
A Framework for the Modular Specification and
Orchestration of Authorization Policies

Jason Crampton1 and Michael Huth2

1 Information Security Group, Royal Holloway, University ofLondon
jason.crampton@rhul.ac.uk

2 Department of Computing, Imperial College London, United Kingdom
M.Huth@imperial.ac.uk

Abstract. Many frameworks for defining authorization policies fail tomake a
clear distinction between policy and state. We believe thisdistinction to be a
fundamental requirement for the construction of scalable,distributed authoriza-
tion services. In this paper, we introduce a formal framework for the definition
of authorization policies, which we use to construct the policy authoring lan-
guageAPOL. This framework makes the required distinction between policy and
state, andAPOL permits the specification of complex policy orchestration pat-
terns even in the presence of policy gaps and conflicts. A novel aspect of the lan-
guage is the use of a switch operator for policy orchestration, which can encode
the commonly used rule- and policy-combining algorithms ofexisting authoriza-
tion languages. We define denotational and operational semantics forAPOL and
then extend our framework with statically typed methods forpolicy orchestra-
tion, develop tools for policy analysis, and show how that analysis can improve
the precision of static typing rules.

1 Introduction

One of the fundamental security services in computer systems isaccess control, a mech-
anism for constraining the interaction between (authenticated) users and protected re-
sources. Generally, access control is implemented by an authorization service, which
includes anauthorization decision function(ADF) for deciding whether a user request
to access a resource (anaccess request, which we abbreviate byrequesthenceforth)
should be permitted or not. The output of an authorization decision function is usually
determined by evaluating the request with respect toauthorization state.

The protection matrix [14] is one of the earliest techniquesfor encoding authoriza-
tion state. It assumes the existence of a set of subjectsS (those entities that generate
requests), a set of objectsO (those entities to which access is requested), and a set of
actionsA (the types of interactions with objects that subjects may request). Mathemat-
ically, the protection matrixM is a total functionS × O → P(A) whereM [s, o] is the
set of interactions that subjects is authorized to engage in with objecto. A request is
modeled as a triple(s, o, a) and is authorized if and only ifa ∈ M [s, o]. This explicit
enumeration of all authorized requests in the authorization state is appealing in its sim-
plicity. The authorizationpolicy, which is implemented by the ADF, is to authorize a
request if it is listed in the authorization state.

In recent years, this enumeration of authorized requests inauthorization state has
been refined, with authorized requests being grouped together into “targets”. Autho-
rization state can then be seen as a set of targets{T1, . . . , Tn} whereTi ⊆ S × O × A.
Typically, a request(s, o, a) is authorized if and only if(s, o, a) ∈ Ti for somei. Access
control lists (ACL) are one obvious example of this approach, where each targetTi is
associated with a particular objectoi.

We may also extend what we call “target-based” authorization state by associating
explicit deny andallow responses with targets, so that exceptions to requests authorized
elsewhere in the authorization state can be articulated. Given an extended set of targets
{(T1, allow), (T2, deny)}, e.g., a request(s, o, a) is authorized if and only if(s, o, a) ∈
T1 and(s, o, a) 6∈ T2. Here we see that the authorization state may not be consistent:
T1 may allow a request, whileT2 may deny it. Most authorization frameworks provide
a number of different ways of resolving suchconflicts(such as “allow-overrides” or
“deny-overrides”). Conversely, the authorization state could containgapsand neither
allows nor denies certain requests.

The literature includes many target-based specification languages for defining au-
thorization state (e.g. [5, 10, 15]) – notably XACML [18] – and target-based policy al-
gebras (e.g. [2, 6, 21]). In the case of XACML, we would define the authorization policy
to be the specification of the policy decision point (PDP) – the algorithm that processes
what the XACML standard refers to as “policies”. Different implementations of the
PDP may yield different authorized requests for the same “policies”.

Motivation. Much recent work on access control has blurred the distinction between
what we callauthorization stateandauthorization policy. Consider the simple security
propertypSS, defined in the Bell-LaPadula access control model [4], which says that
subjects is authorized to read objecto only if λ(s) ≥ λ(o), whereλ : S ∪ O → L is
a labeling function andL is a lattice of security labels. Thepolicy is that a subject is
authorized to read an object only if its security classification is at least as high as that
of the requested object. Thestateis defined byL andλ. To reinforce this distinction,
suppose thatλ(o) = l1 at timet1, and subsequently the contents ofo are de-classified so
thatλ(o) = l2 < l1 at timet2 > t1. Now, for a subjects with λ(s) = l2 at timest1 and
t2, a request to reado is denied att1 and allowed att2. Thus, the decision depends on the
request, the authorization state (λ is mutable), and the immutable policy(λ(s) ≥ λ(o)).

Target-based “policies”, however, do not make this distinction. The confusion arises
because the protection matrix policy is to test for membership of a request in a set
encoded by the protection matrix, and so the policy itself has become implicit. Although
it is clearly possible to express most authorization policies using a protection matrix
– by simply encoding all authorized triples in the matrix – such representations are
very inefficient and “brittle”: since state and policy are encoded in the matrix it will
be necessary to change the matrix to re-encode the policy every time there is a state
change. To encode the simple security property above, e.g.,any change toλ(o) requires
adding actionread into entryM [s′, o] for all subjects′ with l2 ≤ λ(s′) andl1 6≤ λ(s′).

The evaluation of authorization policies may also be strongly dependent on system
state. The Chinese wall policy [7], e.g., is a separation of duty policy designed to pre-
vent conflict of interest. The evaluation of this policy requires historical information
about which requests have previously been made and authorized. It is not clear how to

2

represent or evaluate such policies using target-based policies. Similarly, stack-walking
algorithms for evaluating requests in a virtual machine environment require information
about the run-time state in order to determine whether a request is authorized [13].

Target-based “policies” encode authorization state and policy, so every instance of
a target-based “policy” has to re-encode the semantics of the policy it seeks to enforce.
In this sense, target-based policies are analogous to monolithic programs that neither
benefit from the reuse of already existing authorization decision functions, nor cleanly
separate authorization state from those policies. We thus believe that there is great value
in a framework that supports themodularspecification and realization of authorization
policies, and that also provides for separation of state andpolicy.

The framework we propose has two types of policies:decision policiesandorches-
tration policies. Decision policies are similar to Boolean functions, whereas orchestra-
tion policies are similar to policy combining algorithms inXACML [18] and operators
in policy algebras (e.g. [6, 19]).

Decision policies take parts of the request or authorization state (or both) as input
and make either a Boolean decision or return a third value⊥, indicating that the policy
is unable to provide aconclusivedecision. A policy may return⊥ because

– the request either does not have the expected form for successful processing (e.g.
the action isdelete but needs to beread for pSS), or

– the request cannot be evaluated in the authorization state (e.g. there may not be an
ACL for the requested object).

Orchestration policies take other policies as input. We show that all possible or-
chestration requirements, even in the presence of inconsistency or lack of information,
can be programmed with a single 4-caseswitch operator. Use of this operator should
appeal to people familiar with such statements in mainstream programming languages.
Indeed, we develop a simple typed, modular programming language in which decision
and orchestration policies are distinguished by types and are declared and enforceable
as parameterized methods.

Contributions. We develop a formal framework for authorization policies inwhich
base policies encapsulate domain-specific aspects and offer an abstract interface for
orchestration; all possible orchestration patterns for base policies are supported in the
presence of conflict or lack of information; and authorization state and policy specifica-
tions are cleanly separated, facilitating maintenance andreuse. Policy orchestration is
achieved with a switch operator that is formally analyzableand functionally complete
for policy coordination (including conflict resolution). We add typed, parameterized
methods to that core policy language. This not only facilitates reuse and modular anal-
ysis of policies, but these types and their analysis can alsocertify important run-time
behavior of policy evaluation.

2 Authorization using Trees

We first fix terminology and provide an overview of our approach. We then describe
policy orchestration before introducingpolicy treesas formal foundations forAPOL.

3

Overview. We assume the existence of three types of entities: policy enforcement
points, policy orchestration points and policy decision points.3 As in the XACML ar-
chitecture, a policy enforcement point (PEP) is responsible for ensuring that (i) every
request is evaluated to determine whether it is authorized and (ii) that the request is only
allowed to proceed (i.e. granted) if it is authorized.

Unlike in XACML, a policy decision point (PDP) in our architecture exists to de-
termine whether a request is authorized by a base policy (defined below). We introduce
policy orchestration points (POP) to forward requests to PDPs or other POPs for evalua-
tion. The POP combines the decisions returned in response tothose requests, according
to the orchestration pattern defined for that POP. The POP then returns a decision to the
PEP (or a higher level POP).

Each base policy has its own PDP. Complex authorization policies are constructed
by orchestrating base policies. Hence, the authorization architecture required to evaluate
an orchestrated policy will be dependent on the policy. In this respect, our architecture is
quite different from existing approaches, such as XACML, which assume asinglePEP
and asinglePDP – reflecting that the policy in target-based approaches is implicit (and
is based on membership of the request in one or more targets).Figure 1(a) illustrates
schematically an example of this policy evaluation architecture. Henceforth, we will
blur the distinction between a PDP and the base policy it enforces and use the two
terms interchangeably.

PEP

POP1

POP2

POP3

POP4

PDP1 PDP2

PDP3

(a) Generic tree

PEP

dbd

+

dov

+

pSS p∗

pACL

(b) BLP policy

Fig. 1.Examples of policy evaluation trees

We assume that base policies are invoked by a policy orchestration point. A base
policy returns an authorization decision based on the request and the current autho-
rization state of the system. Returning to the example of thesimple security property
pSS introduced in Section 1, informally speaking and writingσi to denote the state at
time ti, we havepSS((s, o, read), σ1) = deny andpSS((s, o, read), σ2) = allow. We
model base policies as (partial) Boolean functions and authorization state is an input to

3 We prefer this terminology to authorization enforcement function etc., as it is widely used and
reflects the fact that access control in our setting is policy-based.

4

a policy. This separation of concern allows us to decouple policy semantics from the
specification of authorization state, in contrast to existing approaches such as XACML.

A POP or a PDP does not necessarily take a request of the form(s, o, a), or similar,
as input. Consider, for example, an authorization service that implements a policypACL

that decides requests on the basis of membership in an ACL. Then the PEP may well
receive a request of the form(s, o, a), but it actually passess, a and the ACL foro to
the PDP.4 Hence, all requests of form(s, o, a) can be processed without error (assuming
thato is a valid object identifier) and are processed in the same way. In contrast,pSS

does not process requests in this uniform manner: it is “silent” on the evaluation of
write requests.

The ACL, however, is part of the authorization state, so policy pACL cannot be used
to evaluate request(s, o, a) if it is not possible to locate and retrieve the ACL for object
o. Indeed, the evaluation of all but the simplest policies (such as those that authorize all
requests) will require authorization state as input, and istherefore acutely sensitive to
the availability and consistency of such state. One cannot evaluate the simple security
propertypSS if, e.g.,λ(s) is not available or does not belong to the security latticeL.

In summary: there will be requests for which a policy does notreturn a conclusive
decision, simply because the policy is not designed to decide certain requests for partic-
ular authorization states; in addition, many policies cannot return a conclusive decision
if there is incomplete knowledge of authorization state.

Base policies. Base policies have total functions of typeReq × Σ → {0, 1,⊥} as
semantics, whereReq is the set of requests andΣ the set of authorization states. Math-
ematically, a base policy is (semantically) equivalent to apartial functionb : Req×Σ →

{0, 1} that has been extended to a total functionb̂ : Req×Σ → {⊥, 0, 1} in the obvious
way.

The intuition and assumption is that a base policyb returns aconclusivedecision (0
for prohibitions or1 for authorizations) for all well-formed requests as input that can
be properly evaluated in the current state. Base policypACL, e.g., makes a conclusive
decision for requests(s, o, a) if objecto has an ACL, and returns⊥ if o has no ACL. We
can express the simple security property and the *-property[4] as the following base
policies, whereσ is understood to include an encoding of the security function λ.

pSS((s, o, a), σ) =






1 if λ(s) ≥ λ(o) anda is read

0 if λ(s) 6≥ λ(o) anda is read

⊥ otherwise

p∗((s, o, a), σ) =






1 if λ(s) ≤ λ(o) anda is write

0 if λ(s) 6≤ λ(o) anda is write

⊥ otherwise

We work with a set ofbase policiesB that have the above type and from which more
complex policies are orchestrated. Actual members ofB will depend on context and

4 The request received by the PEP may also be called anapplicationrequest ornativerequest,
and the one passed to the PDP by the PEP may be called adecisionor authorizationrequest.

5

requirements. We might haveB = {pACL, pSS, p∗}, for example. Base policies also fit
nicely with a view of authorization as a service, where the focus is on the orchestration
of base policies informed by the known and trusted behavior of these base policies.

Joining policies. Policy orchestration may be useful where policies are developed inde-
pendently and their respective results need to be combined before reaching an authoriza-
tion decision. Alternatively, we may simply need to construct authorization policies out
of simpler sub-policies. The BLP model, for example, “orchestrates” three policies: the
simple security property, the *-property and the discretionary security property (which
requires that the request be authorized by a protection matrix M) [4].

Many existing languages, therefore, include the possibility of combining the deci-
sions returned by two policies, and our language is no exception. We writep1 + p2 to
denote thejoin of p1 andp2, and define

(p1 + p2)(r, σ) = p1(r, σ) ⊕ p2(r, σ),

where⊕ is a binary relation on{⊥, 0, 1,⊤} defined by the following table.

⊕ ⊥ 0 1 ⊤

⊥ ⊥ 0 1 ⊤

0 0 0 ⊤ ⊤

1 1 ⊤ 1 ⊤

⊤ ⊤ ⊤ ⊤ ⊤

A similar join operator was proposed and used in the work of [8, 9], but for policies of
different types. We writeP for the set of policies orchestrated from base policies inB.

The orchestration of base policies means that policies in general have a richer type,
as total functionsp : Req × Σ → {⊥, 0, 1,⊤}. By abuse of notation, we may write0
and1, respectively, for the constant policies(r, σ) 7→ 0, and(r, σ) 7→ 1. We also write
1T , whereT ⊆ Req, to denote the base policy that returns1 if r ∈ T and0 otherwise.

The switch operator. Many policy algebras and policy languages define ways of re-
solving gaps (⊥) and conflicts (⊤) in policies as they occur [6, 21], thereby reducing the
range of all policies to some subset of{⊥, 0, 1,⊤}. Reducing the range to{⊥, 0, 1},
e.g., removes conflicts, and reducing the range to{0, 1,⊤} removes gaps. XACML,
e.g., usesrule-combiningandpolicy-combining algorithmsto remove conflicts [18].

We introduce theswitchpolicy operator, which can be usedinter alia to remove
gaps and conflicts. Informally, this operator is a total function of typeP5 → P , where
the decision computed by evaluating the first policy determines which of the other four
policies should be evaluated to obtain the overall decision. More formally, we have:

Definition 1. Let p, q⊥, q0, q1 and q⊤ be policies. Then the formal expression
(p : q⊥, q0, q1, q⊤) is a policy withswitch policyp such that for all(r, σ) ∈ Req × Σ,

(p : q⊥, q0, q1, q⊤)(r, σ)
def
=






q⊥(r, σ) if p(r, σ) = ⊥,

q0(r, σ) if p(r, σ) = 0,

q1(r, σ) if p(r, σ) = 1,

q⊤(r, σ) if p(r, σ) = ⊤.

(1)

6

The switch operator is surprisingly versatile. We now describe some of its more im-
mediate applications. We can define a policy!p that reverses those decisions for which
p is conclusive, and a policy(p/F) whereF filters policyp as follows:

!p
def
= (p : ⊥, 1, 0,⊤) (2)

(p/F)
def
= (1F : %,⊥, p,%) (3)

Since1F cannot output⊥ or⊤, we use the reserved symbol% to denote “dead code”,
policies that cannot be reached by the switch operator. In particular, we write% for q⊤
whenever the switch policyp is a base policy (and so cannot produce⊤ as a decision).

Policy p/F models theif operator of [8, 9] where base policyF models what is
called an “access predicate” in those papers. We may think ofF as a filter and ofp as
the filtered policy. Indeed, ifp is the constant0 or1 policy,p/F models an XACML rule
with targetF and effectp: policy expression(1F : %,⊥, 0, %), for example, encodes
an XACML rule with targetF and effect deny.

We may also express the join operatorp1 + p2 (introduced above) using the switch
operator:

(p1 + p2)
def
= (p1 : p2, q0, q1,⊤) (4)

whereq0 = (p2 : 0, 0,⊤,⊤) andq1 = (p2 : 1,⊤, 1,⊤). Moreover, all the usual policy
modifiers can be expressed using the switch operator. We have, for example,

dov(p) = (p : ⊥, 0, 1, 0) aov(p) = (p : ⊥, 0, 1, 1) agr(p) = (p : ⊥, 0, 1,⊥)

dbd(p) = (p : 0, 0, 1,⊤) abd(p) = (p : 1, 0, 1,⊤)

where: dov denotes “deny-overrides;dbd denotes “deny-by-default”;aov denotes
“allow-overrides”;abd denotes “allow-by-default”; and policyagr(p) returns the same
decision asp if p returns a conclusive decision and returns⊥ otherwise. Most of these
constructions are supported in XACML;agr, however, is not.

Clearly the switch operator provides a very economical and uniform way of spec-
ifying a wide variety of orchestration patterns. For example, we can easily specify an
orchestrationaed (“allow-overrides-else-deny”) that returns1 wheneverp does and re-
turns0 otherwise: namelyaed(p) = (p : 0, 0, 1, 1).

The switch statement(p : p′, 0, 1, p′) is the policy that returns whatever policyp
returns whenp returns a conclusive decision, and returns whatever policyp′ returns
otherwise. In other words,(p : p′, 0, 1, p′) is a “first-applicable” binary policy operator,
commonly used to evaluate firewall rule-sets. Finally, one can also program “majority-
out-of-n” for any odd natural numbern > 2 with nested switch operators.

The policyq⊤ in (1) can be seen as aconflict handlerfor the switch policyp. The
choice of this handler depends on the context within whichq⊤ itself is orchestrated.
For example, if the switch statement forq⊤ is the outermost policy, a conservative ap-
proach would make it always prohibit all requests. Butq⊤ may have negative polarity
(with respect to applications of! above) as a sub-policy within an orchestration and so
prohibiting all requests may be unwise. Polarity issues aside,q⊤ may be non-constant
since it could make its decision depend on further switch statements that try to differen-
tiate the source of conflict – a common idiom in programming with exceptions. In this
context we note that the join operator distributes through all policies qv in (1), but not
through the switch policyp.

7

Example 1.We can orchestrate the full policy defined in the BLP model as

pBLP = dbd(dov(pSS + p∗) + pACL).
5

Figure 1(b) shows the policy’s evaluation architecture. Analternative, and perhaps more
natural, orchestration can be defined using the switch operator:

pBLP = (pSS + p∗ : ⊥, 0, pACL, 0)

Writing pIF = dov(pSS + p∗) to denote theinformation flowpolicy of the BLP
model, we havepBLP = dbd(pIF + pACL). We may then viewpIF as a base policy since
any conflicts arising from the evaluation ofpSS andp∗ are resolved by thedov operator.

Note that an organization may choose to construct a new base policy (e.g.pIF above)
from existing ones and “hide” the original base policies (e.g. pSS andp∗) from policy
orchestrators. A modular policy language should thereforesupport such encapsulation.

Note also that the type of policy composition described in Example 1 is not possible
in target-based policy languages, because the “policies” written in such languages en-
code state as well as policy and are therefore inextricably bound to the context in which
they were authored.

The following result establishes that our language is powerful enough to realize any
orchestration function.

Theorem 1. For eachn > 0, all total functions of type{⊥, 0, 1,⊤}
n
→ {⊥, 0, 1,⊤}

can be generated from the constants⊥, 0, 1, ⊤ and the switch operator.

Arieli and Avron [1] consider the expressive power of the language incorporating
the connectives{⊥, 0, 1,⊤,¬,∨,∧,⊕,⊗,⊃,→,↔}. They prove that the language us-
ing connectives from{¬,∧,⊃,⊥,⊤} is functionally completeand no proper subset of
these connectives has this property [1, Theorem 3.8]. We usethis result as the basis for
the proof of Theorem 1.

Proof (Sketch).We show that the operators¬, ⊃ and∧ can be encoded using⊥, ⊤, 0,
1 and the switch operator. The definitions of⊃ and¬ given below in (5) are equivalent
to those given by Arieli and Avron (using connectives from{¬,∧,⊃,⊥,⊤}).

x ⊃ y
def
= (x : 1, 1, y, y) and ¬x

def
= (x : ⊥, 1, 0,⊤) (5)

We now consider the∧ operator (which is analogous to conjunction in classical logic),
the “truth” table for which is shown below.

x y x ∧ y

⊥ ⊥ ⊥

⊥ 0 0

⊥ 1 ⊥

⊥ ⊤ 0

x y x ∧ y

0 ⊥ 0

0 0 0

0 1 0

0 ⊤ 0

x y x ∧ y

1 ⊥ ⊥

1 0 0

1 1 1

1 ⊤ ⊤

x y x ∧ y

⊤ ⊥ 0

⊤ 0 0

⊤ 1 ⊤

⊤ ⊤ ⊤

5 We have chosen to implement the discretionary security property using the standard interpre-
tation of a protection matrix as a set of ACLs.

8

p, q ::= (Policy Trees)

allow | deny | na | conflict Constant Policy

b Base Policy

(p : q⊥, q0, q1, q⊤) Policy Switch

(a) Grammar

[[allow]](r, σ)
def
= 1 [[deny]](r, σ)

def
= 0

[[na]](r, σ)
def
= ⊥ [[conflict]](r, σ)

def
= ⊤

[[b]](r, σ) = ρ(b)(r,σ)

[[(p : q⊥, q0, q1, q⊤)]](r, σ)
def
= [[qv]](r, σ) where[[p]](r, σ) = v

(b) Denotational semantics

(allow, r, σ) ; 1
C1

(deny, r, σ) ; 0
C0

(conflict, r, σ) ; ⊤
C⊤

(na, r, σ) ; ⊥
C⊥

ρ(b)(r, σ) = v

(b, r, σ) ; v
Base

(p, r, σ) ; v (qv, r, σ) ; v′

((p : q⊥, q0, q1, q⊤), r, σ) ; v′
Switch

(c) Inference rules for operational semantics

Fig. 2. Grammar and semantics for policy trees

Noting that0 ∧ y = 0 and1 ∧ y = y for all y ∈ {⊥, 0, 1,⊤}, it is easily seen that we
can encodex ∧ y as(x : z, 0, y, z′), where

z = (y : ⊥, 0,⊥, 0) and z′ = (y : 0, 0,⊤,⊤).

Note that: (i) we cannot encode⊃ without 1; (ii) we cannot encode∧ without 0; and
(iii) we cannot encode¬ without0 and1.

Grammar and semantics for policy orchestration.We now summarize and formalize
the preceding discussion by giving a grammar and formal semantics for policy trees.
Figure 2(a) depicts the grammar for policies, which are built out of some set of base
policies, constant policies (of which all exceptconflict are base policies), and the switch
operator.

The denotational semantics for policy trees are shown in Figure 2(b), relative to
an environmentρ that gives semanticsρ(b) : Req × Σ → {⊥, 0, 1} to all base poli-
ciesb. Figure 2(c) shows a “big-step” structural operational semantics of policy trees,
again relative to an environmentρ. An induction on the height of derivation trees for
judgments(p, r, σ) ; v can be used to establish that the operational and denotational
semantics compute the same meaning:

9

pol ::= (Policy)

allow | deny | na | conflict Constant Policy

% Dead Code

base Base Policy

switch {pol : pol; pol; pol; pol} Policy Switch

Fig. 3. Core policy-orchestration languageAPOL for some set of base policies

Theorem 2. For all policy treesp ∈ P and environmentsρ, equation[[p]](r, σ) = v
holds if and only if(p, r, σ) ; v can be derived using the inference rules in Fig-
ure 2(c).

3 APOL: a typed, modular policy language

We now develop a treatment of policies astyped, modular programs. Modularity fa-
cilitates compositionality, maintainability, and reuse of policies. Types are conservative
mechanisms for preventing certain kinds of “run-time” errors during request evaluation.
For example, types can certify that the use of% to represent dead code is safe for the
evaluation of a policy for any request and authorization state.

The grammar of a core programming languageAPOL (“authorization policy or-
chestration language”) is shown in Figure 3: it is essentially the grammar for policy
trees shown in Figure 2(a), extended with a symbol% for dead code, and presented in
a form more amenable to programming. Below, we present a static type system where
types are inferred from the syntax of policies without evaluating them. We then also
demonstrate that deeper semantic analysis is useful for such static type inference.

Let p be an expression ofAPOL and letρ(b) be defined for all base policiesb
occurring inp. Then we point out that the operational semantics ofp in Figure 2(c) is
well defined by matching clauses of the grammars in Figures 2(a) and 3. However, as
there is no rule for(%, r, σ) ; . . . , dead code does not evaluate to any value, meaning
that its evaluation is stuck and constitutes an error.

Typed methods forAPOL. We extend our core policy language with typed, parame-
terized methods. The typesτ in the extended language arebase (for base policies, that
cannot output⊤), pol (for orchestrated policies), andprd (for base policies that cannot
output⊥ and so represent Boolean predicates). Each method hasτ ∈ {base, pol, prd}
as return type, specifying that method invocations in-lined with correctly typed input
policies render a policy of typeτ . The following method, for example, explicitly im-
plements the deny-overrides orchestration pattern. Note the return typebase and the
parameter typepol for its argument policy:

base deny-overrides(P:pol) { switch{P : na; deny; allow; deny} }

The type system for such methods is presented in Figure 4: judgments “expressione
has typeτ in contextΓ ” have the formΓ ⊢ e : τ , whereτ ∈ {pol, base, prd} andΓ is
a context binding variablesxi to typesτi. Each rule specifies a possible inference: if all

10

Γ ⊢ na : base Γ ⊢ deny : prd Γ ⊢ allow : prd Γ ⊢ conflict : pol

Xi : αi ∈ Γ

Γ ⊢ Xi : αi

Γ ⊢ e : rt Γ ⊆ Γ ′

Γ ′ ⊢ e : rt

Γ ⊢ e : prd

Γ ⊢ e : base

Γ ⊢ e : base

Γ ⊢ e : pol

Γ ⊢ e : pol Γ ⊢ ev : rt (∀v ∈ {⊥, 0, 1,⊤})

Γ ⊢ switch { e : e⊥; e0; e1; e⊤} : rt

Γ ⊢ e : prd Γ ⊢ ev : rt (∀v ∈ {0, 1})

Γ ⊢ switch { e : %; e0; e1; %} : rt

Γ ⊢ e : base Γ ⊢ ev : rt (∀v ∈ {⊥, 0, 1})

Γ ⊢ switch { e : e⊥; e0; e1; %} : rt

Γ ∪ {X : α} ⊢ e : rt

Γ \ {X | α} ⊢ rt mname(X : α){e} : α → rt

(∀i)Γ ∪ {X : α} ⊢ ei : αi Γ ⊢ rt mname(X : α){e} : α → rt

Γ ⊢ mname(e) : rt

Fig. 4. Rules for type checking judgmentsΓ ⊢ e : t for APOL expressions, whereΓ is a type
context binding variables to types,rt ∈ {base, pol, prd}, andX : α is a list of typed parameters

judgments on top of the line of a rule have been inferred or aregiven, then the judgment
below the line of that rule can be inferred.

The first row in Figure 4 states the types of constant policies, reflecting thatna is a
base policy,conflict a non-base policy, and that conclusive decisions are predicates.
These are axioms as their inferences do not depend on any judgments. The second row
uses standard structural and type casting rules for type inference in the presence of
subtyping and states thatprd is a subtype ofbase and that the latter is a subtype ofpol.
The third row handles type inference for the switch operator: the switch policy must
have typepol (through casting of subtypes, if needed), and all argument policies must
agree on the output type (again, through casting, if needed).

The next two rows depict two important patterns for reasoning about the safe use of
the dead code symbol%. The first one shows thatr = switch{ e : %; e0; e1; %} has
return typert by first showing that the switch policye has typeprd, and then showing
that bothe0 ande1 have typert. These type inference rules are safe: for no request
and for no authorization state does the operational semantics ofr ever evaluate one of
the two occurrences of%. This rule can be used to certify that our definition of(p/F),
when written inAPOL, is type safe. The second rule is very similar but – since it only
has a dead code symbol for the case when the switch policy outputs a conflict – it only
has to show that the switch policy has typebase. Again, such type inference guarantees
that the symbol% will never be encountered in the operational semantics.

The final two rows show standard type inference rules for parameterized methods.
The first rule assumes the type bindings of the method head, uses those bindings to infer
a type for the method body, and that type is then the method return type (but in a type
context that no longer relies on these assumptions). The second rule captures that well
typed method invocations return the specified type.

11

Example 2.We illustrate the type system on methoddeny-overrides specified
above. To show that this method has output typebase, we assume thatP has typepol as
declared in the method header (and soΓ records that binding) and show that the switch
statement has output typebase under that assumption. But this follows easily from the
type inference rule for the switch statement, since all argument policies have subtypes
of base or have that type, and so all argument types can be cast into typebase, if needed.

Note that variables occurring in a contextΓ cannot be constants ofAPOL. In par-
ticular, it is not possible to assign a type to%, and so one can also not give a type to a
policy switch with switch policy%.

Our type system can be fine-tuned to enable a richer semantic typing. For example,
consider the typedAPOL methodfoo, declared by

prd foo(P:pol) { switch{P : deny; P; P; deny} }

Its argument has typepol and so we cannot assume that this policy is a base policy or
free of conflict. Our type system therefore forces that all four argument types of the
switch statement be cast into their least common supertype,which is pol. Therefore,
the type system can only inferpol as output type. But whenP is executed asq0 we
know that its output is adeny. Similarly, whenP is executed asq1 its output is an
allow. Therefore, it is intuitively safe to assume that all four arguments have typeprd
and soprd is a safe output type for methodfoo. We now sketch a semantic analysis
that formalizes such intuitions. This analysis can then be used to extend our static type
inference.

Analysis of APOL policies. For any policyr, let r ⇑ 1 be a propositional formula
whose atoms are expressions of the formb ⇑ 1 andb ⇑ 0 for base or constant policies
b occurring in policyr. Intuitively, r ⇑ 1 is true if policy r authorizes the (implicit)
request, andr ⇑ 0 is true if policyr denies it. The constraintr ⇑ 1 (respectively,r ⇑
0) therefore expresses the conditions on the base policy decisions for the orchestrated
policy r to either authorize (respectively, deny) the request or to report a conflict.

The definition ofr ⇑ 1 andr ⇑ 0 is by induction over terms ofAPOL. For constant
policies, these conditions merely express the obvious meaning of these constants. For
example,conflict ⇑ 1 andconflict ⇑ 0 both are the truth constanttrue, whereas
na ⇑ 1 andna ⇑ 0 both are the truth constantfalse. For the other two logical constants,
we setdeny ⇑ 1 = false, deny ⇑ 0 = true andallow ⇑ 1 = true, allow ⇑ 0 =
false. Assuming that dead code is type safe, we set% ⇑ 1 and% ⇑ 0 both to befalse.

The meaning ofb ⇑ 1 andb ⇑ 0 for base policiesb will depend on the application
domain and concrete nature of those base policies. For example, base policies may
be written over equations of attributes and so these constraints may be propositional
formulas over such attribute conditions.

It remains to specify the conditionsr ⇑ 1 andr ⇑ 0 whenr is the switch statement
(p : q⊥, q0, q1, q⊤). Then we can definer ⇑ 1 in the following way:

r ⇑ 1 = (¬(p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (q⊥ ⇑ 1)) ∨ (6)

((p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (q0 ⇑ 1)) ∨

(¬(p ⇑ 0) ∧ (p ⇑ 1) ∧ (q1 ⇑ 1)) ∨

((p ⇑ 0) ∧ (p ⇑ 1) ∧ (q⊤ ⇑ 1))

12

The definition ofr ⇑ 0 merely changes allqv ⇑ 1 in (6) to qv ⇑ 0. The intuition
of these constraints should be clear. Each disjunct specifies, in its first two conjuncts,
the intended continuation location of the switch statement, and captures the intended
condition for that continuation in its third conjunct. These constraints are therefore dis-
junctions of conjunctions of similar constraints for subpolicies.

Given such formulas, one can then build other constraints, e.g.,¬(r ⇑ 0)∧ (r ⇑ 1),
which states the conditions for policyr to authorize a request (and so, in particular, not
to report a conflict). In order to determine whether a policyr has a conflict, for example,
is equivalent to determining whether(r ⇑ 1) ∧ (r ⇑ 0) ∧

∧
b
¬((b ⇑ 1) ∧ (b ⇑ 0))

is satisfiable, whereb ranges over all base policies occuring inr. Note that the third
conjunct rules out spurious witnesses since base policies cannot return⊤.

We can apply this analysis to infer the more informative typeprd of methodfoo,
which our static type system could not do. For that, it suffices to show that the bodyr of
the method always returns0 or 1, for any switch policyp of typepol; that is to say, that
r ⇑ 1 is equivalent to¬(r ⇑ 0) if we interpretp ⇑ 0 andp ⇑ 1 as atomic propositions.

Applying (6) to thatr, and noting thatDeny ⇑ 1 = false, we compute

r ⇑ 1 = (¬(p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ false) ∨ (7)

((p ⇑ 0) ∧ ¬(p ⇑ 1) ∧ (p ⇑ 1)) ∨

(¬(p ⇑ 0) ∧ (p ⇑ 1) ∧ (q1 ⇑ 1)) ∨

((p ⇑ 0) ∧ (p ⇑ 1) ∧ false))

= ¬(p ⇑ 0) ∧ (p ⇑ 1)

Noting thatDeny ⇑ 0 = true, we similarly computer ⇑ 0 = (p ⇑ 0) ∨ (¬(p ⇑
0) ∧ ¬(p ⇑ 1)). But it is easily seen that¬(r ⇑ 0) andr ⇑ 1 are equivalent formulas.

4 Discussion

We now discuss our contributions and put them into perspective.

Separating state and policies.We have argued that policy and state should be sepa-
rated, and have developed a framework that meets this criterion. In a practical setting,
enterprise security requirements must be encoded in authorization policies, which may
require complex orchestration patterns. However, the authorization state is independent
of these orchestrations, and different parts of the state would typically be maintained
by different local administrators who are responsible for correctly associating users and
resources with security-related attributes.

Informing future authorization languages. We now consider how our work is related
to target-based approaches to authorization and suggest how these connections might
usefully inform the development of authorization languages.

Recall that the protection matrix authorizes a request if that request is encoded in
the matrix. The policy is to allow if that request is encoded in the matrix and deny
otherwise – the simplest possible way of deciding whether a request is authorized. In
our view, the authorization state is the matrixM (or some other suitable data structure,
such as a collection of ACLs). Accordingly, we define the basepolicy pallow, where
pallow(r, M) = 1 if r ∈ M , and⊥ otherwise.

13

We can, of course, prohibit certain requests using the orchestration!pallow for an
appropriate choice ofM . Complex policies can be built from authorization state com-
ponentsM1, . . . , Mk and appropriate orchestrations using+ and! (or the switch op-
erator). Hence, policy authors can define orchestrations, while local administrators can
updateMi to reflect changes to personnel and resources.

Informing XACML. We now reflect on how the features of our framework might
usefully be applied in XACML. We focus our attention on XACML, because it is a
well known standard that provides a framework for the specification and evaluation
of target-based authorization policies. In conflating state and policy, target-based ap-
proaches such as XACML mean either that policy authors must be aware of authoriza-
tion state or that local administrators must be able to author XACML policies. This
makes it more difficult to author and maintain policies. In our framework, a component
of authorization state can be regarded as (just) another resource and can be protected
by an authorization policy like any other resource. In XACML, there is no structured
support for policy updates, which therefore continue to be aproblematic issue.

We believe the switch operator could usefully be deployed inXACML (and other
authorization languages). Currently, the XACML standard requires that a number of
rule- and policy-combining algorithms be supported by the PDP. Moreover, XACML
rules and policies are indistinguishable in terms of semantics, so it is unnecessary to
have both rule- and policy-combining algorithms. It has also been observed that there
are certain pathological cases in which the combination of rule- and policy-combination
algorithms (compliant with the XACML standard) leads to unexpected results [17].
Hence, we make three suggestions: (i) XACML should remove the (artificial) dis-
tinction between rules and policies; (ii) a single algorithm based on the switch op-
erator should be supported (since we showed that it can encode the standard policy-
combination algorithms); and (iii) types and modularity (as sketched in this paper)
should be supported to provide safer policy orchestration for policy authors.

A feature of XACML and target-based policy languages and algebras is the imme-
diate resolution of conflicts. As can be seen from our framework, there is no theoretical
necessity for doing this and there may be good practical reasons for postponing the
computation of a conclusive decision. A convincing case fordecoupling policy compo-
sition from conflict resolution has been made in [8] already.In XACML terminology,
the rule- and policy-combining algorithms should not be required attributes of policy
and policy set elements, respectively, thereby enabling XACML policies and policy sets
to return conflicts.

Related work. The work of Brunset al. [8, 9] is closest to that reported in this paper.
This work suggested the Belnap space{⊥, 0, 1,⊤} as carrier of meaning for authoriza-
tion policies, built atomic policies of the forme/T (in our notation) whereT is a subset
of Req, employed policy combinators that act on policies in a pointwise manner, and
showed that the resulting policy language is as expressive as it can be (thinking of tar-
getsT as predicates) [8]. Subsequently, various policy analysesare reduced to checking
the satisfiability of formulae in an NP fragment of first-order logic, and such satisfia-
bility checks are extended to a limited form of assume-guarantee reasoning [9]. Our
work creates policy languages that have equal expressiveness of orchestration. But our
framework separates requests from authorization state, supports types and modularity

14

for policy orchestration and enforcement, and has a very simple policy analysis in the
form of Boolean satisfiability checks (based on a sole policyoperatorswitch).

There are a number of authorization frameworks in which policies are based on
logic-programming languages such as Datalog (see [3, 11, 12], for example). Although
these frameworks are not target-based and can easily express policies such aspSS, the
orchestration patterns that are available are limited by the semantics of rule evaluation
in the underlying programming language.

5 Conclusions

Summary. The motivation of this paper was to overcome most of the shortcomings of
existing target-based authorization-policy languages such as XACML. We began with
a semantic view of a policy as a 4-valued function whose inputcomprises a request and
relevant authorization state. This resulted in a language of policy trees with{0, 1,⊥}-
valued base policies where⊥ models that a request is not applicable for the policy
interface, or that it cannot be evaluated in the authorization state. We then transferred
these ideas into the programming languageAPOL, first within a core language of policy
trees and then for an extension of that core language to parameterized, typed methods.
We also gave equivalent denotational and operational semantics to the core language.
Finally, we discussed how our ideas and results could leverage policy analysis – for
example to reason about the type safe identification of dead code – and inform new
versions of the XACML standard and future authorization languages.

Future work. Our most recent work shows that programs of typepol are repre-
sentable, and hence implementable, as ternary decision diagrams [20]; that the remote
evaluation of sub-programs can be accommodated by the use ofdecision diagrams that
have four kinds of edges and terminals; and that our policy analysis methods can be
used to enrich our type system with a notion of semantic (i.e.behavioral) types. We
intend to continue our preliminary work in this area.

In our current approach, the output value⊥ is overloaded, as we use it to denote
both the inapplicability of a base policy to a request and theinability to evaluate a
request given current knowledge of the state. If we want to make a distinction between
these cases, we would require a 5-valued meaning space{0, 1, ♯, ♭,⊤}, where0, 1,
and⊤ retain their meaning and♯ and ♭ denote problems with policy evaluation and
policy applicability (respectively). We also hope to develop an implementation of our
framework, perhaps making use of XACML-like syntax to defineplatform-independent
authorization state. Thirdly, we mean to devise a modular policy analysis forAPOL
based on the familiar idea of programming by contracts [16].

Acknowledgements.The authors would like to thank the anonymous referees for their
helpful comments.

References

1. O. Arieli and A. Avron. The value of the four values.Artificial Intelligence, 102(1):97–141,
1998.

15

2. M. Backes, M. Dürmuth, and R. Steinwandt. An algebra for composing enterprise privacy
policies. InProc. of the 9th European Symp. on Research in Computer Security, pages 33–52,
2004.

3. M.Y. Becker and P. Sewell. Cassandra: Distributed accesscontrol policies with tunable
expressiveness. InProc. of 5th IEEE International Workshop on Policies for Distributed
Systems and Networks, pages 159–168, 2004.

4. D.E. Bell and L. LaPadula. Secure computer systems: Unified exposition and Multics inter-
pretation. Technical Report MTR-2997, Mitre Corporation,Bedford, Massachusetts, 1976.

5. E. Bertino, S. Castano, and E. Ferrari. Author-X : A comprehensive system for securing
XML documents.IEEE Internet Computing, 5(3):21–31, 2001.

6. P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. An algebra for composing access
control policies.ACM Transactions on Information and System Security, 5(1):1–35, 2002.

7. D. Brewer and M. Nash. The Chinese Wall security policy. InProc. of the 1989 IEEE Symp.
on Security and Privacy, pages 206–214, 1989.

8. G. Bruns, D.S. Dantas, and M. Huth. A simple and expressivesemantic framework for
policy composition in access control. In V. D. Gligor and H. Mantel, editors,Proc. of the
Fifth Workshop on Formal Methods in Security Engineering: From Specifications to Code,
pages 12–21, 2007.

9. G. Bruns and M. Huth. Access control via Belnap logic: Effective and efficient composition
and analysis. In A. Sabelfeld, editor,Proc. of the 21st IEEE Computer Security Foundations
Symp., pages 163–176, 2008.

10. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained
access control system for XML documents.ACM Transactions on Information and System
Security, 5(2):169–202, 2002.

11. J. DeTreville. Binder, a logic-based security language. In Proc. of the 2002 IEEE Symp. on
Security and Privacy, pages 105–113, 2002.

12. D.J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and reasoning about dynamic
access-control policies. InProc. of Automated Reasoning, Third International Joint Confer-
ence, IJCAR 2006, pages 632–646, 2006.

13. L. Gong.Inside Java 2 Platform Security. Addison Wesley, 1999.
14. M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.Communi-

cations of the ACM, 19(8):461–471, 1976.
15. R. Jagadeesan, W. Marrero, C. Pitcher, and V. Saraswat. Timed constraint programming:

A declarative approach to usage control. InProc. of the 7th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pages 164–175, 2005.

16. B. Meyer. Applying “Design by Contract”.IEEE Computer, 25(10):40–51, 1992.
17. Q. Ni, E. Bertino, and J. Lobo. D-Algebra for composing access control policy decisions.

In Proc. of 4th ACM Symp. on Information, Computer and Communications Security, pages
298–309, 2009.

18. OASIS.eXtensible Access Control Markup Language (XACML) Version2.0, 2005. OASIS
Committee Specification (T. Moses, editor).

19. C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An access control language for
security policies and complex constraints. InProc. of the Network and Distributed System
Security Symp. (NDSS), pages 89–107, February 2001.

20. T. Sasao. Ternary decision diagrams: Survey. InProc. of the 27th International Symp. on
Multiple-Valued Logic (ISMVL ’97), pages 241–250, 1997.

21. D. Wijesekera and S. Jajodia. A propositional policy algebra for access control.ACM Trans-
actions on Information and System Security, 6(2):286–235, 2003.

16

