
This is a repository copy of Model checking information flow in reactive systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156479/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R., Finkbeiner, B., Kovacs, M. et al. (2 more authors) (2012) Model checking 
information flow in reactive systems. In: Kuncak, V. and Rybalchenko, A., (eds.) 
Verification, Model Checking, and Abstract Interpretation (VMCAI 2012). Verification, 
Model Checking, and Abstract Interpretation - VMCAI 2012, 22-24 Jan 2012, Philadelphia, 
PA, USA. Lecture Notes in Computer Science (7148). Springer , pp. 169-185. ISBN 
9783642279393 

https://doi.org/10.1007/978-3-642-27940-9_12

This is a post-peer-review, pre-copyedit version of an article published in VMCAI 2012 
Proceedings. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-642-27940-9_12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Model Checking Information Flow

in Reactive Systems

Rayna Dimitrova1, Bernd Finkbeiner1, Máté Kovács2, Markus N. Rabe1, and
Helmut Seidl2

1 Universität des Saarlandes, Germany
2 Technische Universität München, Germany

Abstract. Most analysis methods for information flow properties do
not consider temporal restrictions. In practice, however, such properties
rarely occur statically, but have to consider constraints such as when

and under which conditions a variable has to be kept secret. In this pa-
per, we propose a natural integration of information flow properties into
linear-time temporal logics (LTL). We add a new modal operator, the
hide operator, expressing that the observable behavior of a system is in-
dependent of the valuations of a secret variable. We provide a complexity
analysis for the model checking problem of the resulting logic SecLTL
and we identify an expressive fragment for which this question is effi-
ciently decidable. We also show that the path based nature of the hide
operator allows for seamless integration into branching time logics.

1 Introduction

Temporal logics are well-suited for specifying classical requirements on the be-
havior of reactive systems. The key to the success of automated verification
methods for temporal logics is the rich set of automata-theoretic techniques [1–
3]. Based on these theoretical foundations, efficient model-checkers that are ca-
pable of verifying intricate properties have emerged over the last two decades.
Reactive systems, however, often are not only safety-critical but also security-
critical. Examples of reactive systems handling confidential information include
communication protocols, cell phone apps, and document servers.

Information flow properties are of great importance in the realm of security-
critical systems. Information flow summarizes properties that argue about the
transfer of information from a secret source towards an observer or attacker.
Notable examples of such properties are non-interference [4] and observational
determinism [5], which require that no information is leaked in a strict sense. For
many practical applications, however, requiring that information is kept secret
forever is too strong: often secrets may (or even must) be released under certain
conditions. The controlled release of information is called declassification [6, 7].

This work was partially supported by the German Research Foundation (DFG)
under the project SpAGAT (grant no. FI 936/2-1) in the priority program “Reliably
Secure Software Systems – RS3”.



submit

update

review

rej
ect

reject

close release sorry

accept

accept

close release congrat

a
cce

p
tre

je
c
t

Fig. 1. Model of a conference management system. An author can submit a paper and
later receive a notification of whether the paper was accepted or rejected via the output
variables congrat and sorry, which he or she can observe.

For reactive systems it is typical that secrecy requirements vary over time,
depending on the interaction of the system with its environment. For example
access rights are seldom static, and secret data may be released under certain
conditions. Therefore, it is imperative to consider information flow properties in
their temporal context and integrate them in the theory of temporal logics.

A typical example for a security-critical reactive system is a conference man-
agement system. A minimalistic model of such a system is given in Fig. 1. Two
properties of interest for this system are: (1) “The final decision of the program
committee remains secret until the notification” and (2) “All intermediate de-
cisions of the program committee are never revealed to the author”. These two
information flow properties can be informally specified as follows:

(1) last accept/reject before close remains secret until release and
(2) all accept/reject except the last before close remain secret forever.

The above properties illustrate the two temporal aspects of information flow
properties. Firstly, they specify at which points in time a variable is consid-
ered secret, e.g., “last before” or “all except last before”. Secondly, they specify
for how long certain information should remain secret, e.g., “forever” or “until
release”. Despite their obvious temporal nature, these properties cannot be ex-
pressed in classical temporal logics like LTL (Linear-time Temporal Logic), CTL
(Computation Tree Logic), or even the µ-calculus [8].

The reason is that most information flow properties have structural differ-
ences to classical temporal properties. While the latter are interpreted on a
single execution (in the linear-time case) or on the execution tree of a system (in
the branching-time case), information flow properties require the comparison of
multiple executions.

Contribution. In this paper we introduce a new modal operator H (hide), that
expresses the requirement that the observable behavior of a system is indepen-
dent of the choice of a secret. The novelty is the integration into the temporal
context—the operator itself is evaluated over a single path, but tracks the alter-
native paths the system could take for different valuations of the secret.

Extending LTL with the operator H (Section 3) yields a powerful—yet
decidable—logic called SecLTL. We provide an automata-theoretic verification

2



technique for SecLTL that extends the standard approach for LTL. We establish
PSPACE-completeness of the model checking problem for SecLTL both in the
size of the specification and in the size of the system under scrutiny.

We identify a fragment, Restricted SecLTL, for which the model checking
problem is efficiently solvable: it is in NLOGSPACE with respect to the size of
the system (Section 4). What makes Restricted SecLTL of practical relevance is
the combination of efficiency and expressiveness. It is able to capture properties
like non-interference and observational determinism.

The path-based semantics of the hide operator enables seamless integration
in branching time logics (Section 5). We define the logics SecCTL and SecCTL*
and determine the complexity of the corresponding model checking problems.
Surprisingly, even for SecCTL the model checking problem is PSPACE-complete.

2 Preliminaries

In this section we introduce the system model we consider throughout the paper:
transition systems whose edges are labeled with valuations of their input and
output variables. The external behavior of such a system consists of the infinite
sequences of labels during the possible executions. The temporal properties we
specify are over such behavior paths and are consequently translated to automata
over infinite words over the same alphabet.

For a finite set V of binary variables, we denote with vals(V) the set of all
possible valuations of the variables in V, i.e., all total functions from V to B. For
a ∈ vals(V) and V ⊆ V we use a|V to note the projection of a on the set V .

For a set A, A∗ is the set of all finite sequences of elements of A and Aω is the
set of all infinite sequences of elements of A. For a finite or infinite sequence π
of elements of A and i ∈ N, π[i] is the (i+1)-th element of π, π[0, i) is the prefix
of π of up to (excluding) position i, π[0, i] is the prefix of π up to (including)
position i and, if π is infinite, π[i,∞) is its infinite suffix starting at position i.
For a finite sequence π ∈ A∗, we denote its length with |π|.

Definition 1 (Transition system). A transition system (Mealy machine)
M = (VI ,VO, S, s0, δ) consists of a finite set of states S, an initial state s0,
two disjoint finite sets of binary variables, the input variables VI and the output
variables VO, and a transition function that is a partial function δ : S×Σ → S,
where the alphabet Σ = vals(VI ∪ VO) is the set of valuations of the input and
output variables. We define the size of a transitions system as |M | = |S|+ |Σ|.

We consider input enabled systems, that is, we require for every s ∈ S and
i ∈ vals(VI) that there exists an a ∈ Σ with a|VI

= i such that δ(s, a) is defined.

Definition 2 (Transition function δ∗M). We extend the transition function
of a transition system M to partial labels: δ∗M : S × vals(V ) → 2Σ×S, where
V ⊆ VI ∪ VO, δ

∗
M (s, v) = {(a, s′) ∈ Σ × S | a|V = v and δ(s, a) = s′}.

Definition 3 (Path, execution). Paths of a transition system M are infinite
sequences of labels: π = a0, a1, . . . , with ai ∈ Σ. Given a state s ∈ S, each path

3



π is associated with a unique finite or infinite sequence of states, s0, . . . , sn or
s0, s1, . . . , called execution of M from s on π and denoted ExecM (s, π), such
that s0 = s and si+1 = δ(si, ai) for all i ≥ 0. The execution is unique, since the
transition function is a function and might be finite since this function is partial.

Given a state s, we denote the set of possible infinite paths in M by Pathss,M .
Note that for every π ∈ Pathss,M , the execution ExecM (s, π) is infinite.

Definition 4 (Observational equivalence). Given a set of variables V ⊆
VI ∪ VO, we define two valuations a, a′ ∈ Σ, to be observationally equivalent
w.r.t. V , noted a =V a′, if the valuations’ projections to the variables in V is the
same: a|V = a′|V . Pairwise comparison immediately provides us with a notion
of observational equivalence on paths.

For a finite set Q, B+(Q) is the set of positive boolean formulas over Q. These
are formulas built from the formulas true, false and the elements of Q using ∧
and ∨. For θ ∈ B+(Q) and a set K ⊆ Q we write K |= θ if K satisfies θ.

A tree T is a subset of N∗
>0 such that for every node τ ∈ N

∗
>0 and every

positive integer n ∈ N>0, if τ · n ∈ T then the following hold:

– τ ∈ T (i.e., T is prefix-closed) and there is an edge from τ to τ · n, and
– for every m ∈ N

∗
>0 with m < n it holds that τ ·m ∈ T .

The root of T is the empty sequence ε and for a node τ ∈ T , |τ | is the
distance of τ from the root. A Q-labeled tree is a tuple (T, r), where T is a tree
and the function r : T → Q labels every node with an element of Q.

Definition 5 (Alternating Büchi automaton). An alternating Büchi au-
tomaton is a tuple A = (Q, q0, Σ, ρ, F ), where Q is a finite set of states, q0 ∈ Q

is the initial state, Σ is a finite alphabet, ρ : Q×Σ → B+(Q) is a transition func-
tion that maps a state and a letter to a positive boolean combination of states,
and F ⊆ Q is a set of accepting states.

A run of A on an infinite word π ∈ Σω is a Q-labeled tree (T, r) such that
r(ε) = q0 and for every node τ in T with children τ1, . . . , τk it holds that k ≤ |Q|
and {r(τ1), . . . , r(τk)} |= ρ(q, π[i]), where q = r(τ) and i = |τ |.

A run r of A on π ∈ Σω is accepting iff for every infinite path τ0τ1 . . . in
T , r(τi) ∈ F for infinitely many i ∈ N. We denote with Lω(A) the set of infinite
words in Σω accepted by A, i.e., for which there exists an accepting run of A.
For a state q ∈ Q, we note Lω(A, q) = Lω(Aq), where Aq = (Q, q,Σ, ρ, F ).

Definition 6 (Nondeterministic Büchi automaton). A nondeterministic
Büchi automaton is an alternating Büchi automaton N = (Q, q0, Σ, ρ, F ) for
which the transition formula ρ(q, a) for each q ∈ Q and a ∈ Σ does not contain
∧. Thus, for a nondeterministic Büchi automaton we can represent the transition
function ρ as a function ρ : Q×Σ → 2Q.

A run of N on an infinite word π ∈ Σω is an infinite sequence τ ∈ Qω such
that τ [0] = q0 and for every i ∈ N, τ [i+ 1] ∈ ρ(τ [i], π[i]).

4



3 The Temporal Logic SecLTL

The logic SecLTL extends LTL with the hide operator H . The SecLTL formu-
las over a set of variables V = VI∪̇VO are defined according to the following
grammar, where v ∈ V, ϕ and ψ are SecLTL formulas, H ⊆ VI and O ⊆ VO,

ϕ ::= v | ¬ϕ | ϕ ∨ ψ | ϕ | ϕ U ψ | HH,Oϕ.

Additionally, we introduce the common abbreviations true = v ∨ ¬v, false =
¬true, ϕ = true U ϕ, ϕ = ¬¬ϕ, and ϕWψ = ϕ U ψ ∨ϕ.

Intuitively, the operator HH,Oϕ requires that the observable behavior of the
system does not depend on the initial values of the secret variables H before
the formula ϕ is satisfied. The operator also allows to specify the power of the
observer, by choosing an appropriate set O of observable variables or outputs.
That is, the hide operator specifies what is to be considered the secret, what we
consider to be observable, and when the secret may be released.

What may seem a little odd initially, that we only consider the first valuation
of the H-variables to be secret, is actually one of the strengths of SecLTL. It
allows us, to precisely characterize the secret by using the hide operator within
an appropriate temporal context. For example, we can express the temporal
information flow properties from our motivating example in the introduction, as
we demonstrate in Section 3.1.

Although SecLTL specifications are path properties, their semantics, more
precisely the semantics of the hide operator, is defined using a set of alternative
paths and involves comparison of each of these paths to the main path, i.e., the
path over which the SecLTL formula is interpreted.

Definition 7 (Alternative paths). The set of alternative paths for a given
path π ∈ Σω and a given state s ∈ S with respect to a set of variables H ⊆ V
is the set of paths starting in state s with a possibly different valuation of the
secret variables H in the first position but otherwise adhering to the same input
values.

AltPathsM (s, π,H) = { π′ ∈ Pathss,M | π[0] =VI\H π′[0], and

π[1,∞) =VI
π′[1,∞) }.

Definition 8 (Semantics of SecLTL). Let M = (VI ,VO, S, s0, δ) be a tran-
sition system and Σ = vals(VI ∪ VO). An infinite path π ∈ Pathss,M for some
state s ∈ S and the state s satisfy a SecLTL formula ϕ, denoted M, s, π |= ϕ

when the following conditions are satisfied:

– if ϕ = v for some v ∈ V, then M, s, π |= ϕ iff π[0]|v is true;
– if ϕ = ¬ϕ′, then M, s, π |= ϕ iff M, s, π 6|= ϕ′;
– if ϕ = ϕ1 ∨ ϕ2, then M, s, π |= ϕ iff M, s, π |= ϕ1 or M, s, π |= ϕ2,
– if ϕ = ϕ′, then M, s, π |= ϕ iff M, s′, π[1,∞) |= ϕ′ where s′ = δ(s, π[0]),
– if ϕ = ϕ1Uϕ2, thenM, s, π |= ϕ iff for some i ≥ 0, we haveM,σ[i], π[i,∞) |=
ϕ2 and for all j with 0 ≤ j < i we have M,σ[j], π[j,∞) |= ϕ1, where
σ = ExecM (s, π).

5



h/o, b̄ h̄/o, b̄

h/o, b̄ h̄/o, b h/o, b̄ h̄/ō, b̄

h/ō, b h̄/ō, b h/ō, b h̄/ō, b h/ō, b h̄/ō, b h/ō, b h̄/ō, b

π
π
′

Fig. 2. Consider the formula ϕ = H{h},{o}b. This figure displays a computation tree
of a system and a path π with its (in this case single) alternative path π′. The formula
ϕ holds on π if π is observably equivalent (here, that is, equivalent with respect to
variable o) to π′ until b holds on π. Note that the occurrence of b in step 2 of path π′

does not affect the evaluation of ϕ on path π—thus π violates property ϕ. The other
path π′, however, satisfies the property, as the comparison stops after the first step.

– if ϕ = HH,Oψ, then M, s, π |= ϕ iff for every π′ ∈ AltPathsM (s, π,H) it
holds that π =O π′ or there exists i ∈ N such that M,σ[i], π[i,∞) |= ψ and
π[0, i) =O π′[0, i), where σ = ExecM (s, π).

We say that a transition system M satisfies a SecLTL formula ϕ, denoted M |=
ϕ, iff M, so, π |= ϕ for every π ∈ Pathss0,M .

Using the operator H we can specify secrecy requirements within a temporal
context. It generates a secret at a single point partitioning the input variables
into public and secret variables. Thus we can use the standard LTL operators to
capture the temporal aspect in that respect, i.e., when are secrets introduced. The
hide operator is a temporal operator with a “weak until flavor” that captures
requirements about for how long the secret should be kept.

The examples below demonstrate that these features enable the specification
of a rich set of temporal information flow properties for reactive systems.

3.1 Examples

Example 1 (Non-interference and Observational determinism). Classical non-
interference and related notions are fundamental security properties that any
logic designed as a specification language for information flow requirements
should be able to express. Classical non-interference as defined for (output)
deterministic systems by Gougen and Meseguer [4] requires that the system’s
observable behavior may not change if the high user’s actions would not have
been issued. Modeling the high actions hi and low actions li as input variables
that are true iff the action is performed and defining O as the set of observable
variables, we can translate [9] non-interference to our setting as follows:

NI (M) =
{

π ∈ Pathss0,M | ∀π′ ∈ Pathss0,M : π′ =H
~0 ∧ π =L π

′ ⇒ π =O π′
}

where H =
⋃

i hi and L =
⋃

i li. That is, we compare all paths with non-zero
high inputs to their counterpart having only zero high inputs. By symmetry and
transitivity this compares all paths having the same low inputs to each other.

6



This property can be expressed in SecLTL with the following formula:

ϕNI (M) =  HH,O false.

While a single hide operator only hides the first valuation of the secret vari-
able, using it in combination with the globally operator () has the effect that
for all steps the valuations of the variables H are considered secret. In this case,
the subformula of the hide operator is false, which means that the comparison
will never stop—the secrets must be kept forever.

Zdancewic and Myers [5] generalize non-interference to systems that are not
output deterministic. The resulting property, observational determinism, states
that for all possible computations (paths) π and π′ the observations must be
indistinguishable: π =O π′. Note that the model in [5] does not allow for low
input, but we can easily extend it by such:

OD(M) =
{

π ∈ Pathss0,M | ∀π′ ∈ Pathss0,M : π =L π
′ =⇒ π =O π′

}

As it is easy to see, this property is also captured by the formula ϕNI (M) above.
There are several other approaches, all with different semantics, that gener-

alize non-interference to not output deterministic systems. We decided to follow
the approach of Zdancewic and Myers as we consider it to be conservative.

Example 2 (Conference management system). Consider the model of a confer-
ence management system depicted on Fig. 1. The information flow properties
informally specified there can be specified as follows:

(1) 
(

(close) ⇒ HH,O release
)

(2) 
(

(¬close) ⇒ HH,O false
)

.

where H = {accept , reject} and O = {congrat , sorry}.
Here, the set H in the H subformulas specifies that the variables whose

values in the corresponding point of time constitute the secret are accept and
reject , and the set O = {congrat , sorry} means that the observer, in this case
the author, can observe all output variables of this system.

The subformula release of the H subformula in (1) specifies that the secret
may be released as soon as release is satisfied, while in (2) the false in the H
subformula requires that the secret is never released (as false is never satisfied).

Example 3 (Combination of path properties). Using combinations of path prop-
erties, we can rule out certain leaks in the analysis, which allows to analyze
different sources of secrets in separation. To rule out security violations other
than the obvious copy-operation from high to low variables, we can require that
the hide operator is only evaluated on paths that do not show such behavior:

(¬readhigh W writelow) ⇒ HH,Ofalse.

As side conditions we need to require that readhigh and writelow are not part of
the set of variablesH, as in this case the hide operator would explore alternatives
with different valuations for these variables.

7



Example 4 (Auction). We consider the bounded creation of secrets as one of
the strengths of SecLTL. For example, we can express that all bids submitted
before closing an auction are kept secret until the winner is announced:

(Hbids,O winnerAnnounced) U closingAuction.

Example 5 (Key retrieval). SecLTL also enables specifications that argue about
more than one different secrets. The following property specifies that on every
path at most one of the two secrets can be compromised:

(H{k1},O false) ∨ (H{k2},O false).

This does not prevent the leakage of either secret for all paths but only prevents
per path that both secrets are leaked.

Example 6 (Nesting). Nesting can be used to express that a secret (e.g. a key)
may not be leaked until the generation of a second secret that is secure:

H{k1},O(H{k2},Ofalse).

3.2 Model Checking SecLTL

The model checking problem for SecLTL is, given a SecLTL formula ϕ and a
transition system M to determine whether M |= ϕ.

We now describe an automata-theoretic technique for model checking
SecLTL. To this end we show that given a SecLTL formula ϕ and a transition
system M , we can construct a nondeterministic Büchi word automaton that ac-
cepts exactly those paths in Pathss0,M that satisfy ϕ. As an intermediate step
of this translation we construct an alternating Büchi word automaton from M

and ϕ with this property. This construction extends the standard translation for
LTL and thus inherits its intuitiveness. An important advantage of the use of
alternation is that it allows us to naturally follow the semantics of the operator
H employing the universal branching in the automaton transitions.

One of the differences between the automaton we construct for a SecLTL
formula and the one for an LTL formula obtained by the standard construction is
that each state of the automaton for SecLTL carries a state ofM as a component.
This allows the automaton to keep track of the executions ofM on the alternative
paths for a given input word when necessary. Note that this construction could
be slightly adapted in order to eliminate the need for a subsequent product
construction of the resulting automaton with M . We decided, however, not to
do that, in order to give a better intuition about the construction here and its
relation to the corresponding construction for Restricted SecLTL in Section 4.

Definition 9. The closure operator cl(ϕ) maps a SecLTL formula ϕ to a set of
SecLTL formulas that consists of all subformulas of ϕ and their negations. For
LTL operators we use the standard definition of subformulas and the subformulas
of a formula HH,Oϕ contain the formula itself and the subformulas of ϕ.

8



Proposition 1. For a transition system M = (VI ,VO, S, s0, δ) and a SecLTL
formula ϕ we can construct an alternating Büchi word automaton AM,ϕ =
(Q, q0, Σ, ρ, F ) with Σ = vals(VI ∪ VO) such that |Q| is in O(|ϕ| · |S|2) and
for every path π ∈ Pathss0,M it holds that π ∈ Lω(AM,ϕ) iff M, s0, π |= ϕ.

Proof. We define the set of states Q = Qϕ × S⊥, where S⊥ = S ∪ {⊥} and

Qϕ = cl(ϕ)∪{(O,ψ,m, s) ∈ 2VO ×{ψ}×{∀, ∃}×S | ∃H ⊆ VI .HH,Oψ ∈ cl(ϕ)}.

The initial state of AM,ϕ is q0 = (ϕ, s0) and the set F of accepting states is
defined as F = {(¬(ψ U ψ′), s) ∈ Q} ∪ {((O,ψ, ∀, s′), s) ∈ Q}.

To define the transition function ρ : Q×Σ → B+(Q), we extend the transition
function δ ofM to a total function δ⊥ : S⊥×Σ → S⊥: for s ∈ S, δ⊥(s, a) = δ(s, a)
if δ(s, a) is defined and δ⊥(s, a) = ⊥ otherwise, and δ⊥(⊥, a) = ⊥.

For convenience, we define the dual q of states in q ∈ Q: (ψ, s) = (¬ψ, s),
((O,ψ, ∀, s′), s) = ((O,¬ψ, ∃, s′), s), and ((O,ψ, ∃, s′), s) = ((O,¬ψ, ∀, s′), s).

For (ψ,⊥) ∈ Q where ψ is not an LTL formula and a ∈ Σ we de-
fine ρ((ψ,⊥), a) = false. For ((O,ψ,m, s′),⊥) ∈ Q and a ∈ Σ, we define
ρ(((O,ψ,m, s′),⊥), a) = false. For the remaining cases we define:

ρ((v, s), a) = true if a|v = 1 and false if a|v = 0,

ρ((¬ψ, s), a) = ρ((ψ, s), a),

ρ((ψ ∨ ψ′, s), a) = ρ((ψ, s), a) ∨ ρ((ψ′, s), a),

ρ((ψ, s), a) = (ψ, δ⊥(s, a)),

ρ((ψ U ψ′, s), a) = ρ((ψ′, s), a) ∨ ρ((ψ, s), a) ∧ (ψ U ψ′, δ⊥(s, a)),

ρ((HH,Oψ, s), a) = ρ((ψ, s), a) ∨ check(O, a, δ∗M (s, a|VI\H))∧
∧

(a′,s′)∈δ∗
M

(s,a|VI\H)((O,ψ, ∀, s
′), δ⊥(s, a)),

ρ(((O,ψ, ∀, s′), s), a) = ρ((ψ, s), a) ∨ check(O, a, δ∗M (s′, a|VI
))∧

∧

(a′,s′′)∈δ∗
M

(s′,a|VI
)((O,ψ, ∀, s

′′), δ⊥(s, a)),

ρ(((O,ψ, ∃, s′), s), a) = ρ(((O,¬ψ, ∀, s′), s), a)

= ρ((ψ, s), a) ∧
(

check(O, a, δ∗M (s′, a|VI
))∨

∨

(a′,s′′)∈δ∗
M

(s′,a|VI
)((O,ψ, ∃, s

′′), δ⊥(s, a))
)

.

where check is defined as check(O, a,A) =
(

∀(a′, s′) ∈ A : a′ =O a
)

. Note that
this function can be evaluated during the construction of AM,ϕ in time |M |.

Applied to a state of the form (HH,Oψ, s), the transition function follows the
semantics of H , which involves universal branching w.r.t. the alternative paths
that start at state s. For states of the form ((O,ψ, ∀, s′), s), the transition relation
is again defined according to the semantics of H , which in its temporal aspect
is similar to the LTL weak until operator. Here the transition relation verifies
ψ on the main path or branches universally according to the alternative paths
starting from s′. The function check has a similar effect to that of evaluating a
variable but it instead compares for O-equivalence.

States of the form ((O,ψ, ∀, s′), s) are accepting, as branches for alternative
paths that are forever equivalent to the main path should be accepting.

9



Let π ∈ Σω and let τ be a path in some run tree of AM,ϕ on π. Let us
consider a state τ [i] ∈ Q for some i ≥ 0. The set Q of states of AM,ϕ contains
two types of states. If τ [i] is of the form (ψ, s) ∈ cl(ϕ) × S⊥ and s 6= ⊥, then
s = σ[i], where σ = ExecM (s0, π). That is, s is a state on the execution of M on
π starting from s0 that corresponds to the prefix of π read so far. Similarly, if
τ [i] is of the form ((O,ψ,m, s′), s) ∈ (2VO × cl(ϕ)×{∀, ∃}×S)×S⊥ and s 6= ⊥,
we have s = σ[i]. The state s′ ∈ S is a state on the execution ExecM (σ[j], π′),
where 0 ≤ j < i and π′ ∈ AltPathsM (σ[j], π[j,∞), H) for some H ⊆ VI . That is,
the state s′ is a state on the execution of M on some alternative path π′ that
branches off form π at some position prior to position i. We point out that:

Remark 1. For every (ψ, s) ∈ Q where ψ is an LTL formula, it holds that
Lω(AM,ϕ, (ψ, s)) = Lω(AM,ϕ, (ψ,⊥)). If the formula ϕ does not contain nested
H operators, then for every ((O,ψ,m, s′), s) it holds that ψ is an LTL for-
mula and, as a consequence of the above and the definition of ρ, we have that
Lω(AM,ϕ, ((O,ψ,m, s

′), s)) = Lω(AM,ϕ, ((O,ψ,m, s
′),⊥)). ⊓⊔

Proposition 2. [10] For every alternating Büchi word automaton A with n

states there exists a nondeterministic Büchi word automaton N with 2O(n) states
such that Lω(N ) = Lω(A).

Proof. Let A = (Q, q0, Σ, ρ, F ) be an alternating Büchi word automaton. We
construct a nondeterministic Büchi word automaton N = (Qnd, qnd0 , Σ, ρ

nd, F nd)
as follows: Qnd = 2Q × 2Q, qnd0 = ({q0}, ∅), F

nd = {(R, ∅) | R ⊆ Q} and

ρnd((R1, R2), a) =







{(R′
1, R

′
1 \ F ) | R

′
1 |=

∧

q∈R1
ρ(q, a)} if R2 = ∅,

{(R′
1, R

′
2 \ F ) | R

′
2 ⊆ R′

1, R
′
1 |=

∧

q∈R1
ρ(q, a),

R′
2 |=

∧

q∈R2
ρ(q, a)}

if R2 6= ∅.

Theorem 1. For a transition system M = (VI ,VO, S, s0, δ) and a SecLTL for-

mula ϕ we can check in time O(|M | · 2O(|ϕ|·|S|2)) or in space O((log |M | + |ϕ| ·
|S|2)2) whether M |= ϕ holds.

Proof. We can view M as a nondeterministic Büchi word automaton and con-
struct the product BM,¬ϕ of M and the nondeterministic automaton NM,¬ϕ for
the negation of ϕ. Then M |= ϕ iff Lω(BM,¬ϕ) = ∅ and the claim of the theorem
follows from the fact that the nonemptiness problem for nondeterministic Büchi
automata of size n is decidable in time O(n) or in space O(log2 n) [1]. ⊓⊔

3.3 Complexity of the Model Checking Problem for SecLTL

A concurrent program is a parallel composition of a number of components using
the interleaving semantics and synchronizing over shared actions. We reduce
the model checking problem for concurrent programs (as defined in [2]) to the
SecLTL model checking problem for a monolithic transition system.

Theorem 2. [2] Model Checking CTL and CTL* for concurrent programs is
PSPACE-complete both in the size of the formula [2, Thm. 6.1] and in the size
of the transition systems [2, Thm. 6.2].

10



Theorems 6.1 and 6.2 in [2] make use of a single CTL formula: EF (a1∨· · ·∨an),
for some atomic propositions ai and a number of processes n. As the negation of
that property can be expressed in LTL ((¬a1∧· · ·∧¬an)), we can immediately
extend their result to LTL.

Lemma 1. Model Checking LTL for concurrent programs is PSPACE-complete
both in the size of the formula and in the size of the transition systems.

Theorem 3. The model checking problem for SecLTL is PSPACE-complete.

Proof sketch. We reduce the LTL model checking problem for concurrent pro-
grams to model checking a SecLTL formula on a single transition system, which
is the union of all individual programs together with a new initial state. For the
initial state the transition function allows to select a program whose transition
function is used subsequently. The program is then executed independently from
the others. We give a SecLTL formula that ensures that the original specification
is checked only on valid interleavings.

4 Restricted SecLTL

For some cases the nondeterministic automaton for a SecLTL formula does not
have to track a set of executions on alternative paths, but it suffices to track one
such execution. This raises hopes for more efficient fragments of SecLTL. In this
section, we identify one such fragment, which we call Restricted SecLTL, that
is characterized by a simple set of syntactic restrictions. We show that, indeed,
the model checking problem for Restricted SecLTL has a lower computational
complexity in terms of the size of the transition system.

Negation normal form (NNF). In order to elegantly state the restrictions, we
introduce negation normal form for (not necessarily restricted) SecLTL formulas.
As usual, the LTL operator R is the dual of U , i.e., ¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ.
We define the SecLTL operator L , the leak operator, as the dual of the SecLTL
operator H : For a given transition system M = (VI ,VO, S, s0, δ), infinite word
π ∈ Σω, where Σ = vals(VI ∪ VO), and state s ∈ S, it holds that

M, s, π |= LH,Oϕ iff M, s, π |= ¬(HH,O¬ϕ).

For every SecLTL formula ϕ, we denote with NNF(ϕ) the NNF of ϕ. SecLTL
formulas in NNF are defined according to the following grammar, where v ∈ V,
ϕ, ψ are SecLTL formulas in NNF, H ⊆ VI and O ⊆ VO,

ϕ ::= v | ¬v | ϕ ∨ ψ | ϕ ∧ ψ | ϕ
ϕ U ψ | ϕ R ψ | HH,O ϕ | LH,O ϕ.

Restricted SecLTL. A Restricted SecLTL formula is a SecLTL formula ϕ in NNF
that does not contain the operatorL , does not contain nested H operators, and:
(U) for every subformula ϕ1 U ϕ2 of ϕ, the formula ϕ2 is an LTL formula,
(R) for every subformula ϕ1 R ϕ2 of ϕ, the formula ϕ1 is an LTL formula.

11



Since we will build an alternating automaton for the negated formula, we also
formulate the restrictions on the negated version for reference: For a Restricted
SecLTL formula, the formula NNF(¬ϕ) does not contain the operator H , does
not contain nested L operators, and satisfies the dual versions of (U) and (R):
(U¬) for every subformula ϕ1 U ϕ2 of NNF(¬ϕ), ϕ1 is an LTL formula,
(R¬) for every subformula ϕ1 R ϕ2 of NNF(¬ϕ), ϕ2 is an LTL formula.

Expressive power. The above restrictions do not have a significant effect on the
expressive power. Examples 1 to 4 are still expressible in Restricted SecLTL.
Thus, the main assets of SecLTL, that is the bounded secret generation and the
use of hide operators in temporal contexts, are preserved.

Proposition 3. The system complexity of the model checking problem for Re-
stricted SecLTL is in NLOGSPACE.

Proof. We adapt the construction from Proposition 1 to the special case of for-
mulas of the form ¬ϕ where ϕ is a Restricted SecLTL formula. As in the formula
NNF(¬ϕ) negation occurs only in front of variables, instead of cl(¬ϕ) we can use
the set sf (NNF(¬ϕ)) that consists of all subformulas of NNF(¬ϕ). Furthermore,
since NNF(¬ϕ) does not contain H operators, states of the form ((O,ψ, ∀, s′), s)
are no longer needed. We define Q = Q′

¬ϕ × S⊥, where S⊥ = S∪̇{⊥} and

Q′
¬ϕ = sf (NNF(¬ϕ)) ∪ {(O,ψ, ∃, s) | ∃H : LH,Oψ ∈ sf (NNF(¬ϕ))}.

In the alternating Büchi word automaton AM,¬ϕ = (Q, q0, Σ, ρ, F ) the initial
state is q0 = (NNF(¬ϕ), s0) if ϕ is not an LTL formula and q0 = (NNF(¬ϕ),⊥)
otherwise, and the set of accepting states is F = {(ψ R ψ′, s) ∈ Q}.

According to Remark 1 we can replace in the definition of the transition
function ρ the function δ⊥ by the function δ′⊥ : cl(ϕ) × S⊥ × Σ → S⊥ where
δ′⊥(ψ, s, a) = ⊥ if ψ is an LTL formula and δ′⊥(ψ, s, a) = δ⊥(s, a) otherwise.

As NNF(¬ϕ) does not contain nested L operators we ensure by the definition
of δ′⊥ that states of the form ((O,ψ, ∃, s′), s) where s 6= ⊥ are not reachable.

The transition relation ρ is defined as follows:

ρ((v, s), a) = true if a|v = 1 and false if a|v = 0,

ρ((¬v, s), a) = true if a|v = 0 and false if a|v = 1,

ρ((ψ ∨ ψ′, s), a) = ρ((ψ, s), a) ∨ ρ((ψ′, s), a),

ρ((ψ ∧ ψ′, s), a) = ρ((ψ, s), a) ∧ ρ((ψ′, s), a),

ρ((ψ, s), a) = (ψ, δ′⊥(ψ, s, a)),

ρ((ψ U ψ′, s), a) = ρ((ψ′, s), a) ∨ ρ((ψ, s), a) ∧ (ψ U ψ′, δ′⊥(ψ U ψ′, s, a)),

ρ((ψRψ′, s), a) = ρ((ψ′, s), a) ∧ (ρ((ψ, s), a) ∨ (ψRψ′, δ′⊥(ψRψ
′, s, a))),

ρ((LH,Oψ, s), a) = ρ((ψ, s), a) ∧
(

check(O, a, δ∗M (s, a|VI\H))∨
∨

(a′,s′)∈δ∗
M

(s,a|VI\H)((O,ψ, ∃, s
′), δ′⊥(ψ, s, a))

)

,

ρ(((O,ψ, ∃, s′), s), a) = ρ((ψ, s), a) ∧
(

check(O, a, δ∗M (s′, a|VI
))∨

∨

(a′,s′′)∈δ∗
M

(s′,a|VI
)((O,ψ, ∃, s

′′), δ′⊥(ψ, s, a))
)

.

12



We see already that the restrictions eliminated universal branching over suc-
cessors. Disjunctive branching over successors does not lead to an exponential
blow up in the size of the system during the construction of the nondeterministic
Büchi automaton. In the following, we show that the number of executions that
we have to track is bounded by the number of leak operators in the formula.

Let k be the number of leak operators in NNF(¬ϕ). We construct a non-
deterministic Büchi word automaton N ′

M,¬ϕ = (Q′, q′0, Σ, ρ
′, F ′) with |Q′| in

O(2O(|ϕ|) · |S|k) and such that Lω(N
′
M,¬ϕ) = Lω(NM,¬ϕ), where NM,¬ϕ =

(Qnd, qnd0 , Σ, ρ
nd, F nd) is the nondeterministic Büchi automaton for AM,¬ϕ con-

structed using the construction from Proposition 2.
For a set R ⊆ Q, we denote with ns(R) the sum of the number of states

in R of the form (ψ, s) with s 6= ⊥ and the number of states in R of the form
((O,ψ, ∃, s′), s). We denote with nl(R) the sum of the number of occurrences of
L in formulas in R and the number of states in R of the form ((O,ψ, ∃, s′), s).
We define Q′ = {(R1, R2) ∈ Qnd | ns(R1) ≤ k, nl(R1) ≤ k and R2 ⊆ R1}.

Each state in (R1, R2) ∈ Q′ can be represented as a tuple (A1, A2, s), where
Ai is obtained from Ri by replacing each state of the form (ψ, s) where s 6= ⊥
by (ψ, ?) and each state of the form ((O,ψ, ∃, s′), s) by (O,ψ, ∃, ?) and s is a
vector of states in S of size k that assigns states to the ?-elements in A1 and A2

according to some fixed order on the formulas in (NNF(¬ϕ)). This is possible
as the definition of Q′ guarantees that A1 contains at most k ?-elements and
A2 ⊆ A1. Thus, the number of states of N ′

M,¬ϕ is in O(2O(|ϕ|) · |S|k).

The initial state of N ′
M,¬ϕ is q′0 = qnd0 and the accepting states and the

transition relation are defined as in NM,¬ϕ: F
′ = {(R1, R2) ∈ Q′ | R2 = ∅} and

ρ′((R1, R2), a) =











{(R′
1, R

′
1 \ F ) ∈ Q′ | R′

1 |=
∧

q∈R1
ρ(q, a)} if R2 = ∅,

{(R′
1, R

′
2 \ F ) ∈ Q′ | R′

2 ⊆ R′
1, R

′
1 |=

∧

q∈R1
ρ(q, a),

R′
2 |=

∧

q∈R2
ρ(q, a)}

if R2 6= ∅.

For every (R1, R2) ∈ Q′ and a ∈ Σ, ρ′((R1, R2), a) ⊆ ρnd((R1, R2), a). There-
fore, since q′0 = qnd0 , it holds that Lω(N

′
M,¬ϕ) ⊆ Lω(NM,¬ϕ).

For R1, R2, S1, S2 ∈ 2Q, (R1, R2) ⊆ (S1, S2) iff R1 ⊆ S1 and R2 ⊆ S2.
We now show that for every (S1, S2) ∈ Qnd, (S′

1, S
′
2) ∈ ρnd((S1, S2), a)

and (R1, R2) ⊆ (S1, S2) there exists (R′
1, R

′
2) ∈ Q′ such that (R′

1, R
′
2) ∈

ρ′((R1, R2), a) and (R′
1, R

′
2) ⊆ (S′

1, S
′
2). To this end, we prove by induction on

the structure of Restricted SecLTL formulas and the definition of ρ that for
every i ∈ {1, 2}, q ∈ Ri there exists a set R′

i,q ⊆ S′
i such that R′

i,q |= ρ(q, a)
and nl(R′

i,q) ≤ nl({q}). If q = (ψ, s) where ψ is an LTL formula, we can clearly
choose R′

i,q such that nl(R′
i,q) = 0. For q = (LH,Oψ, s) or q = ((O,ψ, ∃, s′), s)

we have nl({q}) = 1 and, since ψ is an LTL formula, we can choose R′
i,q with

nl(R′
i,q) = 1. For the other cases the property follows from the induction hy-

pothesis and the fact that if q = (ψ U ψ′) then ψ is an LTL formula and if
q = (ψ R ψ′) then ψ′ is an LTL formula. Thus, we can choose (S′

1, S
′
2) ∈ Qnd

such that (R′
1, R

′
2) ∈ ρnd((R1, R2), a), (R

′
1, R

′
2) ⊆ (S′

1, S
′
2) and nl(R′

i) ≤ k and
hence also ns(R′

i) ≤ k for i ∈ {1, 2}. Thus, (R′
1, R

′
2) ∈ ρ′((R1, R2), a).

13



The property above implies that for every run τ of NM,¬ϕ on a word π ∈ Σω

there exists a run τ ′ of N ′
M,¬ϕ on π such that τ ′[i] ⊆ τ [i] for every i ≥ 0. If τ is

accepting, then τ ′ is also accepting. This implies that Lω(NM,¬ϕ) ⊆ Lω(N ′
M,¬ϕ),

which concludes the proof that Lω(NM,¬ϕ) = Lω(N
′
M,¬ϕ). ⊓⊔

Theorem 4. Model Checking Restricted SecLTL is PSPACE-complete, and its
system complexity is NLOGSPACE-complete.

Proof. PSPACE-completeness follows from the fact that the model checking prob-
lem for LTL is PSPACE-hard and that we already showed that model checking
full SecLTL is in PSPACE. By Proposition 3, model checking SecLTL can be done
in space NLOGSPACE in the size of the system. Since the system complexity of
LTL model checking is NLOGSPACE-hard, the theorem follows. ⊓⊔

5 Extension to Branching Time

To demonstrate that the hide operator allows for smooth extension of other
temporal logics, we integrate it in the well known branching time logics CTL
and CTL*. While for SecCTL* the complexity is straight-forward to determine,
the result for the extension of CTL might be surprising: it is PSPACE-complete.

We define the logic SecCTL* as a standard branching-time extension of Se-
cLTL. SecCTL* state formulas are defined as follows, where v ∈ V , ϕ and ϕ′ are
SecCTL* state formulas and ψ and ψ′ are SecCTL* path formulas:

ϕ ::= v | ¬ϕ | ϕ ∨ ϕ′ | Aψ | Eψ.

SecCTL* path formulas, defined below, can contain the temporal operator H :

ψ ::= ϕ | ¬ψ | ψ ∨ ψ′ | ψ | ψ U ψ′ | HH,O ψ.

The path-based definition provides a simple and unique semantics for the
hide operator in SecCTL*.

Since SecCTL* is a standard branching-time extension of SecLTL, we can
employ the dynamic programming approach used for CTL* but use a SecLTL
model checker instead of an LTL model checker. Formulas are, as usual, evalu-
ated in a bottom-up manner. For a formula ψ, we evaluate all maximal proper
state subformulas of ψ and label the edges of the transition system accordingly
with values for fresh output variables. Then replace each maximal proper state
subformula in ψ by the corresponding fresh output variable and proceed. For
formulas of the form Eψ after the substitution in ψ we have that ψ is a SecLTL
formula and thus, we can compute the set of states that satisfy Eψ using a
SecLTL model checker.

Thus, for a SecCTL* formula ϕ and a transition systemM = (VI ,VO, S, s0, δ)
we can check M |= ϕ by using O(|S| · |ϕ|) calls of a SecLTL model checker.

Theorem 5. The model checking problem for SecCTL* is PSPACE-complete.

Proof. Membership in PPSPACE, that is, in PSPACE, is implied by the algorithm
described above. PSPACE-hardness follows from Theorem 3. ⊓⊔

14



SecCTL. The subset SecCTL of SecCTL* is defined in the standard way by
restricting the path formulas to be of the form ϕ, ϕ U ϕ′ or HH,O ϕ, where ϕ
and ϕ′ are SecCTL state formulas.

Theorem 6. The model checking problem for SecCTL is PSPACE-complete.

Proof sketch. Similarly to the hardness proof for SecLTL, we provide a reduction
from the CTL model checking problem for concurrent systems to model checking
a SecCTL formula on a monolithic system of polynomial size.

6 Related Work

Recent works [9] provide a uniform framework for classification of properties that
refer to multiple paths at once, called hyperproperties. These works, however, do
not provide means to specify and verify hyperproperties. Such a formalism is,
of course, not even possible for the set of hyperproperties in its full generality.
Of particular interest is the class of k-safety hyperproperties which consists of
those hyperproperties that can be refuted by considering at most k finite paths.
The verification problem for such properties can be reduced to checking a safety
property on a system obtained by k-fold self-composition. Huisman et al. [11]
specify observational determinism in CTL* and in the polyadic modal µ-calculus
interpreted over the 2-fold self-composition of the system.

SecLTL, in contrast, can express properties that go beyond k-safety hyper-
properties; a counterexample for a SecLTL specification (e.g. for LH,O true)
might require an infinite number of paths, and are therefore out of the scope of
self-composition based approaches.

A different approach to analyze information flow properties in combination
with temporal properties, is that of epistemic logics [12–14]. Epistemic logics
introduce knowledge operators to temporal logics and allow for properties that
refer to the knowledge of an agent at a certain point in the system run—thus
they are able to express information flow properties like non-interference [15, 16].

The fundamental difference between epistemic logics and SecLTL is, that
a knowledge operator expresses the knowledge of an agent, whereas the hide
operator specifies the secret. This allows us to argue in a forward-manner starting
at the point at which the secret is introduced.

Alur et al. [17] extended CTL and µ-calculus by two modal operators, the
first of which, similarly to the knowledge operator in epistemic logics allows for
quantifying over a set of equivalent states, and the second allows for referring to
non-equivalent states. The formulas in the resulting logics are interpreted over
computation trees augmented with edges representing observational equivalences
between path prefixes.

7 Conclusion

We proposed a new modal operator that allows for natural path-based integra-
tion of information flow properties in temporal logics. The rich set of examples

15



we considered demonstrates that the resulting linear time logic is expressive
enough to precisely specify many interesting information flow and secrecy prop-
erties. The operator allows for simple characterizations of sufficiently expressive
fragments with better computational complexity, like Restricted SecLTL, and
seamless integration into branching time logics like the presented SecCTL and
SecCTL*. Future work includes identifying fragments of the branching time log-
ics with reduced complexity and extensions to the alternating-time setting.

References

1. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115 (1994) 1–37

2. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47 (2000) 312–360

3. Vardi, M.Y.: Alternating automata and program verification. In: In Computer
Science Today. LNCS 1000, Springer-Verlag (1995) 471–485

4. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE
Symposium on Security and Privacy. (1982) 11–20

5. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proc. 16th IEEE Computer Security Foundations Workshop. (2003)

6. Broberg, N., Sands, D.: Paralocks – role-based information flow control and be-
yond. In: Proc. of POPL’10. (2010)

7. Askarov, A., Myers, A.: A semantic framework for declassification and endorse-
ment. In: Proc. of ESOP’10. Volume 6012 of LNCS. Springer-Verlag (2010) 64–84

8. Alur, R., Zdancewic, S.: Preserving secrecy under refinement. In: Proc. of
ICALP’06, LNCS 4052, Springer-Verlag (2006) 107–118

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18 (2010) 1157–1210

10. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor.
Comput. Sci. 32 (1984) 321–330

11. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: CSFW, IEEE Computer Society (2006) 3

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

13. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems
with perfect recall. In: FSTTCS. Volume 1738 of LNCS., Springer (1999) 432–445

14. Shilov, N.V., Garanina, N.O.: Model checking knowledge and fixpoints. In: FICS.
(2002) 25–39

15. Engelhardt, K., Gammie, P., Meyden, R.: Model checking knowledge and linear
time: PSPACE cases. In: Proc. of LFCS’07. (2007) 195–211

16. Balliu, M., Dam, M., Guernic, G.L.: Epistemic temporal logic for information flow
security. In: Proc. PLAS’11. (2011)

17. Alur, R., Cerný, P., Chaudhuri, S.: Model checking on trees with path equivalences.
In: TACAS. (2007) 664–678

16


