
Secure and Fast Implementations of Two
Involution Ciphers

Billy Bob Brumley?

Aalto University School of Science and Technology, Finland
billy.brumley@tkk.fi

Abstract. Anubis and Khazad are closely related involution block ci-
phers. Building on two recent AES software results, this work presents a
number of constant-time software implementations of Anubis and Khazad
for processors with a byte-vector shuffle instruction, such as those that
support SSSE3. For Anubis, the first is serial in the sense that it em-
ploys only one cipher instance and is compatible with all standard block
cipher modes. Efficiency is largely due to the S-box construction that is
simple to realize using a byte shuffler. The equivalent for Khazad runs
two parallel instances in counter mode. The second for each cipher is a
parallel bit-slice implementation in counter mode.

Keywords: Anubis, Khazad, involution ciphers, block ciphers, software
implementation, timing attacks.

1 Introduction

Anubis and Khazad are two block ciphers by Barreto and Rijmen submitted
during the NESSIE project (see [12] for a summary). Anubis [2] works on 128-bit
blocks and is quite similar in many respects to AES. Khazad [3] is a “legacy-
level” cipher working on 64-bit blocks and is closely related to Anubis. These
are both involution ciphers: decryption differs from encryption only in the key
schedule.

The motivation for this work comes largely from cache-timing attacks, where
an attacker attempts to recover parts of the cryptosystem state by observing the
variance in timing measurements due to processor data caching effects. These
attacks can be time-driven and carried out remotely by measuring the latency
of a high level operation, or trace-driven and locally by exploiting the cache
structure to determine the sequence of lookups the cryptosystem performs. The
vulnerability exists when part of the state is used as an index into a memory-
resident table.

A high-speed table-based implementation of AES unrolls lower level oper-
ations such as SubBytes, ShiftRows, and MixColumns into four tables of size
256 containing 32-bit values. Lookups into these tables, indexed by state values,
? Supported in part by the European Commission’s Seventh Framework Programme

(FP7) under contract number ICT-2007-216499 (CACE).



are combined with XOR to carry out AES rounds in a more software-friendly
manner, relaxing the need to manipulate a large number of single byte values
and bits within those bytes. Similar versions of both Anubis and Khazad ex-
ist, in fact provided as the C reference implementations and discussed in both
specifications [2, 3, Sect. 7.1].

Cache-timing attacks are a serious threat and can easily lead to leakage of key
material. Although there are numerous published attacks on such implementa-
tions, a practical noteworthy one is Bernstein’s AES time-driven attack [5]. Anu-
bis and Khazad are presumably susceptible to this and other timing attacks. In
light of these attacks, a reasonable security requirement for any cipher is that it
can be implemented to use a constant amount of time. In this context, Bernstein
defines constant as “independent of the AES key and input” [5, Sect. 8]. The
concept of security within this paper is with respect to timing attacks.

To this end, this work shows that constant-time and efficient implementations
of both Anubis and Khazad are possible. Four such implementations appear
herein, summarized as follows.

– The first Anubis implementation runs only one instance of the cipher, com-
patible with all standard block cipher modes. This is efficient due to a byte-
vector shuffle instruction, allowing elegant realization of the nonlinear layer
in constant-time. The Khazad implementation is otherwise analogous but
with a smaller state runs two parallel cipher instances, here in counter mode
under the same key.

– The second Anubis implementation bit-slices the state and runs eight parallel
instances, here in counter mode. Not surprisingly, this is faster but requires
a parallel block cipher mode. Analogously, the Khazad implementation runs
16 parallel instances.

This work builds upon two recent results on AES software implementations
that remarkably manage to achieve constant-time and exceptional performance
at one stroke.

– A common hardware technique to compute the AES S-box uses an isomor-
phism IF28 → IF2

24 and subsequently reduces the problem of inversion in the
latter field to that of one in in the ground field; [13, 14, 7] are good examples of
this. Using a similar technique in software when equipped with a byte-vector
shuffle instruction and using a novel field element representation, Hamburg
presents techniques for fast and constant-time software implementation of
AES [10]. Running only a single instance of the cipher, the implementation
is compatible with all standard block cipher modes.

– Käsper and Schwabe present AES bit-slice techniques, aligning individual
bits of state bytes in distinct registers [11]. The implementation runs eight
parallel streams in counter mode under the same key. Not only does this
provide a constant-time implementation, but also is currently the fastest
published AES counter mode implementation in software (not considering
newer Intel models equipped with AES instruction set extensions). Table-
based AES implementations on common platforms that can perform only



one load instruction per cycle are inherently limited to ten cycles per byte;
there are ten rounds requiring sixteen lookups each. The authors show that
bit-slicing circumvents this limit.

2 Cipher Descriptions

This section gives a description of the Anubis and Khazad primitives, specifically
each component of the ciphers. The ciphers share some components verbatim and
others only differ slightly. The notation here follows style of the specifications;
see them for a more formal treatment [2, 3].

2.1 The Anubis Cipher

Although Anubis supports variable length keys, this work only explicitly con-
siders 16-byte keys; generalizations are straightforward. Analogous to AES-128,
Anubis consists of a 16-byte state. The state is either viewed as a vector in IF16

28

or a 4×4 matrix with entries in IF28 depending on the context. The specification
denotes this by a map µ, but this work omits this formalization; flattening the
matrix row-wise (concatenating the rows) yields the vector representation.

The nonlinear layer γ This layer is otherwise analogous to the AES SubBytes
step, but with a different S-box. It applies an S-box S : IF28 → IF28 to each byte
of the input. To facilitate efficient hardware implementation, the designers chose
to build S using a three layer substitution-permutation network (SPN), where
each layer includes two S-boxes P,Q : IF24 → IF24 termed “mini-boxes”. Fig. 1
depicts this structure.

The transposition τ Viewing the input as a 4×4 matrix, this mapping outputs
the transpose. To illustrate:

0 1 2 3
4 5 6 7
8 9 A B
C D E F

 7→

0 4 8 C
1 5 9 D
2 6 A E
3 7 B F

 .

The linear diffusion layer θ This layer shares some similarities with the
AES MixColumns step. It multiplies the input in matrix form by the symmetric
matrix

H =


01 02 04 06
02 01 06 04
04 06 01 02
06 04 02 01

 =


1 x x2 x2 + x
x 1 x2 + x x2

x2 x2 + x 1 x
x2 + x x2 x 1


and θ : a 7→ a ·H with all operations done in IF28 = IF2[x]/(x8 +x4 +x3 +x2 +1).



???? ????

P Q

????

"
"

"
"

"

"
"

"
"

"b
b

b
b

b

b
b

b
b

b

????

Q P

????

"
"

"
"

"

"
"

"
"

"b
b

b
b

b

b
b

b
b

b

????

P Q

???? ????

Fig. 1. S-box S as a three layer SPN with mini-boxes P and Q.

The cyclical permutation π This operation is otherwise analogous to the
AES ShiftRows step, but cyclically shifts column i of the matrix downward i
positions instead. This map only appears in the key schedule. To illustrate:

0 1 2 3
4 5 6 7
8 9 A B
C D E F

 7→

0 D A 7
4 1 E B
8 5 2 F
C 9 6 3

 .

The key extraction ω This is a linear mapping involving the Vandermonde
matrix

V =


01 01 01 01
01 02 022 023

01 06 062 063

01 08 082 083

 =


1 1 1 1
1 x x2 x3

1 x2 + x x4 + x2 x6 + x5 + x4 + x3

1 x3 x6 x5 + x4 + x3 + x

 =


01 01 01 01
01 02 04 08
01 06 14 78
01 08 40 3A


and ω : a 7→ V · a. This map also only appears in the key schedule.

The key schedule Given the cipher key K, round keys Ki for 0 ≤ i ≤ 12
satisfy Kr = (τ ◦ ω ◦ γ)(κr) where κ0 = K and κr = (σ[cr] ◦ θ ◦ π ◦ γ)(κr−1) for
r > 0, σ is addition in IF16

28 , and cr are vector constants dependent only on S.
Note the shared application of γ.



The complete cipher Anubis initializes the state as σ[K0] applied to the
input. This gets iteratively transformed through 12 rounds by σ[Kr] ◦ θ ◦ τ ◦ γ
where the last round omits θ.

2.2 The Khazad Cipher

The Khazad block cipher [3] works on 8-byte blocks and uses a 16-byte key. The
state is viewed as an element of IF8

28 . The components are similar to those of
Anubis in many respects; the nonlinear layer γ remains the same. A description
of the other components follows.

The linear diffusion layer θ This linear layer multiplies the input vector by
the symmetric matrix

H =



01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01


and θ : a 7→ a ·H.

The key schedule Round keys satisfy Kr = (σ[Kr−2] ◦ σ[cr] ◦ θ ◦ γ)(Kr−1)
where 0 ≤ r ≤ 8 and K−2 and K−1 are the first and second eight bytes of the
key K, respectively. There is no component corresponding to the key extraction
ω in Anubis.

The complete cipher Khazad initializes the state as σ[K0] applied to the
input. This gets iteratively transformed through eight rounds by σ[Kr] ◦ θ ◦ γ
where the last round omits θ.

3 Implementations

This section presents constant-time yet efficient implementations of both Anu-
bis and Khazad. It begins with some background on SIMD vector operations,
focusing on Intel processors. Then, for each cipher, a discussion on two imple-
mentation strategies appears. The first is more of a SIMD approach, running
one instance in the Anubis case and two for Khazad. The second is a bit-slice
approach running eight and sixteen instances, respectfully.



3.1 Vector Operations

In 64-bit mode, processors with Streaming SIMD Extensions 3 (SSE3) can op-
erate on 16 128-bit SIMD registers xmm0 through xmm15. SSE3 and predecessors
contain a wealth of instructions for parallel computation amongst these registers.
Cryptosystem implementations usually restrict to a smaller subset of these in-
structions dealing with integer values. Supplemental SSE3 (SSSE3) introduces a
handful of new instructions, the most interesting for this work being a byte shuf-
fler pshufb. Note that recent AMD processors implement SSE3 but not SSSE3,
although a related instruction is slated for the eXtended Operations (XOP) ex-
tension.

Byte Shuffling Since the implementations in this work make heavy use of
pshufb, a brief description of the instruction is in order. The name already
implies the ability to shuffle bytes around in a vector, but perhaps hides an
important aspect of the instruction. Aranha, López, and Hankerson note its
versatility [1, Sect. 2.1]:

“A powerful use of this instruction is to perform 16 simultaneous lookups
in a 16-byte lookup table.”

Formally, given 16-signed-byte vector operands a and b, components of the
16-byte vector output r of pshufb satisfy

ri =

{
abi mod 16 if bi ≥ 0,
0 otherwise,

so b holds the indices into the table and a the values. Indeed, this allows to
implement any IF4

2 → IF8
2 function in parallel: this is a constant-time hardware

lookup table, shuffling the values in a based on the indices in b. To summarize,
typical use of pshufb is either that of shuffling bytes around in a fixed manner
(b is fixed) or implementing lookups into a fixed table (a is fixed), and the
distinction is in the operand order.

Linear Maps Given the above, one can implement a linear map φ : IF8
2 → IF8

2

on 16 bytes in parallel. Denote α ∈ IF28 by α = αHx
4 + αL where αi are the

4-bit nibbles. Linearity ensures φ(α) = φ(αHx4) + φ(αL) and each input on the
right is effectively only four bits. Denote 16-byte vectors tφH and tφL that map
the corresponding input to the output; these are the a from the previous section.
The following steps realize φ in parallel:

1. Mask the lower nibble (αL) of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again (αH). (psrlq,

pand)
3. Shuffle tφL and tφH with their respective indices from the above steps.

(pshufb × 2)



4. Bitwise XOR the two outputs together. (pxor)

The second mask is a minor inconvenience due to the lack of an instruction to
shift bits of individual bytes in a 16-byte vector (there are no psllb and psrlb
instructions). The following implementations uses this strategy often. Note that
when applying multiple maps to the same input, the first two steps are needed
only once.

3.2 Implementing Anubis

This following presents SSSE3 implementation techniques for Anubis; it discusses
two different approaches. The first is serial in the sense that it employs only one
cipher instance, while the second runs eight instances in parallel.

A SIMD Approach Beginning with the nonlinear layer γ, the authors state
that the choice to build it as an SPN with mini-boxes was influenced by efficient
hardware implementation [2, 6.2]. A key observation in this work is that as a
consequence of the underlying smaller IF24 → IF24 mini-boxes, the composition
can be implemented elegantly using pshufb. Since P and Q are four bits to
four bits but the instruction allows a parallel four bit to eight bit lookup, the
bit permutations following P and Q can be unrolled for each layer to provide
shifted and spread versions of their output. For example, Q(0x1) = 0xE = 11102

but following the first layer the upper two bits get shifted two positions towards
the MSB: here the lookup provides Q0(0x1) = 0x32 = 1100102. This unrolling
yields the following six lookup tables for the corresponding layers:

tQ0 = 0x20012313311000333003022212113221

tP0 = 0x0408804C488488C4C08C404400C8CC0C

tP1 = 0x01022013122122313023101100323303

tQ1 = 0x80048C4CC44000CCC00C08884844C884

tQ2 = 0x08010B070D04000F0C03020A06050E09

tP2 = 0x102080706090A0D0C0B0405000E0F030.

As the last layer does not permute the bits, note tP2 and tQ2 are simply the
nibble-shifted and original contents as bytes, respectively, of P and Q.

With these tables in hand, the following steps implement layer i of S:

1. Mask the lower nibble of each byte in the input vector. (pand)
2. Bit-shift the input four positions towards LSB and mask again. (psrlq, pand)
3. Shuffle tPi and tQi with their respective indices from the above steps. (pshufb
× 2)

4. Bitwise OR the two outputs together. (por)

Iterating this concept for all layers shows that S can be realized in parallel
on all 16 input bytes using six pand, three psrlq, six pshufb, and three por.



Another option is to pair-wise reverse the wires on one mini-box per layer and use
an XOR swap on two bits instead to implement the permutations between layers.
It seems this does not reduce the operation count for current Intel processors.

Moving on to other components, the näıve way to implement the transpose
τ requires a single pshufb instruction with indices defined as

tτ = 0x0F0B07030E0A06020D0905010C080400

but in fact, by modifying the cipher and key schedule appropriately τ can be
omitted. Consider the operation of rounds 1 and 2:

σ[K2] ◦ θ ◦ τ ◦ γ ◦ σ[K1] ◦ θ ◦ τ ◦ γ.

With H a symmetric matrix (HT = H), observe that the composition θ◦τ yields
aT · H = (H · a)T . Denote K̂1 as τ applied to K1 and θ̂ : a 7→ H · a. Note γ
is invariant under τ ; it is not affected by any byte ordering. Then the following
expression, essentially relying on the fact that τ is an involution, yields the same
output:

σ[K2] ◦ θ ◦ γ ◦ σ[K̂1] ◦ θ̂ ◦ γ.

Hence all even rounds use the unmodified round keys and θ while odd rounds
use transposed round keys and θ̂. With an even number of rounds, τ never
needs to be applied during cipher operation. This is similar in spirit to Hamburg
eliminating ShiftRows when implementing AES [10, 4.2].

For the linear layers θ and θ̂, viewing the input vector components as ai ∈
IF28 , examining the matrix products reveals we need aibj for all i and all bj ∈
{1, x, x2, x2+x}. That is, we need the result of three distinct linear maps applied
to the input. Applying the machinery from Sect. 3.1 yields t2 = ax and t4 = ax2,
then the final product is t6 = t4 + t2. The outputs of θ and θ̂ differ only in how
these ti are subsequently shuffled. For θ, these vectors are shuffled using the
following indices corresponding to their positions in the columns of H:

tθ2 = 0x0E0F0C0D0A0B08090607040502030001

tθ4 = 0x0D0C0F0E09080B0A0504070601000302

tθ6 = 0x0C0D0E0F08090A0B0405060700010203

and the output is the XOR-sum of these three shuffled vectors with the input.
This strategy realizes θ using seven pshufb, six pxor, two pand, and one psrlq.
Note the pand can be eliminated by merging these layers with γ; the last layer
of S does not permute the bits so the output from the final P and Q can be
used directly as the indices for the linear maps. The byte shuffles for θ̂ are much
more regular; for example

tθ̂2 = 0x0B0A09080F0E0D0C0302010007060504

which in fact is not a byte shuffle but a dword shuffle pshufd that is more efficient
since it takes an immediate operand.



For the key schedule, it remains to implement both the permutation π and
key extraction ω; the former requires only one pshufb instruction with indices
defined as

tπ = 0x0306090C0F0205080B0E0104070A0D00.

Unfortunately ω is quite a different situation compared to θ, where the prod-
uct of every entry in the matrix with every component of the input vector a is
required. For example, here (x2 + x)ai is only needed for 4 ≤ i < 8. When com-
puting with 16-component vectors, this kind of selective computation is difficult
to accomplish in an elegant fashion.

On the other hand, realizing multiple linear maps as in Sect. 3.1 with the same
input amortizes the cost of the first two steps: the nibbles (indices into tables)
need be produced only once. In light of this, one strategy is over-computation
by producing aibj for all i and all bj as distinct entries in V . Computing six
of the maps (02, 04, 08, 14, 3A, and 40) is enough to reach the remaining two
with XOR chains (06 and 78). This strategy uses twelve pshufb, nine pxor, two
pand, and one psrlq.

Denote the resulting vectors by ri; these need to be combined at different
indices before XOR-summing them to arrive at the result (three pxor). For
column j of V with entries [v0j , v1j , v2j , v3j ] the needed vector is

[v0j [a4j , . . . , a4j+3], v1j [a4j , . . . , a4j+3], v2j [a4j , . . . , a4j+3], v3j [a4j , . . . , a4j+3]].

One way to achieve this is through a series of interleaves: punpckldq interleaves
the lower two 4-byte values in the first operand with those in the second, and
punpckhqdq the high 8-byte value.

The following illustrates this concept with j = 1 where vectors {r1 = a, r2 =
ax, r6 = a(x2 + x), r8 = ax3} facilitate constructing the vector

[a4, a5, a6, a7, 02a4, 02a5, 02a6, 02a7, 06a4, 06a5, 06a6, 06a7, 08a4, 08a5, 08a6, 08a7].

Here the ri are filled with dummy data to help observe the interleaving action:

r1 = 0x33333333222222221111111100000000

r2 = 0x77777777666666665555555544444444

r6 = 0xBBBBBBBBAAAAAAAA9999999988888888

r8 = 0xFFFFFFFFEEEEEEEEDDDDDDDDCCCCCCCC

t0 = 0x55555555111111114444444400000000 (punpckldq)

t1 = 0xDDDDDDDD99999999CCCCCCCC88888888 (punpckldq)

t2 = 0xDDDDDDDD999999995555555511111111 (punpckhqdq).

These operations accomplish the goal of extracting bytes v4, . . . , v7 from each
of the given v = ri to a vector in a specific order corresponding to column j
of V . The vectors for other j are obtained similarly with three instructions,
but different interleaves. The exception being j = 0, using only one pshufd to
broadcast the lower 4-byte value of the input across the vector.



A Bit-slice Approach Käsper and Schwabe use the SIMD registers to rep-
resent eight AES instances running in parallel [11]. While these can be unre-
lated instances with different keys, parallel block cipher modes such as counter
mode are where this method is particularly interesting: encrypting the next eight
counter values under one key in parallel. Eight SIMD registers hold the entire
state for these eight instances, but each register represents one bit-slice of the
state bytes for all instances.

Naturally, the same approach can be used to implement Anubis in counter
mode. Denote 128-bit SIMD registers ri for 0 ≤ i < 7 each holding bit i of all
state bytes. Byte j of ri holds bit i of the jth state byte for all eight instances,
each instance at a fixed offset within these bytes. Figure 2 depicts this structure.

With this representation, some of the components from the previous section
remain unchanged and are simply iterated for each ri. For example, τ , π, and
the shuffles at the end of θ. As this counter mode implementation uses only a
single key, the key schedule components stay the same, but the resulting round
keys must be subsequently converted into bit-slice format using eight times the
storage. See [11, Sect. 4.1] for a brief discussion on general data conversion
to and from bit-slice format. This implementation uses the same code for said
conversion.

The two components that differ significantly in implementation compared to
the serial case are the nonlinear layer γ and linear layer θ (θ̂), the only layers
where any time consuming operations are carried out during encryption. The
previous serial implementation relies heavily on pshufb as a lookup table to
realize γ. In contrast, bit-slicing relies on boolean expressions alone to evaluate
the S-box, facilitated by access to individual bits of all state bytes collected in
one register. Indeed, this is the allure of bit-slicing.

The specification gives boolean expressions for P and Q with 18 gates each,
implementing S with 108 gates [2, Appx. B]. This is not significantly lighter than
the current smallest published AES S-box with 115 gates [6], although the former
appeared at inception while the later took roughly a decade of research to whittle
down, and further they are not immediately comparable as the later employs
XNOR gates. Regardless, in software register-to-register moves must also be
considered since most SSE instructions, particularly those for bitwise operations,
do not allow passing a separate destination operand. The simple construction
of S as an SPN using smaller P and Q easily allows the implementation to
remain entirely within the working register set: the stack is not required, and in
this work the implementation of γ uses 148 instructions. Table 1 compares the

byte 15 · · · byte 1 byte 0

bit 0 (xmm0)

in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

· · · in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

in
sta

n
ce

0
in

sta
n
ce

1
in

sta
n
ce

2
in

sta
n
ce

3
in

sta
n
ce

4
in

sta
n
ce

5
in

sta
n
ce

6
in

sta
n
ce

7

bit 1 (xmm1)
· · ·

bit 7 (xmm7) · · ·

Fig. 2. Bit-slice state representation for Anubis.



instruction counts to that of AES [11, Tbl. 2] and the result suggests, when bit-
slicing in software, the Anubis S-box is slightly more efficient compared to that
of AES. In practice, instruction scheduling is equally important: alas a succinct,
meaningful comparison is not straightforward.

For the linear layer, similar to an AES MixColumns, viewing the input and
output of θ as matrices one can derive a formula for each byte of the output:

bij = aij + x(ai1−j + ai3−j + x(ai2+j + ai3−j))

where all the subscripts are modulo 4. Each multiplication by x implies three
XOR gates for reduction. This leads to a cost of 38 pxor and 24 pshufb (pshufd
for θ̂), notably heavier than the 27 pxor and 16 pshufd of MixColumns [11,
Sect. 4.4]. The difference in pxor counts is simply due to the fact that the entries
of H have higher degree than those for MixColumns, and the above formula for
each byte contains one extra term in the sum. The difference in shuffle counts
is due to the fact that the shuffles for MixColumns are simple dword rotations,
and one can reduce the required shuffles per bit from three to two. The shuffles
for H are not as simple and do not seem to allow this.

3.3 Implementing Khazad

This section presents two Khazad implementations, analogous to the previous
two Anubis implementations. Both require a parallel block cipher mode when
only a single key is used. The strategies are in fact so similar to those of Anubis
that only a brief summary is provided. The implementations of the nonlinear
layer γ stay the same; the key extraction ω and permutations π and τ in Anubis
have no equivalent in Khazad, so the only component to consider is the linear
layer θ.

Two Parallel Instances As the SIMD registers are 16-byte and Khazad main-
tains an 8-byte state, here the analogous SIMD implementation of Khazad runs
two instances in parallel, for convenience restricted here to the same key using
counter mode. The strategy to compute θ is the same as the corresponding layer
in Anubis. First compute three linear maps (02, 04, and 08) and derive the re-
maining maps with XOR chains. The output is the XOR-sum of the input and
the seven shuffled vectors resulting from the linear maps. This implementation
uses 15 pxor, 13 pshufb, two pand and one psrlq.

Table 1. S-box instruction counts compared.

pxor pand/por movdqa Total

AES 93 35 35 163
Anubis 66 42 39 147



Sixteen Parallel Instances Lastly, the bit-slice implementation of Khazad
in counter mode. Khazad works on 8-byte blocks and with 128-bit SIMD regis-
ters aligning the bits of bytes in the state, this implies 16 parallel streams. The
approach to implement θ is exactly the same as with the bit-slice Anubis imple-
mentation: derive a formula for the output bytes and accumulate the result in
output bits iteratively. For each of the eight input bits, this works out to 14 pxor
and seven pshufb to produce a degree-10 polynomial. Similarly the reduction
uses a total of 12 pxor to clear the three top bits.

4 Results

This section presents the timing results for all of the implementations described
in this paper. The machine used for benchmarking is an Intel Core 2 Duo E8400
“Wolfdale” (45 nm) with 4GB of memory running Ubuntu 9.10, kernel 2.6.31-21,
and gcc 4.4.1. Table 2 contains the timings for long streams. Timings are median
over 1K runs obtained from the CPU time stamp counter rdtsc.

To place the results in some context, benchmark results of existing AES code
running on the same machine are included as well. Hamburg’s AES implemen-
tations includes a benchmarking script and the reported time is for encrypting
4kB [10]. Käsper and Schwabe implement the eSTREAM API that benchmarks
a number of different metrics; the reported time is the best result from the
test suite, that of “Encrypted 60 packets of 1500 bytes (under 1 keys, 60 pack-
ets/key)”.

Note that one purpose of this work is to improve the security and, if pos-
sible, speed of Anubis and Khazad software implementations. Hence the AES
timings are only included as a rough benchmark and are not for direct compar-
ison. In particular, AES-128 has 10 rounds while Anubis-128 has 12. They have
very different code footprints: AES encryption and decryption are implemented
separately, while with Anubis and Khazad they only differ in the key schedule.

The timings in Table 2 show that the serial Anubis implementations outline
here are very competitive with the purely table-based implementation. In par-
ticular, there is no significant penalty to realize protection against cache-timing
attacks on this platform. The compiler is able to optimize the C implementation
using compiler intrinsics for SIMD operations quite well; it is unclear how to im-
prove it by hand-crafted assembly. For parallel modes, the bit-slice approach is
significantly more efficient than the serial approach for both Anubis and Khazad.

5 Conclusion

This paper presents a number of constant-time implementations of the Anubis
and Khazad block ciphers. The results show that constant-time and efficient are
not mutually exclusive with respect to their software implementation. The work
here also further showcases the potential of a vector-byte shuffle instruction to
provide both secure and fast software implementations of cryptosystems.



Table 2. Timing results in cycles per byte.

Cipher Method Language Mode Instances “Wolfdale”

Anubis SSSE3 C CTR 1 21.7
Anubis SSSE3 C CBC 1 20.7
Anubis SSSE3 C CBC−1 1 20.3
Anubis SSSE3 asm CTR 8 9.2
Anubis Table C [2] CTR 1 20.7
Anubis Table C [2] CBC 1 21.3
Anubis Table C [2] CBC−1 1 21.2
Khazad SSSE3 asm CTR 2 18.6
Khazad SSSE3 asm CTR 16 10.3
Khazad Table C [3] CTR 1 19.8
AES SSSE3 asm [10] CTR 1 11.6
AES SSSE3 asm [10] CBC 1 11.0
AES SSSE3 asm [10] CBC−1 1 13.6
AES SSSE3 asm [11] CTR 8 8.0

It is worth mentioning that at least two other primitives make use of the
compact S-box used in Anubis and Khazad [4, 15]. Its particularly efficient soft-
ware implementation here, in serial using pshufb or parallel when bit-slicing,
greatly encourages further use: perhaps as a building block for other primitives.

Realizing the threat that timing attacks pose to software implementations,
more recent trends in cipher design are away from the rather traditional view
of an S-box as a lookup table towards methods that better suit constant-time
implementations using native instructions supported by common processors. For
example, the Threefish block cipher explicitly states this as a design criteria [9,
Sect. 8.1], using an extremely simple nonlinear function MIX consisting of a ro-
tation, XOR, and addition modulo 264 iterated during a large number of rounds.
However, equipped with powerful instructions like pshufb it will be interesting
to see how cryptologists harness this machinery and what the future holds for
cipher design.

References

1. Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implementa-
tion of the ηT pairing. In: Pieprzyk, J. (ed.) CT-RSA. Lecture Notes in Computer
Science, vol. 5985, pp. 89–105. Springer (2010)

2. Barreto, P.S.L.M., Rijmen, V.: The Anubis block cipher. http://www.larc.usp.
br/~pbarreto/anubis-tweak.zip (2001)

3. Barreto, P.S.L.M., Rijmen, V.: The Khazad legacy-level block cipher. http://www.
larc.usp.br/~pbarreto/khazad-tweak.zip (2001)

4. Barreto, P.S.L.M., Simpĺıcio Jr., M.A.: CURUPIRA, a block cipher for con-
strained platforms. In: 25th Brazilian Symposium on Computer Networks and Dis-
tributed Systems. pp. 61–74 (2007), http://www.sbrc2007.ufpa.br/anais/2007/
ST02%20-%2001.pdf



5. Bernstein, D.J.: Cache-timing attacks on AES. http://cr.yp.to/papers.html#

cachetiming (2004)
6. Boyar, J., Peralta, R.: New logic minimization techniques with applications to

cryptology. Cryptology ePrint Archive, Report 2009/191 (2009), http://eprint.
iacr.org/

7. Canright, D., Osvik, D.A.: A more compact AES. In: Jr., M.J.J., Rijmen, V.,
Safavi-Naini, R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 5867, pp. 157–169. Springer (2009)

8. Clavier, C., Gaj, K. (eds.): Cryptographic Hardware and Embedded Systems -
CHES 2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, Lecture Notes in Computer Science, vol. 5747. Springer (2009)

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (Round 2)
(2009), http://www.skein-hash.info/sites/default/files/skein1.2.pdf

10. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier and
Gaj [8], pp. 18–32

11. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier
and Gaj [8], pp. 1–17

12. Preneel, B.: The NESSIE project: towards new cryptographic algorithms. In: Infor-
mation Security Applications, 3rd International Workshop, WISA 2002. pp. 16–33
(2002)

13. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Çetin
Kaya Koç, Naccache, D., Paar, C. (eds.) CHES. Lecture Notes in Computer Sci-
ence, vol. 2162, pp. 171–184. Springer (2001)

14. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with s-box optimization. In: Boyd, C. (ed.) ASIACRYPT. Lecture
Notes in Computer Science, vol. 2248, pp. 239–254. Springer (2001)

15. Simpĺıcio Jr., M.A., Barreto, P.S.L.M., Carvalho, T.C.M.B., Margi, C.B., Näslund,
M.: The CURUPIRA-2 block cipher for constrained platforms: Specification and
benchmarking. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) PiLBA.
CEUR Workshop Proceedings, vol. 397. CEUR-WS.org (2008)


