A Framework for the Modular Specification and
Orchestration of Authorization Policies

Jason Cramptdnand Michael HutfA

I Information Security Group, Royal Holloway, University lodndon
j ason. cranpton@ hul . ac. uk
2 Department of Computing, Imperial College London, Uniteddtiom
M Hut h@ nperi al . ac. uk

Abstract. Many frameworks for defining authorization policies fail reake a
clear distinction between policy and state. We believe dis$inction to be a
fundamental requirement for the construction of scalatikributed authoriza-
tion services. In this paper, we introduce a formal framéwfor the definition
of authorization policies, which we use to construct theqyohuthoring lan-
guageAPOL. This framework makes the required distinction betweeitpaind
state, andAPOL permits the specification of complex policy orchestratiat-p
terns even in the presence of policy gaps and conflicts. Alresgect of the lan-
guage is the use of a switch operator for policy orchestatidich can encode
the commonly used rule- and policy-combining algorithmexisting authoriza-
tion languages. We define denotational and operational r#@rador APOL and
then extend our framework with statically typed methodsgolicy orchestra-
tion, develop tools for policy analysis, and show how thatlgsis can improve
the precision of static typing rules.

1 Introduction

One of the fundamental security services in computer sysieatcess controla mech-
anism for constraining the interaction between (authatit) users and protected re-
sources. Generally, access control is implemented by droaméation service, which
includes arauthorization decision functiofADF) for deciding whether a user request
to access a resource (awncess requestvhich we abbreviate byequesthenceforth)
should be permitted or not. The output of an authorizatiasigilen function is usually
determined by evaluating the request with respeattiorization state

The protection matrix [14] is one of the earliest technigiee€ncoding authoriza-
tion state. It assumes the existence of a set of subje¢those entities that generate
requests), a set of objeats (those entities to which access is requested), and a set of
actionsA (the types of interactions with objects that subjects mayest). Mathemat-
ically, the protection matri¥/ is a total functionS x O — P(A) whereM s, o] is the
set of interactions that subjegtis authorized to engage in with objectA request is
modeled as a triplés, o, a) and is authorized if and only if € M|s, o]. This explicit
enumeration of all authorized requests in the authorinatiate is appealing in its sim-
plicity. The authorizatiorpolicy, which is implemented by the ADF, is to authorize a
request if it is listed in the authorization state.

In recent years, this enumeration of authorized requessitinorization state has
been refined, with authorized requests being grouped tegé@ito “targets”. Autho-
rization state can then be seen as a set of taf@ats . ., 7, } whereT; C S x O x A.
Typically, a requests, o, a) is authorized if and only ifs, o, a) € T; for somei. Access
control lists (ACL) are one obvious example of this approadhere each targdf; is
associated with a particular objegt

We may also extend what we cathtget-basetlauthorization state by associating
explicitdeny andallow responses with targets, so that exceptions to requesisragth
elsewhere in the authorization state can be articulateekrGin extended set of targets
{(Ty,allow), (T, deny)}, e.q., a requesis, o, a) is authorized if and only ifs, 0,a) €
Ty and(s,o0,a) € T». Here we see that the authorization state may not be comiste
T1 may allow a request, whil&; may deny it. Most authorization frameworks provide
a number of different ways of resolving suchnflicts(such as “allow-overrides” or
“deny-overrides”). Conversely, the authorization stateld containgapsand neither
allows nor denies certain requests.

The literature includes many target-based specificatinguages for defining au-
thorization state (e.g. [5, 10, 15]) — notably XACML [18] —chtarget-based policy al-
gebras (e.g.[2, 6, 21]). In the case of XACML, we would deftmeduthorization policy
to be the specification of the policy decision point (PDP)e-dlgorithm that processes
what the XACML standard refers to as “policies”. Differemiplementations of the
PDP may yield different authorized requests for the samécipes”.

Motivation. Much recent work on access control has blurred the distindtetween
what we callauthorization stat@ndauthorization policy Consider the simple security
propertypss, defined in the Bell-LaPadula access control model [4], Wisays that
subjects is authorized to read objeatonly if A(s) > A(o), whereh : SUO — Lis
a labeling function and. is a lattice of security labels. Theolicy is that a subject is
authorized to read an object only if its security classifarais at least as high as that
of the requested object. Thatateis defined byL and . To reinforce this distinction,
suppose thaX(o) = [; attimet;, and subsequently the contents@ire de-classified so
thatA(o) =l < I attimets > ¢1. Now, for a subject with \(s) = I at timest; and
to, arequestto readlis denied at;, and allowed at,. Thus, the decision depends on the
request, the authorization statei¢ mutable), and the immutable poli¢¥(s) > A(0)).
Target-based “policies”, however, do not make this distimc The confusion arises
because the protection matrix policy is to test for membprsh a request in a set
encoded by the protection matrix, and so the policy itsedfttecome implicit. Although
it is clearly possible to express most authorization pefiaising a protection matrix
— by simply encoding all authorized triples in the matrix €lsuepresentations are
very inefficient and “brittle”; since state and policy areceded in the matrix it will
be necessary to change the matrix to re-encode the policy &wee there is a state
change. To encode the simple security property above ggigchange ta\(o) requires
adding actionread into entryM s’ o] for all subjects’ with [< A(s") andl; £ A(s').
The evaluation of authorization policies may also be stipdgpendent on system
state. The Chinese wall policy [7], €.9., is a separationuty gholicy designed to pre-
vent conflict of interest. The evaluation of this policy r@es historical information
about which requests have previously been made and awdottas not clear how to

represent or evaluate such policies using target-basédgmISimilarly, stack-walking
algorithms for evaluating requests in a virtual machinaremment require information
about the run-time state in order to determine whether agstdqs authorized [13].

Target-based “policies” encode authorization state atidypso every instance of
a target-based “policy” has to re-encode the semanticsegbdticy it seeks to enforce.
In this sense, target-based policies are analogous to fittingirograms that neither
benefit from the reuse of already existing authorizationgiec functions, nor cleanly
separate authorization state from those policies. We talisve that there is great value
in a framework that supports tmeodularspecification and realization of authorization
policies, and that also provides for separation of statepatidy.

The framework we propose has two types of policaecision policieandorches-
tration policies Decision policies are similar to Boolean functions, wlasrerchestra-
tion policies are similar to policy combining algorithmsXA\CML [18] and operators
in policy algebras (e.qg. [6, 19]).

Decision policies take parts of the request or authoripagtate (or both) as input
and make either a Boolean decision or return a third valpmdicating that the policy
is unable to provide aonclusivedecision. A policy may returd. because

— the request either does not have the expected form for ssfot@socessing (e.g.
the action islelete but needs to becad for pss), or

— the request cannot be evaluated in the authorization gajetfiere may not be an
ACL for the requested object).

Orchestration policies take other policies as input. Wenstiat all possible or-
chestration requirements, even in the presence of indensigor lack of information,
can be programmed with a single 4-casétch operator Use of this operator should
appeal to people familiar with such statements in mainstre@gramming languages.
Indeed, we develop a simple typed, modular programmingudagg in which decision
and orchestration policies are distinguished by types aadieclared and enforceable
as parameterized methods.

Contributions. We develop a formal framework for authorization policiesahich
base policies encapsulate domain-specific aspects andamifabstract interface for
orchestration; all possible orchestration patterns f@elzolicies are supported in the
presence of conflict or lack of information; and authorizattate and policy specifica-
tions are cleanly separated, facilitating maintenancerande. Policy orchestration is
achieved with a switch operator that is formally analyzaiid functionally complete
for policy coordination (including conflict resolution). &\add typed, parameterized
methods to that core policy language. This not only fad¢dgareuse and modular anal-
ysis of policies, but these types and their analysis can@dsiify important run-time
behavior of policy evaluation.

2 Authorization using Trees

We first fix terminology and provide an overview of our apptoad/e then describe
policy orchestration before introducipglicy treesas formal foundations foAPOL.

Overview. We assume the existence of three types of entities: polifgreament
points, policy orchestration points and policy decisiomgs?® As in the XACML ar-
chitecture, a policy enforcement point (PEP) is resporditf ensuring that (i) every
request is evaluated to determine whether it is authorieddig that the request is only
allowed to proceed (i.e. granted) if it is authorized.

Unlike in XACML, a policy decision point (PDP) in our archdtire exists to de-
termine whether a request is authorized by a base policyn@ikielow). We introduce
policy orchestration points (POP) to forward requests t€@®br other POPs for evalua-
tion. The POP combines the decisions returned in resporieede requests, according
to the orchestration pattern defined for that POP. The PQPr#tarns a decision to the
PEP (or a higher level POP).

Each base policy has its own PDP. Complex authorizatiortigsliare constructed
by orchestrating base policies. Hence, the authorizatidnitecture required to evaluate
an orchestrated policy will be dependent on the policy. imithspect, our architecture is
quite different from existing approaches, such as XACMLjchtassume ainglePEP
and asinglePDP - reflecting that the policy in target-based approachiesglicit (and
is based on membership of the request in one or more tarfé@gsye 1(a) illustrates
schematically an example of this policy evaluation ardatitee. Henceforth, we will
blur the distinction between a PDP and the base policy itree®and use the two
terms interchangeably.

(a) Generic tree (b) BLP policy

Fig. 1. Examples of policy evaluation trees

We assume that base policies are invoked by a policy orcitestrpoint. A base
policy returns an authorization decision based on the r&aqral the current autho-
rization state of the system. Returning to the example ofthmple security property
pss introduced in Section 1, informally speaking and writingto denote the state at
time ¢;, we havepss((s, o, read),o1) = deny andpss((s, o, read), o2) = allow. We
model base policies as (partial) Boolean functions andaaizition state is an input to

3 We prefer this terminology to authorization enforcemenmiction etc., as it is widely used and
reflects the fact that access control in our setting is pdliayed.

a policy. This separation of concern allows us to decoupl&Eypsemantics from the
specification of authorization state, in contrast to exgsipproaches such as XACML.

A POP or a PDP does not necessarily take a request of the(fgenu), or similar,
as input. Consider, for example, an authorization serviaeitnplements a policyacL
that decides requests on the basis of membership in an AGtn e PEP may well
receive a request of the for(s, o, a), but it actually passes, « and the ACL foro to
the PDP! Hence, all requests of fors, o, a) can be processed without error (assuming
thato is a valid object identifier) and are processed in the same wagontrastpss
does not process requests in this uniform manner: it isritilen the evaluation of
write requests.

The ACL, however, is part of the authorization state, soqyglinc. cannot be used
to evaluate requess, o, a) if it is not possible to locate and retrieve the ACL for object
o. Indeed, the evaluation of all but the simplest policiessas those that authorize all
requests) will require authorization state as input, arttiésefore acutely sensitive to
the availability and consistency of such state. One canvadtiate the simple security
propertypss if, €.9.,\(s) is not available or does not belong to the security latfice

In summary: there will be requests for which a policy doesretirn a conclusive
decision, simply because the policy is not designed to @emdtain requests for partic-
ular authorization states; in addition, many policies ecamaturn a conclusive decision
if there is incomplete knowledge of authorization state.

Base policies. Base policies have total functions of typeq x X — {0,1, L} as
semantics, wherReq is the set of requests ardd the set of authorization states. Math-
ematically, a base policy is (semantically) equivalentpagial functiorb : Reqx X —
{0, 1} that has been extended to a total funciorReq x X — {0, 1} in the obvious
way.

The intuition and assumption is that a base policgturns econclusivedecision ()
for prohibitions or1 for authorizations) for all well-formed requests as infhdttcan
be properly evaluated in the current state. Base paligy, €.9., makes a conclusive
decision for requests, o, a) if objecto has an ACL, and returns if o has no ACL. We
can express the simple security property and the *-proféttas the following base
policies, wherer is understood to include an encoding of the security functio

1 if A(s) > A(o) anda is read
pss((s,0,a),0) =40 if A(s) # A(o) anda is read
otherwise

lf

—

if A(s) < A(o) anda is write
p«((s,0,a),0) = 40 if A(s) £ A\(0o) anda is write
L otherwise
We work with a set obase policied3 that have the above type and from which more
complex policies are orchestrated. Actual members ofill depend on context and

4 The request received by the PEP may also be calleapplicationrequest onativerequest,
and the one passed to the PDP by the PEP may be calledisionor authorizationrequest.

requirements. We might havg& = {pacL, pss, p« }, for example. Base policies also fit
nicely with a view of authorization as a service, where thaufois on the orchestration
of base policies informed by the known and trusted behavithrase base policies.

Joining policies. Policy orchestration may be useful where policies are agpea inde-
pendently and their respective results need to be combefeddreaching an authoriza-
tion decision. Alternatively, we may simply need to constrauthorization policies out
of simpler sub-policies. The BLP model, for example, “orstnates” three policies: the
simple security property, the *-property and the discredity security property (which
requires that the request be authorized by a protectiorixmif) [4].

Many existing languages, therefore, include the possitili combining the deci-
sions returned by two policies, and our language is no eiaepive writep; + ps to
denote thgoin of p; andp,, and define

(pl + pg)(T‘, U) =D1 (Tv U) D pQ(T‘, U),
where is a binary relation oq L, 0, 1, T } defined by the following table.

e|L01T

1L 0o1T
00 0TT
111 7T1T
TTTTT

A similar join operator was proposed and used in the work g@[8but for policies of
different types. We writé® for the set of policies orchestrated from base policieS.in
The orchestration of base policies means that policiesmeigs have a richer type,
as total functiong: Req x ¥ — {L,0,1, T}. By abuse of notation, we may write
and1, respectively, for the constant policies o) — 0, and(r, o) — 1. We also write
17, whereT C Req, to denote the base policy that retuini§ » € 7' and0 otherwise.

The switch operator. Many policy algebras and policy languages define ways of re-
solving gaps () and conflicts ") in policies as they occur [6, 21], thereby reducing the
range of all policies to some subsetfof, 0, 1, T}. Reducing the range t1,0,1},
e.g., removes conflicts, and reducing the rangétd, T} removes gaps. XACML,
e.g., usesule-combiningandpolicy-combining algorithm# remove conflicts [18].

We introduce theswitch policy operator, which can be uséater alia to remove
gaps and conflicts. Informally, this operator is a total fimcof typeP> — P, where
the decision computed by evaluating the first policy deteasiwhich of the other four
policies should be evaluated to obtain the overall decigitore formally, we have:

Definition 1. Let p, ¢1, g0, ¢1 and ¢t be policies. Then the formal expression
(p:q1,9),q,qT)is a policy withswitch policyp such that for all(r, o) € Req x X,

qi(r,o) ifp(r,o) =1,
(p:qr,q0,q1,97)(r,0) def q(r,0) 'f p(r,o) =0, "
q(r,o) ifp(r,o) =1,
(r,0)

gr(r,o) ifp(r,o)=T.

The switch operator is surprisingly versatile. We now diégcsome of its more im-
mediate applications. We can define a polieyhat reverses those decisions for which
p is conclusive, and a policip/F') whereF filters policyp as follows:

p e (p:1,1,0,T) @)
(p/F) < (1r : %, L,p,%) ®3)

Sincel r cannot outputl or T, we use the reserved symbalto denote “dead code”,
policies that cannot be reached by the switch operator. ticpéar, we write% for g+
whenever the switch policy is a base policy (and so cannot prodicas a decision).

Policy p/ F' models theif operator of [8, 9] where base polidy models what is
called an “access predicate” in those papers. We may thidk & a filter and op as
the filtered policy. Indeed, jf is the constari or 1 policy, p/ F models an XACML rule
with targetF" and effectp: policy expressiorily : %, L, 0, %), for example, encodes
an XACML rule with targetF’ and effect deny.

We may also express the join operator+ p» (introduced above) using the switch
operator:

(p1+p2) € (p1 2 p2, 0,01, T) (4)
wheregy = (p2 : 0,0, T, T)andg; = (p2 : 1, T,1, T). Moreover, all the usual policy
modifiers can be expressed using the switch operator. We foaexample,

dov(p) = (p: 1,0,1,0) aov(p)=(p:L1,0,1,1) agr(p)=(p:L1,0,1,1)
dbd(p) = (p:0,0,1,T) abd(p) = (p:1,0,1,T)

where: dov denotes “deny-overridesibd denotes “deny-by-default”aov denotes
“allow-overrides”;abd denotes “allow-by-default”; and policygr(p) returns the same
decision a9 if p returns a conclusive decision and retuinstherwise. Most of these
constructions are supported in XACMkgr, however, is not.

Clearly the switch operator provides a very economical amtbrm way of spec-
ifying a wide variety of orchestration patterns. For example can easily specify an
orchestratioraed (“allow-overrides-else-deny”) that returfisvhenevep does and re-
turns0 otherwise: namelged(p) = (p: 0,0,1,1).

The switch statemer{p : p’,0,1,p’) is the policy that returns whatever poligy
returns wherp returns a conclusive decision, and returns whatever pgliagturns
otherwise. In other wordsp : p’, 0,1, p") is a “first-applicable” binary policy operator,
commonly used to evaluate firewall rule-sets. Finally, ome &lso program “majority-
out-of-n” for any odd natural number > 2 with nested switch operators.

The policyg~ in (1) can be seen asanflict handlerfor the switch policyp. The
choice of this handler depends on the context within whig¢hitself is orchestrated.
For example, if the switch statement fpr is the outermost policy, a conservative ap-
proach would make it always prohibit all requests. Butmay have negative polarity
(with respect to applications dfabove) as a sub-policy within an orchestration and so
prohibiting all requests may be unwise. Polarity issuedeagir may be non-constant
since it could make its decision depend on further switctestants that try to differen-
tiate the source of conflict — a common idiom in programminthweixceptions. In this
context we note that the join operator distributes throufpdicies ¢, in (1), but not
through the switch policy.

Example 1.We can orchestrate the full policy defined in the BLP model as

peLp = dbd(dov(pss + p«) + pact).’

Figure 1(b) shows the policy’s evaluation architectureal{arnative, and perhaps more
natural, orchestration can be defined using the switch tmera

peLp = (pss + p« : L, 0, pacL, 0)

Writing pir = dov(pss + ps) to denote thenformation flowpolicy of the BLP
model, we haveg p = dbd(pir + pacL)- We may then view,r as a base policy since
any conflicts arising from the evaluation@fs andp, are resolved by théov operator.

Note that an organization may choose to construct a new ludisg (e.9.p;r above)
from existing ones and “hide” the original base policieg(pss andp,) from policy
orchestrators. A modular policy language should thereamport such encapsulation.

Note also that the type of policy composition described iafagle 1 is not possible
in target-based policy languages, because the “policie#ten in such languages en-
code state as well as policy and are therefore inextricatly to the context in which
they were authored.

The following result establishes that our language is ptwenough to realize any
orchestration function.

Theorem 1. For eachn > 0, all total functions of typg 1,0,1, T}" — {L1,0,1, T}
can be generated from the constants), 1, T and the switch operator.

Arieli and Avron [1] consider the expressive power of thegaage incorporating
the connective$ L ,0,1, T,—,V, A, &, ®, D, —, < }. They prove that the language us-
ing connectives from—, A, D, L, T} is functionally complet@and no proper subset of
these connectives has this property [1, Theorem 3.8]. Wehisseesult as the basis for
the proof of Theorem 1.

Proof (Sketch)We show that the operators O andA can be encoded using, T, 0,
1 and the switch operator. The definitionsmiand— given below in (5) are equivalent
to those given by Arieli and Avron (using connectives frém A, D, L, T}).

ey (@:1,1,y,y) and -z % (z:1,1,0,T) ®)

We now consider the operator (which is analogous to conjunction in classicgidp
the “truth” table for which is shown below.

x x x

Y Y Y

s
—= O e
S o >
o O O o8
— = o e
o O o o>
e e RS
- 4 H|8

Y
1
0
1
T

— = o >
— ~ O =
4 4 o o>

T

4|

5 We have chosen to implement the discretionary securitygutppsing the standard interpre-
tation of a protection matrix as a set of ACLs.

p,q = (Policy Trees)
allow | deny | na | conflict Constant Policy
b Base Policy
(p:qL,q0,q1,97) Policy Switch

(&) Grammar

allow](r, o) 4y [deny](r, o) EC)

naj(r,o) € L [eonflict](r,0) &' T
b](r, o) = p(b)(r,)

(p: qL,90,q1,47)](r,0) < [qu](r,0) where[p](r,0) = v

[
[
[
[

(b) Denotational semantics

(allow, r,0) ~ 1 < (deny,r,0) ~ 0 o (conflict,r,0) ~ T ot
oL p(b) (7”, U) =v Base (p7 T U) ~ v (q’LM T U) ~ vl Switch
(na,T,O’)’WJ_ (b77'70')’\/>’l) ((p ql7q07fZ17qT)7T7U)’\”U,

(c) Inference rules for operational semantics

Fig. 2. Grammar and semantics for policy trees

Noting thato Ay = 0and1l Ay =y forally € {L,0,1, T}, itis easily seen that we
can encode Ay as(x : z,0,y, 2"), where

z=(y:1,0,1,0) and 2 = (y:0,0,T,T).

Note that: (i) we cannot encode without 1; (ii) we cannot encode without0; and
(iii) we cannot encode: without0 and1.

Grammar and semantics for policy orchestration. We now summarize and formalize
the preceding discussion by giving a grammar and formal séosafor policy trees.
Figure 2(a) depicts the grammar for policies, which arethmit of some set of base
policies, constant policies (of which all excephflict are base policies), and the switch
operator.

The denotational semantics for policy trees are shown inrgi@(b), relative to
an environmenp that gives semantics(b) : Req x ¥ — {1,0,1} to all base poli-
ciesb. Figure 2(c) shows a “big-step” structural operational aetits of policy trees,
again relative to an environmept An induction on the height of derivation trees for
judgmentsp, r, o) ~ v can be used to establish that the operational and denadtion
semantics compute the same meaning:

pol = (Policy)
allow | deny | na | conflict Constant Policy
% Dead Code
base Base Policy
switch {pol: pol;pol;pol;pol} Policy Switch

Fig. 3. Core policy-orchestration languagé’OL for some set of base policies

Theorem 2. For all policy treesp € P and environmentg, equation[p](r,o) = v
holds if and only if(p,r,0) ~ v can be derived using the inference rules in Fig-
ure 2(c).

3 APOL: a typed, modular policy language

We now develop a treatment of policies tgped, modular programsviodularity fa-
cilitates compositionality, maintainability, and reudeoolicies. Types are conservative
mechanisms for preventing certain kinds of “run-time” esrduring request evaluation.
For example, types can certify that the us&fo represent dead code is safe for the
evaluation of a policy for any request and authorizatiotesta

The grammar of a core programming languageOL (“authorization policy or-
chestration language”) is shown in Figure 3: it is essdgtile grammar for policy
trees shown in Figure 2(a), extended with a synflidbr dead code, and presented in
a form more amenable to programming. Below, we present i@ $§ge system where
types are inferred from the syntax of policies without ewagilug them. We then also
demonstrate that deeper semantic analysis is useful forstatic type inference.

Let p be an expression oAPOL and letp(b) be defined for all base policias
occurring inp. Then we point out that the operational semanticg of Figure 2(c) is
well defined by matching clauses of the grammars in Figuras&{d 3. However, as
there is no rule fof%, r, o) ~ ..., dead code does not evaluate to any value, meaning
that its evaluation is stuck and constitutes an error.

Typed methods forAPOL. We extend our core policy language with typed, parame-
terized methods. The typesin the extended language asese (for base policies, that
cannot outpufl), pol (for orchestrated policies), andd (for base policies that cannot
output_L and so represent Boolean predicates). Each method kasbase, pol, prd}

as return type, specifying that method invocations indiméth correctly typed input
policies render a policy of type. The following method, for example, explicitly im-
plements the deny-overrides orchestration pattern. Nmedturn typebase and the
parameter typpol for its argument policy:

base deny-overrides(P:pol) { switch{P : na; deny; allow, deny} }

The type system for such methods is presented in Figure gnjedts “expressioa
has typer in contextI™ have the forml” - e: 7, wherer € {pol, base, prd} and I is
a context binding variables, to typesr;. Each rule specifies a possible inference: if all

10

I+ na: base I' \- deny: prd I'Fallow: prd I'F conflict: pol
Xita; €T ket 'CI' I'e:prd 'l e: base
' X;:o; I"kFe:rt '+ e: base 'k e: pol
I'+e: pol I'key,:rt (Vwe{l,0,1,T})
I't switch{e:e ;eo; e1;eT}:rt
I'ke: prd I'key:rt (Yo e{0,1})
I'+ switch{e: %;eo; e1; %}: 1t
I't-e: base I'key:rt (Voe{l,0,1})
I'tswitch{e:ei;eo; e1; %}: rt
ru{X:a}lkre:rt
I'\{X |a}F rtmame(X: a){e}: aa —rt
(Vi) 'U{X:a}tre:a; I'Frtmame(X: a){e}: a —rt
I' - mname(e): rt

Fig. 4. Rules for type checking judgments i e: t for APOL expressions, wherg' is a type
context binding variables to typest € {base, pol, prd}, andX : « is a list of typed parameters

judgments on top of the line of a rule have been inferred ogaen, then the judgment
below the line of that rule can be inferred.

The first row in Figure 4 states the types of constant poljceftecting thaha is a
base policyconflict a hon-base policy, and that conclusive decisions are patstic
These are axioms as their inferences do not depend on anypgndg. The second row
uses standard structural and type casting rules for tymzeante in the presence of
subtyping and states thatd is a subtype obase and that the latter is a subtypemsl.
The third row handles type inference for the switch operater switch policy must
have typepol (through casting of subtypes, if needed), and all argumelitips must
agree on the output type (again, through casting, if needed)

The next two rows depict two important patterns for reasgpainout the safe use of
the dead code symb@l. The first one shows that= switch{e : %; eg; e1; %} has
return typert by first showing that the switch polieyhas typeprd, and then showing
that bothey ande; have typert. These type inference rules are safe: for no request
and for no authorization state does the operational seosaotti- ever evaluate one of
the two occurrences ¢b. This rule can be used to certify that our definitionpf F'),
when written inAPOL, is type safe. The second rule is very similar but — sinceli on
has a dead code symbol for the case when the switch policytsudpconflict — it only
has to show that the switch policy has tygese. Again, such type inference guarantees
that the symbo¥ will never be encountered in the operational semantics.

The final two rows show standard type inference rules formpatarized methods.
The first rule assumes the type bindings of the method head these bindings to infer
a type for the method body, and that type is then the methaodrégpe (but in a type
context that no longer relies on these assumptions). Tlendatile captures that well
typed method invocations return the specified type.

11

Example 2.We illustrate the type system on methddny- overri des specified
above. To show that this method has output tygee, we assume th& has typepol as
declared in the method header (and’5pecords that binding) and show that the switch
statement has output typase under that assumption. But this follows easily from the
type inference rule for the switch statement, since all argjot policies have subtypes
of base or have that type, and so all argument types can be cast jmbage, if needed.

Note that variables occurring in a contdxtcannot be constants &fPOL. In par-
ticular, it is not possible to assign a type%g and so one can also not give a type to a
policy switch with switch policy’%.

Our type system can be fine-tuned to enable a richer semgpingt For example,
consider the typedPOL methodfoo, declared by

prd foo(P:pol) { switch{P : deny; P, P; deny} }

Its argument has typgol and so we cannot assume that this policy is a base policy or
free of conflict. Our type system therefore forces that alirfargument types of the
switch statement be cast into their least common supertypieh is pol. Therefore,

the type system can only infewl as output type. But when is executed ag, we
know that its output is @eny. Similarly, whenP is executed ag; its output is an
allow. Therefore, it is intuitively safe to assume that all fouguwments have typgrd

and soprd is a safe output type for methddo. We now sketch a semantic analysis
that formalizes such intuitions. This analysis can thendmsluo extend our static type
inference.

Analysis of APOL policies. For any policyr, letr 1 1 be a propositional formula
whose atoms are expressions of the férin 1 andb 1 0 for base or constant policies
b occurring in policyr. Intuitively, » 1 1 is true if policy r authorizes the (implicit)
request, ana 1} 0 is true if policyr denies it. The constraint {} 1 (respectivelyy 1
0) therefore expresses the conditions on the base policgidasifor the orchestrated
policy r to either authorize (respectively, deny) the request oeport a conflict.

The definition ofr 1} 1 andr 1} 0 is by induction over terms oAPOL. For constant
policies, these conditions merely express the obvious mganf these constants. For
exampleconflict f} 1 andconflict {} 0 both are the truth constantue, whereas
na f} 1 andna {} 0 both are the truth constayfiise. For the other two logical constants,
we setdeny {} 1 = false, deny {} 0 = true andallow {} 1 = true, allow {} 0 =
false. Assuming that dead code is type safe, we’set 1 and% 1 0 both to befalse.

The meaning ob 1} 1 andb {} 0 for base policie$ will depend on the application
domain and concrete nature of those base policies. For dgaivgse policies may
be written over equations of attributes and so these contgranay be propositional
formulas over such attribute conditions.

It remains to specify the conditions(1 andr 1} 0 whenr is the switch statement
(p:q1,9),q,q97). Then we can defineq 1 in the following way:

rl=0EEA0)A=(@M) A 1)V (6)
(PTO)A=(p 1) A(g 1)V

PO AN D) A1)V

PhO)A@NL) AT 1)

o~~~ o~

12

The definition ofr f+ 0 merely changes alj, 1 1 in (6) to ¢, { 0. The intuition
of these constraints should be clear. Each disjunct spgcifiéts first two conjuncts,
the intended continuation location of the switch statemant captures the intended
condition for that continuation in its third conjunct. Tleesonstraints are therefore dis-
junctions of conjunctions of similar constraints for sulgies.

Given such formulas, one can then build other constrairgs, €~ 1+ 0) A (r 1 1),
which states the conditions for polieyto authorize a request (and so, in particular, not
to report a conflict). In order to determine whether a polityas a conflict, for example,
is equivalent to determining whether f+ 1) A (7 f+ 0) A A, —=((0 1+ 1) A (b 1+ 0))
is satisfiable, wheré ranges over all base policies occuringrinNote that the third
conjunct rules out spurious witnesses since base poliai@sat returnr .

We can apply this analysis to infer the more informative tgpe of methodfoo,
which our static type system could not do. For that, it suffimeshow that the bodyof
the method always returiisor 1, for any switch policyp of typepol; that is to say, that
r) 1is equivalent to-(r 1} 0) if we interpretp 1} 0 andp 1} 1 as atomic propositions.

Applying (6) to thatr, and noting thabeny f} 1 = false, we compute

T l=(=@t0)A=(pt1)A false) v (7
(PPO)A=(H1)APNL)V
P NO)A@H)A(@ 1)V
(P O)A(p 1) A false))
==t0)A(@N1)

Noting thatDeny f} 0 = true, we similarly compute: + 0 = (p 1+ 0) V (=(p 1
0) A=(p 1+ 1)). But it is easily seen that(r ff 0) andr 1 1 are equivalent formulas.

4 Discussion

We now discuss our contributions and put them into persgecti

Separating state and policies.We have argued that policy and state should be sepa-
rated, and have developed a framework that meets thisioritdn a practical setting,
enterprise security requirements must be encoded in dm#tion policies, which may
require complex orchestration patterns. However, theaxightion state is independent
of these orchestrations, and different parts of the stat@dvypically be maintained

by different local administrators who are responsible forectly associating users and
resources with security-related attributes.

Informing future authorization languages. We now consider how our work is related
to target-based approaches to authorization and suggedsthlese connections might
usefully inform the development of authorization language

Recall that the protection matrix authorizes a requestaf tequest is encoded in
the matrix. The policy is to allow if that request is encodedhe matrix and deny
otherwise — the simplest possible way of deciding whethergaiest is authorized. In
our view, the authorization state is the matkik (or some other suitable data structure,
such as a collection of ACLs). Accordingly, we define the baskcy p.ji0w, Where
Datow(r, M) = 1if r € M, and L otherwise.

13

We can, of course, prohibit certain requests using the stodi#on!p, .. for an
appropriate choice af/. Complex policies can be built from authorization state eom
ponentsiMy, ..., M and appropriate orchestrations usingand! (or the switch op-
erator). Hence, policy authors can define orchestratiohdewocal administrators can
updatelM; to reflect changes to personnel and resources.

Informing XACML. We now reflect on how the features of our framework might
usefully be applied in XACML. We focus our attention on XACMhecause it is a
well known standard that provides a framework for the speadion and evaluation
of target-based authorization policies. In conflatingestatd policy, target-based ap-
proaches such as XACML mean either that policy authors mustmre of authoriza-
tion state or that local administrators must be able to aud#&CML policies. This
makes it more difficult to author and maintain policies. Im framework, a component
of authorization state can be regarded as (just) anotheures and can be protected
by an authorization policy like any other resource. In XACMhere is no structured
support for policy updates, which therefore continue to peodlematic issue.

We believe the switch operator could usefully be deployedACML (and other
authorization languages). Currently, the XACML standaduires that a number of
rule- and policy-combining algorithms be supported by tiEPPMoreover, XACML
rules and policies are indistinguishable in terms of sefognso it is unnecessary to
have both rule- and policy-combining algorithms. It ha®dieen observed that there
are certain pathological cases in which the combinationlef and policy-combination
algorithms (compliant with the XACML standard) leads to xpected results [17].
Hence, we make three suggestions: (i) XACML should remoee (#ttificial) dis-
tinction between rules and policies; (ii) a single algarittbased on the switch op-
erator should be supported (since we showed that it can entb@dstandard policy-
combination algorithms); and (iii) types and modularity (@ketched in this paper)
should be supported to provide safer policy orchestratiopblicy authors.

A feature of XACML and target-based policy languages aneélalgs is the imme-
diate resolution of conflicts. As can be seen from our frantéytbere is no theoretical
necessity for doing this and there may be good practicabreagor postponing the
computation of a conclusive decision. A convincing casalfroupling policy compo-
sition from conflict resolution has been made in [8] alreddy<XACML terminology,
the rule- and policy-combining algorithms should not beuiegd attributes of policy
and policy set elements, respectively, thereby enablinGMA policies and policy sets
to return conflicts.

Related work. The work of Brunset al.[8, 9] is closest to that reported in this paper.
This work suggested the Belnap spdde 0, 1, T } as carrier of meaning for authoriza-
tion policies, built atomic policies of the foray T (in our notation) wherd is a subset
of Req, employed policy combinators that act on policies in a peis¢ manner, and
showed that the resulting policy language is as expressivtecan be (thinking of tar-
getsT as predicates) [8]. Subsequently, various policy analgseseduced to checking
the satisfiability of formulae in an NP fragment of first-ordiegic, and such satisfia-
bility checks are extended to a limited form of assume-guaereasoning [9]. Our
work creates policy languages that have equal expresssai®rchestration. But our
framework separates requests from authorization stapposts types and modularity

14

for policy orchestration and enforcement, and has a verplsipolicy analysis in the
form of Boolean satisfiability checks (based on a sole paljpgratorswitch).

There are a number of authorization frameworks in whichgiedi are based on
logic-programming languages such as Datalog (see [3, 1MfdrZzxample). Although
these frameworks are not target-based and can easily sxpoéisies such agss, the
orchestration patterns that are available are limited bystmantics of rule evaluation
in the underlying programming language.

5 Conclusions

Summary. The motivation of this paper was to overcome most of the sbarings of
existing target-based authorization-policy languages sis XACML. We began with
a semantic view of a policy as a 4-valued function whose igputprises a request and
relevant authorization state. This resulted in a languag®licy trees with{0, 1, 1 }-
valued base policies where models that a request is not applicable for the policy
interface, or that it cannot be evaluated in the authoomastate. We then transferred
these ideas into the programming languA&®©L, first within a core language of policy
trees and then for an extension of that core language to paesized, typed methods.
We also gave equivalent denotational and operational séredn the core language.
Finally, we discussed how our ideas and results could lgeepmlicy analysis — for
example to reason about the type safe identification of dedé e and inform new
versions of the XACML standard and future authorizatiorgizeges.

Future work. Our most recent work shows that programs of typa are repre-
sentable, and hence implementable, as ternary decisigredis [20]; that the remote
evaluation of sub-programs can be accommodated by the ueesion diagrams that
have four kinds of edges and terminals; and that our poli@hyais methods can be
used to enrich our type system with a notion of semantic lfiedavioral) types. We
intend to continue our preliminary work in this area.

In our current approach, the output valueis overloaded, as we use it to denote
both the inapplicability of a base policy to a request andittability to evaluate a
request given current knowledge of the state. If we want tkenzadistinction between
these cases, we would require a 5-valued meaning sffadet,b, T}, where0, 1,
and T retain their meaning anglandb denote problems with policy evaluation and
policy applicability (respectively). We also hope to degghn implementation of our
framework, perhaps making use of XACML-like syntax to defietform-independent
authorization state. Thirdly, we mean to devise a moduldicp@analysis forAPOL
based on the familiar idea of programming by contracts [16].

Acknowledgements. The authors would like to thank the anonymous referees &r th
helpful comments.

References

1. O. Arieli and A. Avron. The value of the four valueAtrtificial Intelligence 102(1):97-141,
1998.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Backes, M. Durmuth, and R. Steinwandt. An algebra fimposing enterprise privacy
policies. InProc. of the 9th European Symp. on Research in Computer i8eqages 33-52,
2004.

. M.Y. Becker and P. Sewell. Cassandra: Distributed accestrol policies with tunable

expressiveness. IRroc. of 5th IEEE International Workshop on Policies for Wiisuted
Systems and Networksages 159-168, 2004.

. D.E. Bell and L. LaPadula. Secure computer systems: Wdnéfi@osition and Multics inter-

pretation. Technical Report MTR-2997, Mitre CorporatiBedford, Massachusetts, 1976.

. E. Bertino, S. Castano, and E. Ferrari. AutidrA comprehensive system for securing

XML documents.IEEE Internet Computings(3):21-31, 2001.

. P. Bonatti, S. de Capitani di Vimercati, and P. Samarati.algebra for composing access

control policies.ACM Transactions on Information and System Secsiy):1-35, 2002.

. D. Brewer and M. Nash. The Chinese Wall security policyPtoc. of the 1989 IEEE Symp.

on Security and Privacypages 206-214, 1989.

. G. Bruns, D.S. Dantas, and M. Huth. A simple and expresséreantic framework for

policy composition in access control. In V. D. Gligor and HaMel, editorsProc. of the
Fifth Workshop on Formal Methods in Security Engineeringorr Specifications to Code
pages 12-21, 2007.

. G. Bruns and M. Huth. Access control via Belnap logic: Efifee and efficient composition

and analysis. In A. Sabelfeld, editétroc. of the 21st IEEE Computer Security Foundations
Symp, pages 163-176, 2008.

E. Damiani, S. De Capitani di Vimercati, S. Paraboschil B. Samarati. A fine-grained
access control system for XML documen&CM Transactions on Information and System
Security 5(2):169-202, 2002.

J. DeTreville. Binder, a logic-based security langudgeProc. of the 2002 IEEE Symp. on
Security and Privacypages 105-113, 2002.

D.J. Dougherty, K. Fisler, and S. Krishnamurthi. Spgog and reasoning about dynamic
access-control policies. Broc. of Automated Reasoning, Third International Jointh@o-
ence, IJCAR 20Q6ages 632—-646, 2006.

L. Gong.Inside Java 2 Platform SecurityAddison Wesley, 1999.

M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protectiaroperating systemsCommuni-
cations of the ACM19(8):461-471, 1976.

R. Jagadeesan, W. Marrero, C. Pitcher, and V. SaraswatedTconstraint programming:
A declarative approach to usage control. Aroc. of the 7th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Peogming pages 164—175, 2005.
B. Meyer. Applying “Design by ContractlEEE Computer25(10):40-51, 1992.

Q. Ni, E. Bertino, and J. Lobo. D-Algebra for composingess control policy decisions.
In Proc. of 4th ACM Symp. on Information, Computer and Comnatioies Securitypages
298-309, 2009.

OASIS. eXtensible Access Control Markup Language (XACML) Vergion2005. OASIS
Committee Specification (T. Moses, editor).

C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SLadtess control language for
security policies and complex constraints. Aroc. of the Network and Distributed System
Security Symp. (NDSS)ages 89-107, February 2001.

T. Sasao. Ternary decision diagrams: SurveyPriyc. of the 27th International Symp. on
Multiple-Valued Logic (ISMVL '97)pages 241-250, 1997.

D. Wijesekera and S. Jajodia. A propositional policyeala for access controhCM Trans-
actions on Information and System Secyr@2):286—235, 2003.

16

