A Taint Mode for Python via a Library

Juan José Conti! and Alejandro Russo?

1 Universidad Tecnolégica Nacional, Facultad Regional Santa Fe, Argentina
2 Chalmers University of Technology, Sweden

Abstract. Vulnerabilities in web applications present threats to on-line systems.
SQL injection and cross-site scripting attacks are among the most common threats
found nowadays. These attacks are often result of improper or none input valida-
tion. To help discover such vulnerabilities, popular web scripting languages like
Perl, Ruby, PHP, and Python perform taint analysis. Such analysis is often im-
plemented as an execution monitor, where the interpreter needs to be adapted to
provide a taint mode. However, modifying interpreters might be a major task in its
own right. In fact, it is very probably that new releases of interpreters require to be
adapted to provide a taint mode. Differently from previous approaches, we show
how to provide taint analysis for Python via a library written entirely in Python,
and thus avoiding modifications in the interpreter. The concepts of classes, dec-
orators and dynamic dispatch makes our solution lightweight, easy to use, and
particularly neat. With minimal or none effort, the library can be adapted to work
with different Python interpreters.

1 Introduction

Over the past years, there has been a significant increase on the number of activities
performed on-line. Users can do almost everything using a web browser (e.g. watching
videos, listening to music, banking, booking flights, planing trips, etc). Considering the
size of Internet and its number of users, web applications are probably among the most
used pieces of software nowadays. Despite its wide use, web applications suffer from
vulnerabilities that permit attackers to steal confidential data, break integrity of systems,
and affect availability of services. When development of web applications is done with
little or no security in mind, the presence of security holes increases dramatically. Web-
based vulnerabilities have already outplaced those of all other platforms [4] and there
are no reasons to think that this tendency has changed [12].

According to OWASP [32], cross-site scripting (XSS) and SQL injection (SQLI) at-
tacks are among the most common vulnerabilities on web applications. Although these
attacks are classified differently, they are produced by the same reason: user supplied
data is sent to sensitive sinks without a proper sanitation. For example, when a SQL
query is constructed using an unsanitize string provided by a user, SQL injection at-
tacks are likely to occur. To harden applications against these attacks, the implemen-
tations of some popular web scripting languages perform taint analysis in a form of
execution monitors [23, 2]. In that manner, not only run interpreters code, but they also
perform security checks. Taint analysis can also be provided through static analysis
[15, 16]. Nevertheless, execution monitors usually produce less false alarms than tradi-
tional static techniques [28]. In particular, static techniques cannot deal with dynamic

code evaluation without being too conservative. Most of the modern web scripting lan-
guages are capable to dynamically execute code. In this paper, we focus on dynamic
techniques.

Taint analysis is an automatic approach to find vulnerabilities. Intuitively, taint anal-
ysis restricts how tainted or untrustworthy data flow inside programs. Specifically, it
constrains data to be untainted (trustworthy) or previously sanitized when reaching sen-
sitive sinks. Perl was the first scripting language to provide taint analysis as an special
mode of the interpreter called faint mode [6]. Similar to Perl, some interpreters for
Ruby [30], PHP [22], and recently Python [17] have been carefully modified to provide
taint modes. Adapting interpreters to incorporate taint analysis present two major draw-
backs that directly impact on the adoption of this technology. Firstly, incorporating taint
analysis into an interpreter might be a major task in its own right. Secondly, it is very
probably that it is necessary to repeatedly adapt an interpreter at every new version or
release of it.

Rather than modifying interpreters,
we present how to provide a taint
mode for Python via a library writ-
ten entirely in Python. Python is ysermail = sys.argv[1]
spreading fast inside web develop- file = sys.argv([2]
ment [1]. Besides its successful use,

Python presents some programming cmd = ‘mail -s "Requested file" ’
languages abstractions that makes + usermail + 7 <’ + file
possible to provide a taint mode viaa ©S-system(cmd)

library. For example, Python decora-

tors [20] are a non-invasive and simple Fig. 1. Code for email.py

manner to declare sources of tainted

data, sensitive sinks, and sanitation functions. Python’s object-oriented and dynamic
typing mechanisms allows the execution of the taint analysis with almost no modifica-
tions in the source code.

The library provides a general method to enhance Python’s built-in classes with
tainted values. In general, taint analysis tends to only consider strings or characters [23,
22, 14, 17, 13, 29]. In contrast, our library can be easily adapted to consider different
built-in classes and thus providing a taint analysis for a wider set of data types. By
only considering tainted strings, the library provides a similar analysis than in [17], but
without modifying the Python interpreter. To the best of our knowledge, a library for
taint analysis has not been considered before.

import sys
import os

1.1 A motivating example

We present an example to motivate the use of taint analysis in order to discover and
repair vulnerabilities. The example considers an scenario of a web application where
users can send their remotely stored files by email. Figure 1 shows the simple module
email.py that is responsible to perform such task. For simplicity, the code takes the
user input from the command line (lines 4 and 5) rather than from the web server.
Figure 2 shows some invocations to the module from the shell prompt. Line 1 shows a
request from Alice to send her own file reportJanuary.x1ls to her email address

)

python email.py alice@domain.se ./reportJanuary.xls
python email.py devil@evil.com ' /etc/passwd’
python email.py devil@evil.com ' /etc/passwd ; rm -rf / '/

Fig. 2. Different invocations for email.py

alice@domain.se. In this case, Alice’s input produces a behavior which matches
the intention of the module. In contrast, lines 2 and 3 show how attackers can provide
particular inputs to exploit unintended or unforeseen behaviors of email.py. Line 2
exploits the fact that email . py was written assuming that users only request their own
files. Observe how devil@evil.com gets information regarding users accounts by
receiving the file /et c/passwd. Line 3 goes an step further and injects the command
rm —rf / after sending the email. These attacks demonstrate how, what was intended
to be a simple email client, can become a web-based file browser or a terminal. To avoid
these vulnerabilities, applications need to rigorously check for malicious data provided
by users or any other untrustworthy source. Taint analysis helps to detect when data is
not sanitize before it is used on security critical operations. In Section 2.2, we show
how to harden email . py in order to reject the vulnerabilities shown in Figure 1.

The paper is organized as follows. Section 2 outlines the library API. Section 3
describes the most important implementation details of our approach. Section 4 covers
related work. Section 5 provides some concluding remarks.

2 A library for taint analysis

On most situations, taint analysis propagates taint if t == "a’: u = ’a’
information on assignments. Intuitively, when the else: u = '~

right-hand side of an assignment uses a tainted value,

the variable appearing on the left-hand side becomes Fig. 3. An implicit flow
tainted. Taint analysis can be seen as an information-

flow tracking mechanism for integrity [27]. In fact, taint analysis is just a mechanism to
track explicit flows, i.e. direct flows of information from one variable to another. Taint
analysis tends to ignore implicit flows [11], i.e. flows through the control-flow con-
structs of the language. Figure 3 presents an implicit flow. Variables t and u are tainted
and untainted, respectively. Observe that variable u is untainted after the execution of
the branch since an untainted value (“ a’ or ’ /) is assigned to it. Yet, the value of the
tainted variable t is copied into the untainted variable u when t == ’a’. It is not
difficult to imagine programs that circumvent the taint analysis by copying the content
of tainted strings into untainted ones by using implicit flows[26].

In scenarios where attackers has full control over the code (e.g. when the code is
potentially malicious), implicit flows present an effective way to circumvent the taint
analysis. In this case, the attackers’ goal is to craft the code and input data in order
to circumvent security mechanisms. There is a large body of literature on the area of
language-based security regarding how to track implicit flows [27].

v = taint(d) 3 eval = ssink(T)(eval)

web.input = untrusted (web.input) 15 @ssink (T)
6 def f(...)

@untrusted 17

def f(...) : 18

v w = cleaner (T)(wash)

class MyProtocol(LineOnlyReceiver): 21 @cleaner(T)
@untrusted_args ([1]) » def f(...)
def lineReceived(self , line): 23

Fig. 4. API for taint analysis

There exists scenarios where the code is non-malicious, i.e. written without malice.
Despite the good intentions and experience of programmers, the code might still contain
vulnerabilities as the ones described in Section 1.1. The attackers’ goal consists on craft
input data in order to exploit vulnerabilities and/or corrupt data. In this scenario, taint
analysis certainly helps to discover vulnerabilities. How dangerous are implicit flows
in non-malicious code? We argue that they are frequently harmless [26]. The reason
for that relies on that non-malicious programmers need to write a more involved, and
rather unnatural, code in order to, for instance, copy tainted strings into untainted ones.
In contrast, to produce explicit flows, programmers simply need to forget a call to some
sanitization function. For the rest of the paper, we consider scenarios where the analyzed
code is non-malicious.

2.1 Using the library

The library is essentially a series of functions to mark what are the sources of untrust-
worthy data, sensitive sinks, and sanitation functions. Figure 4 illustrates how the API
works. Symbol . . . is a place holder for code that is not relevant to explain the pur-
pose of the API. We assume that v is a variable, d is an string or integer, and £ is a
user-defined function. Symbol T represents a tag. By default, tags can take values XSS,
SQLI, OSI (Operating System Injection), and IT (Interpreter Injection). These val-
ues are used to indicate specific vulnerabilities that could be exploited by tainted data.
For instance, tainted data associated with tag SQLT is likely to exploit SQL injection
vulnerabilities. Function taint is used to taint values. For example, line 1 taints vari-
able d. The call to untrusted (web. input) establishes that the results produced
by web. input are tainted. Line 5 shows how unt rusted can be used to mark the
values returned by function f as untrustworthy. Observe the use of the decorator syntax
(Quntrusted). Function untrusted_args is used to indicate which functions’
arguments must be tainted. This primitive is particularly useful when programming
frameworks require to redefine some methods in order to get information from external
sources. As an example, Twisted[3], a framework to develop network applications, calls

method 1ineReceived from the class LineOnlyReceiver every time that an
string is received from the network. Lines 9-12 extend the class LineOnlyReceiver
and implement the method 1 ineReceived. Line 10 taints the data that Twisted takes
from the network. Functions taint, untrusted, and untrusted_args associate
all the tags to the tainted values. After all, untrustworthy data might exploit any kind of
vulnerability. Line 13 marks eval as a sensitive sink. If eval receives a tainted data with
the tag T, a possible vulnerability T is reported. Line 15 shows how to use ssink with
the decorator syntax. Line 19 shows how cleaner establishes that function wash san-
itizes data with tag T. As a result of that, function w removes tag T from tainted values.
Line 21 shows the use of cleaner with the decorator syntax. Sensitive sinks and san-
itization functions can be associated with more than one kind of vulnerabilities by just
nesting decorators, i.e. ssink (OSI) (ssink (II) (critical_operation)).

2.2 Hardening email.py

We revise the example in Sec-
tion 1.1. Figure 5 shows the se-
cure version of the code given in

import sys
import os
from taintmode import x

Figure 1. Line 3 imports the li- from sanitize import x

brary API. Line 4 imports some
sanitization functions. Line 6
marks command os.system

0s.system =
s_usermail =

ssink (OSI)(os.system)
cleaner (OSI)(s_usermail)

) s_file = cleaner (OSI)(s_file
(capable to run arbitrary shell ())
instructions) as a sensitive sink | cormail = taint (sys.argv[1])
to OSI attacks. Tainted val- fije = taint(sys.argv[2])

ues reaching that sink must not
contain the tag OSI. Lines 7
and 8 establish that functions
s_.usermail and s_file san-
itize data in order to avoid
OSTI attacks. Lines 10 and 11
mark user input as untrustwor-
thy. When executing the pro-
gram, the taint analysis raises an alarm on line 16. The reason for that is that variable
cmd is tainted with the tag OST. Indeed, cmd is constructed from the untrustworthy val-
ues usermail and file. If we uncomment the lines where sanitization takes place
(lines 12 and 13), the program runs normally, i.e. no alarms are reported. Observe that
the main part of the code (lines 14—16) are the same than in Figure 1.

#usermail = s_usermail (usermail)

#file = s_file(file)

cmd = 'mail -s "Requested file" '/
+ usermail + * <’ + file

os.system (cmd)

Fig. 5. Secure version of module email.py

3 Implementation

In this section we present the details of our implementation. Due to lack of space,
we show the most interesting parts. The full implementation of the library is publicly
available at [10].

def taint_class (klass ,
class tklass(klass)
def __new__(cls,
self = super (
self.taints =

return self

d = klass. __dict__
for name, attr in [
if inspect.isme

methods):

xargs , xxkwargs):

tklass , cls).__new__(cls, =*xargs, sxxkwargs)
set ()

(m, d[m]) for m in methods]:
thod(attr) or

inspect.ismethoddescriptor(attr):
setattr (tklass , name, propagate_method(attr))

if ' _add__’ in met
setattr (tklass ,
lambda
self))

return tklass

hods and '__radd__’ not in methods:
! __radd__’,
self , other: tklass.__add__(tklass(other),

Fig. 6. Function to generate taint-aware classes

One of the core part of the library deals with how to keep track of taint information

for built-in classes. The library

defines subclasses of built-in classes in order to indicate

if values are tainted or not. An object of these subclasses posses an attribute to indicate
a set of tags associated to it. Objects are considered untainted when the set of tags is
empty. We refer to these subclasses as faint-aware classes. In addition, the methods
inherited from the built-in classes are redefined in order to propagate taint information.
More specifically, methods that belong to taint-aware classes return objects with the

union of tags found in their ar
the dynamic dispatch mechani
untainted and tainted strings is

guments and the object calling the method. In Python,
sm guarantees that, for instance, the concatenations of
performed with calls to methods of taint-aware classes,

which properly propagates taint information.

3.1 Generating taint-aware

Figure 6 presents a function
to generate taint-aware classes.
The function takes a built-in
class (klass) and a list of
its methods (methods) where
taint propagation must be per-
formed. Line 2 defines the
name of the taint-aware class
tklass. Objects of tklass
are associated to the empty set
of tags when created (lines 3—
6). Attribute taints is intro-
duced to indicate the tags re-

classes

def propagate_method (method):
def inner(self, xargs, skxkwargs):
r = method(self, *xargs, *xxkwargs)
t = set()
for a in args:
collect_tags(a, t)
for v in kwargs.values ():
collect_tags (v, t)
t.update(self.taints)
return taint_aware(r,t)
return inner

Fig. 7. Propagation of taint information

lated to tainted values. Using Python’s introspection features, variable d contains,
among other things, the list of methods for the built-in class (line 7). For each method in
the built-in class and in methods (lines 8-10), the code adds to t k1ass a method that
has the same name and computes the same results but also propagates taint information
(line 11). Function propagate_method is explained below. Lines 12—15 set method
__radd__ to taint-aware classes when built-in classes do not include that method but
_-add__. Method __radd._. is called to implement the binary operations with reflected
(swapped) operands?. For instance, to evaluate the expression x+y, where x is a built-in
string and y is a taint-aware string, Python calls __radd__ from y and thus executing
y.--radd--(x) . In that manner, the taint information of y is propagated to the ex-
pression. Otherwise, the method x.__add__(y) is called instead, which results in an
untainted string. Finally, the taint-aware class is returned (line 16).

The implementation of propagate_method is shown in Figure 7. The function
takes a method and returns another method that computes the same results but prop-
agates taint information. Line 3 calls the method received as argument and stores the
results in r. Lines 4-9 collect the tags from the current object and the method’s argu-
ments into t. Variable r might refer to an object of a built-in class and therefore not
include the attribute taints. For that reason, function taint_aware is designed to
transform objects from built-in classes into taint-aware ones. For example, if r refers
to a list of objects of the class st r, function taint_aware returns a list of objects of
the taint-aware class derived from str. Function taint_aware is essentially imple-
mented as a structural mapping on list, tuples, sets, and dictionaries. The library does
not taint built-in containers, but rather their elements. This is a design decision based
on the assumption that non-malicious code does not exploit containers to circumvent
the taint analysis (e.g. by encoding the value of tainted integers into the length of lists).
Otherwise, the implementation of the
library can be easily adapted. Line 11 STR
returns the taint-aware version of r INT
with the tags collected in t.

To illustrate how to use function Fig. 8. Taint-aware classes for strings and integers
taint_class, Figure 8 produces
taint-aware classes for strings and integers, where st r methods and int _methods
are lists of methods for the classes str and int, respectively. Observe how the code
presented in Figures 6 and 7 is general enough to be applied to several built-in classes.

taint_class (str, str_methods)
taint_class (int, int_methods)

3.2 Decorators

Except for taint, the rest of def untrusted (f):

the API is implemented as dec- def inner(xargs, *xkwargs):
orators. In our library, decora- r = f(xargs, xxkwargs)
tors are high order functions return taint.aware(r, TAGS)

[7], i.e. functions that take return inner

functions as arguments and re-
turn functions. Figure 9 shows Fig. 9. Code for untrusted

3 The built-in class for strings implements all the reflected versions of its operators but __add__.

the code for untrusted. Function f, given as an argument, is the function that re-
turns untrustworthy results (line 1). Intuitively, function unt rusted returns a func-
tion (inner) that calls function £ (line 3) and taints the values returned by it (line 4).
Symbol TAGS is the set of all the tags used by the library. Readers should refer to [10]
for the implementation details about the rest of the API.

3.3 Taint-aware functions

Several dynamic taint analy- def propagate_func(original):

sis [23, 22, 16, 17, 13, 29] do def inner (xargs, *xkwargs):
not propagate taint information t = set()
when results different from for a in args:

collect_tags(a,t)
for v in kwargs.values ():
collect_tags(v,t)

strings are computed from
tainted values. (e.g. the length
of a tainted string is usually an

untainted integer). This design Ef I :=r1 flert”zl[§>; :args rrlwargs)
decision might affect the abil- return r

ities of taint analysis to detect return taint_aware (r,t)
vulnerabilities. For instance, return inner

taint analysis might miss dan-

gerous patterns when programs Fig. 10. Propagation of taint information among possibly
encode strings as lists of num- different taint-aware objects

bers. A common workaround

to this problem is to mark functions that perform encodings of strings as sensitive sinks.
In that manner, sanitization must occur before strings are represented in another format.
Nevertheless, this approach is unsatisfactory: the intrinsic meaning of sensitive sinks
may be lost. Sensitive sinks are security critical operations rather than functions that
perform encodings of strings. Our library provides means to start breaching this gap.

Figure 10 presents a gen-
eral function that allows to
define operations that return
tainted values when their argu-
ments involve taint-aware ob- Fig. 11. Taint-aware functions for strings and integers
jects. As a result, it is possible
to define functions that, for instance, take tainted strings and return tainted integers. We
classify this kind of functions as taint-aware.

Similar to the code shown in Figure 7, propagate_func is a high order function.
It takes function £ and returns another function (inner) able to propagate taint infor-
mation from the arguments to the results. Lines 3—7 collect tags from the arguments.
If the set of collected tags is empty, there are no tainted values involved and therefore
no taint propagation is performed (lines 9-10). Otherwise, a taint-aware version of the
results is returned with the tags collected in the arguments (line 11).

To illustrate the use of propagate_func, Figure 11 shows some taint-aware func-
tions for strings and integers. We redefine the standard functions to compute lengths of
lists (1en), the ASCII code of a character (chr), and its inverse (ord). As a result,
len(taint (' string’)) returns the tainted integer 6. It is up to the users of the

len = propagate_func(len)
ord propagate_func (ord)
chr = propagate_func (chr)

library to decide which functions must be taint-aware depending on the scenario. The
library only provides redefinition of standard functions like the ones shown in Figure
11.

3.4 Scope of the library

In Figure 6, the method to automatically produce taint-aware classes does not work
with booleans. The reason for that is that class bool cannot be subclassed in Python
4. Consequently, our library cannot handle tainted boolean values. We argue that this
shortcoming does not restrict the usability of the library for two reasons. Firstly, dif-
ferent from previous approaches [23, 22, 16, 17, 13, 29], the library can provide taint
analysis for several built-in types rather than just strings. Secondly, we consider that
booleans are typically used on guards. Since the library already ignores implicit flows,
the possibilities to find vulnerabilities are not drastically reduced by disregarding taint
information on booleans.

When generating the taint-aware class STR (Figure 8), we found some problems
when dealing with some methods from the class st r. Python interpreter raises excep-
tions when methods __nonzero__, __reduce__, and __reduce_ex__ are redefined.
Moreover, when methods _new__, __init__, _getattribute__, and __repr__are
redefined by function taint_class, an infinite recursion is produced when calling
any of them. As for STR, the generation of the taint-aware class INT exposes the same
behavior, i.e. the methods mentioned before produce the same problems. We argue that
this restriction does not drastically impact on the capabilities to detect vulnerabilities.
Methods __new__ is called when creating objects. In Figure 6, taint-aware classes de-
fine this method on line 3. Method __init__is called when initializing objects. Python
invokes this method after an object is created and programs do not usually called it ex-
plicitly. Method __getattribute__is used to access any attribute on a class. This
method is automatically inherited from klass and it works as expected for taint-
aware classes. Method __nonzero__is called when objects need to be converted into a
boolean value. As mentioned before, the analysis ignores taint information of data that
is typically used on guards. Method __repr__ pretty prints objects on the screen. In
principle, developers should be careful to not use calls to __repr__in order to convert
tainted objects into untainted ones. However, this method is typically used for debug-
ging 3. Methods __reduce__ and __reduce_ex__ are used by Pickle ¢ to serialize
strings. Given these facts, the argument method in function taint_class estab-
lishes the methods to be redefined on taint-aware classes (Figure 6). This argument is
also useful when the built-in classes might vary among different Python interpreters.
It is future work to automatically determine the lists of methods to be redefined for
different built-in classes and different versions of Python.

It is up to the users of the library to decide which built-in classes and functions must
be taint-aware. This attitude comes from the need of being flexible and not affecting

4http://docs.python.org/library/functions.html#bool
Shttp://docs.python.org/reference/datamodel .html
® An special Python module

performance unless it is necessary. Why users interested on taint analysis for strings
should accept run-time overheads due to tainted integers?

It is important to remark that the library only tracks taint information in the source
code being developed. As a consequence, taint information could be lost if, for example,
taint values are given to external libraries (or libraries written in other languages) that
are not taint-aware. One way to tackle this problem is to augment the library functions
to be taint-aware by applying propagate_func to them.

As a future work, we will explore if it is possible to automatically define taint-
aware functions based on the built-in functions (found in the interpreter) and taint-aware
classes in order to increase the number of taint-aware functions provided by the library.
At the moment, the library provides taint-aware classes for strings, integers, floats, and
unicode as well as some taint-aware functions (e.g. len, chr, and ord).

4 Related Work

A considerable amount of literature has been published on taint analysis. Readers can
refer to [8] for a description of how this technique has been applied on different re-
search areas. In this section, we focus on analyses developed for popular web scripting
languages.

Perl [23] was the first scripting language to include taint analysis as a native feature
of the interpreter. Perl taint mode marks strings originated from outside a program as
tainted (i.e. inputs from users, environment variables, and files). Sanitization is done by
using regular expressions. Writing to files, executing shell commands, and sending in-
formation over the network are considered sensitive sinks. Differently, our library gives
freedom to developers to classify the sources of tainted data, sanitization functions, and
sensitive sinks. Similar to Perl, Ruby [30] provides support for taint analysis. Ruby’s
taint mode, however, performs analysis at the level of objects rather than only strings.
Both, Perl and Ruby, utilize dynamic techniques for their analyses.

Several taint analysis have been developed for the popular scripting language PHP.
Aiming to avoid any user intervention, authors in [15] combine static and dynamic
techniques to automatically repair vulnerabilities in PHP code. They propose to use
static analysis (type-system) in order to insert some predetermined sanitization func-
tions when tainted values reach sensitive sinks. Observe that the semantic of programs
might be changed when inserting calls to sanitization functions, which constitutes the
dynamic part of the analysis in [15]. Our approach, on the other hand, does not im-
plement a type-system and only reports vulnerabilities, i.e. it is up to developers to
decide where, and how, sanitization procedures must be called. In [22], Nguyen-Toung
et al. adapt the PHP interpreter to provide a dynamic taint analysis at the level of char-
acters, which the authors call precise tainting. They argue that precise tainting gains
precision over traditional taint analyses for strings. Authors need to manually exploit,
when feasible, semantics definitions of functions in order to accurately keep track of
tainted characters. Our approach, on the other hand, uses the same mechanism to han-
dle tainted values independently of the nature of a given function. Consequently, we are
able to automatically extend our analysis to different set of data types but without being
as precise as Nguyen-Toung et al.” work. It is worth seeing studies indicating how much

10

precision (i.e. less false alarms) it is obtained with precise tainting in practice. Similarly
to Nguyen-Toung et al.’s work, Futoransky [13] et al. provide a precise dynamic taint
analysis for PHP. Pietraszek and Berghe [24] modify the PHP runtime environment to
assign metadata to user-provided input as well as to provide metadata-preserving string
operations. Security critical operations are also instrumented to evaluate, when taken
strings as input, the risk of executing such operations based on the assigned metadata.
Jovanovic et al. [16] propose to combine a traditional data flow and alias analysis to
increase the precision of their static taint analysis for PHP. They observe a 50% rate of
false alarms (i.e. one false alarm for each vulnerability). The works in [5, 21] combine
static and dynamic techniques. The static techniques are used to reduce the number of
program variables where taint information must be tracked at run-time.

A taint analysis for Java [14] instruments the class java.lang.String as well
as classes that present untrustworthy sources and sensitive sinks. The instrumentation
of java.lang.String is done offline, while other classes are instrumented online.
The authors mention that a custom class loader in the JVM is needed in order to per-
form online instrumentation. Another taint analysis for Java [31], called TAJ, focus
on scalability and performance requirements for industry-level applications. To achieve
industrial demands, TAJ uses static tecniques for pointer analysis, call-graph construc-
tion, and slicing. Similarly, the authors in [19] propose an static analysis for Java that
focus on achieving precision and scalability.

A series of work [18, 9, 25] propose to provide information-flow security via a
library in Haskell. These libraries handle explicit and implicit flows and programmers
need to write programs with an special-purpose API. Similar to other taint analysis, our
library does not contemplate implicit flows and programs do not need to be written with
an special-purpose APL

Among the closest related work, we can mention [17] and [29]. In [17], authors
modify the Python interpreter to provide a dynamic taint analysis. More specifically,
the representation of the class str is extended to include a boolean flag to indicate if
a string is tainted. We provide a similar analysis but without modifying the interpreter.
The work by Seo and Lam [29], called InvisiType, aims to enforce safety checks without
modifying the analyzed code. Similar to our assumptions, their approach is designed to
work with non-malicious code. InvisiType is more general than our approach. In fact,
authors show how InvisiType can provide taint analysis and access control checks for
Python programs. However, InvisiType relies on several modifications in the Python in-
terpreter in order to perform the security checks at the right places. For example, when
native methods are called, the run-time environment firstly calls the special purpose
method __nativecall__. As a manner to specifying policies, the approach provides
the class InvisiType that defines special purposes methods to get support from the
run-time system (e.g. -_-nativecall__ is one of those methods). Subclasses of this
class represent security policies. The approach relies on multiple inheritance to ex-
tend existing classes with security checks. To include or remove security checks from
objects, programs need to explicitly call functions promote and demote. Being less in-
vasive, our library uses decorators instead of explicit function calls to taint and untaint
data. Our approach does not require multiple inheritance.

11

5 Conclusions

We propose a taint mode for Python via a library entirely written in Python. We show
that no modifications in the interpreter are needed. Different from traditional taint anal-
ysis, our library is able to keep track of tainted values for several built-in classes. Addi-
tionally, the library provide means to define functions that propagate taint information
(e.g. the length of a tainted string produces a tainted integer). The library consists on
around 300 LOC. To apply taint analysis in programs, it is only needed to indicate
the sources of untrustworthy data, sensitive sinks, and sanitization functions. The li-
brary uses decorators as a noninvasive approach to mark source code. Python’s object
classes and dynamic dispatch mechanism allow the analysis to be executed with almost
no modifications in the code. As a future work, we plan to use the library to harden
frameworks for web development and evaluate the capabilities of our library to detect
vulnerabilities in popular web applications.

Acknowledgments Thanks are due to Arnar Birgisson for interesting discussions. This work
was funded by the Swedish research agencies VR and SSF, and the scholarship program for
graduated students from the Universidad Tecnolégica Nacional, Facultad Regional Santa Fe.

References

[1] List of Python software. http://en.wikipedia.org/wiki/List_of_Python_
software.

[2] The Ruby programming language. http://www.ruby-lang.org.

[3] The Twisted programming framework. http://twistedmatrix.com.

[4] M. Andrews. Guest Editor’s Introduction: The State of Web Security. IEEE Security and
Privacy, 4(4):14-15, 2006.

[5] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Saner: Composing static and dynamic analysis to validate sanitization in web applications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy, Washington, DC,
USA, 2008. IEEE Computer Society.

[6] S.Bekman and E. Cholet. Practical mod_perl. O’Reilly and Associates, 2003.

[7] R. Bird and P. Wadler. An introduction to functional programming. Prentice Hall Interna-
tional (UK) Ltd., 1988.

[8] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement using dy-
namic data flow analysis. In Proceedings of the 15th ACM Conference on Computer and
Communications security, New York, NY, USA, 2008. ACM.

[9] T. chung Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information
flow in Haskell. Computer Security Foundations Symposium, IEEE, 0:187-202, 2007.

[10] J. J. Conti and A. Russo. A Taint Mode for Python via a Library. Software release. http:
//www.cse.chalmers.se/~russo/juanjo.htm, Apr. 2010.

[11] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504-513, July 1977.

[12] Federal Aviation Administration (US). Review of Web Applications Security and Intru-
sion Detection in Air Traffic Control Systems. http://www.oig.dot.gov/sites/
dot/files/pdfdocs/ATC_Web_Report.pdf, June 2009. Note: thousands of vul-
nerabilities were discovered.

12

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]
(21]

(22]

(23]
[24]

[25]

[26]
(27]

(28]

[29]
(30]

(31]

(32]

A. Futoransky, E. Gutesman, and A. Waissbein. A dynamic technique for enhancing the
security and privacy of web applications. In Black Hat USA Briefings, Aug. 2007.

V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation for Java. In Proceedings
of the 21st Annual Computer Security Applications Conference, pages 303-311, 2005.

Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Securing web application code by
static analysis and runtime protection. In Proceedings of the 13th International Conference
on World Wide Web, pages 40-52. ACM, 2004.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In 2006 IEEE Symposium on Security and Privacy,
pages 258-263. IEEE Computer Society, 2006.

D. Kozlov and A. Petukhov. Implementation of Tainted Mode approach to finding secu-
rity vulnerabilities for Python technology. In Proc. of Young Researchers’ Colloguium on
Software Engineering (SYRCoSE), June 2007.

P. Li and S. Zdancewic. Encoding information flow in Haskell. Computer Security Foun-
dations Workshop, IEEE, 0:16, 2006.

V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications with
static analysis. In Proceedings of the 14th Conference on USENIX Security Symposium,
Berkeley, CA, USA, 2005. USENIX Association.

M. Lutz and D. Ascher. Learning Python. O’Reilly & Associates, Inc., 1999.

M. Monga, R. Paleari, and E. Passerini. A hybrid analysis framework for detecting web
application vulnerabilities. In IWSESS ’09: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Secure Systems, pages 25-32, Washington, DC, USA, 2009. IEEE
Computer Society.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically Hard-
ening Web Applications Using Precise Tainting. In In 20th IFIP International Information
Security Conference, pages 372-382, 2005.

Perl. The Perl programming language. http://www.perl.org/.

T. Pietraszek, C. V. Berghe, C. V, and E. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Recent Advances in Intrusion Detection
(RAID), 2005.

A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security
in Haskell. In Proceedings of the first ACM SIGPLAN Symposium on Haskell, pages 13-24.
ACM, 2008.

A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmalicious code. 2009
Marktoberdorf Summer School (10S Press), 2009.

A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5-19, Jan. 2003.

A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster
of information-flow control research. In Proc. Andrei Ershov International Conference on
Perspectives of System Informatics, LNCS. Springer-Verlag, June 2009.

J. Seo and M. S. Lam. InvisiType: Object-Oriented Security Policies. In /7th Annual
Network and Distributed System Security Symposium. Internet Society (ISOC), Feb. 2010.
D. Thomas, C. Fowler, and A. Hunt. Programming Ruby. The Pragmatic Programmer’s
Guide. Pragmatic Programmers, 2004.

O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ: effective taint analysis
of web applications. In M. Hind and A. Diwan, editors, Proc. ACM SIGPLAN Conference
on Programming language Design and Implementation, pages 87-97. ACM Press, 2009.
A. van der Stock, J. Williams, and D. Wichers. OWASP Top 10 2007. http://www.
owasp.org/index.php/Top_10_2007,2007.

13

