togetherccooiiiiiiiiiiiiiiiiinnn, 134

4.6 Majority VOUING ...ovvitiitiiiiitt e 136
4.6.1 Formulating the Problem...................coooiiiiiiiiiin. 137
4.6.2 Arriving at an Invariant and Developing the Loop........... 138
4.6.3 Developing the Guardscoovviiiiiiiiiinnnnnnnn. 139
4.6.4 DISCUSSION ...eettinititte ettt 143

4.7 Computational GEOMELIYuuurtiiiiiiiiiiiieeeees 144
4.7.1 Background and Notationcooeuiiiiinnnnnnnn.. 144
4.7.2 The Approach to Solving the Problem 146
4.7.3 Deriving the Solution Constructively......................... 147
4774 DISCUSSION ..tetiinttttt ettt 150

4.8 ReViSION EXEICISES . .vvuntit ettt it i 151

xii

5

Contents
Procedures and Recursion ... 161
5.1 IntrodUCtionuueiiiiii e 161
5.2 PrOCEAUIES ...ttt ettt e 162
5.2.1 Parameterless Procedurescooiiiiiiiii. 162
522 Passby Valueoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiees 164
523 Passby Resultoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiees 167
5.2.4 Passby Value Resultccovviiiiiiiiiiiiiiiiiiinnnn 168
5.2.5 FUNCHONS ..ttt eeeees 169
5.3 Procedure Refinement Strategy.................coeviiiiiiiiininnn..... 170
5.4 Recursive Procedures ...t 171
5.5 Terminating Recursive Programs........................oeeeeee... 173
5.6 Recursive Examples............oooiiiiii 177
5.6.1 Factorial...........ouuiiiiiiiiiiiiii e 177
5.6.2 Searchinga Listooviiiiiiiiiiiiiiiiiiiiiiiiiiiies 181
5.6.3 Evaluating an Expression Tree............coovvviiiiiiinnnn 185
5.6.4 METZESOTT. ..ttt 191
5.7 ConcluSiON ..ottt 194
Case Study: Lattice Cover Graph Construction 197
6.1 IntroduCtionooiiiiiiiiiiiii i 197
6.2 Preliminariesoooiiiiiiiiiiiiii 198
60.2.1 LatliCeS . e ettt e 198
6.2.2 Set Intersection-Closed Latticescccoevvvviiieinnnnns 201
6.3 The Algorithm.........oooiiiiii e 205
6.3.1 The Basic Structurecoevviiiiiiiiiiiiiiiiiinnnnnns 206
6.3.2 Articulating and Attaining invI(i)........cceeviiiiiiiiiaa.n. 207
6.3.3 Articulating and Attaining i 7v2(i)ooeiiiiiiiiiiiann 208
6.3.4 Fillingin Sy .ooneiii i 210
6.3.5 Completing the Select Command............................. 211
6.3.6 The Completed Algorithmoooceiiiiiiiiiin.. 214
6.3.7 The Operational Implications..............cccoooiiieeea..n. 215
6.4 Refactoringsooviiiiiiiiiii i 218
6.4.1 Efficiently Inserting C; N X ... 218
6.4.2 Finding the Parentof X ..., 219
6.4.3 DISCUSSION ..eonnitttti it 221
6.5 A Gentle Introduction to Formal Concept Analysis................... 222
Case Study 2: Classifying MADFA Construction Algorithms 227
78 S §51 540 T L1 115 107 5 P 227
7.2 From DFAS tO MADFAS......otiiiiiieeees 228
7.2.1 Deterministic Finite Automata—DFAS 228
7.2.2 Acyclic Deterministic Finite Automata—ADFAs 230

7.2.3 Minimum Acyclic Deterministic Finite
Automata—MADFASooiiii 231

7.2.4 Concepts for MADFA Construction Algorithms 232

Contents Xiii
7.3 An Abstract MADFA Construction Algorithm 237
7.3.1 Structural Invariant Instantiations 239

7.3.2 The Procedures to be Instantiated 241

7.3.3 The Importance of the Skeleton-Based Taxonomy 241

7.4 Trie Intermediate ADFA o 242
7.4.1 Procedure add_wordyouiiiiiiiiiiiiiiiiiii., 242

7.4.2 Adding Only Prefix Words............oooiiiiiiiiiiiiin. 244

7.4.3 Adding a Non-prefix Wordina Trie..................oooo..e. 244

7.4.4 Procedure cleanupyccoiiiiiiiiiiiiiii i 246

745 AnExample.......oooooiiiiiiiiii 249

7.5 Arbitrary Intermediate ADFA ... 250
7.5.1 Procedure add_wordpcccooiiiiiiiiiiiiiiiiiiii., 251

7.5.2 Procedure cleanupycooiiiiiiiiiiiiiii i 255

7.53 COMMENTATY «..uutetitee ettt e e e e eeeens 255

7.6 Word Adding Based on a Partial Ordercooiiiie 255
References........ ... 259

	The Correctness-by-Construction Approach to Programming

	Preface

	Contents

