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Abstract

A transitive signature scheme allows to sign a graph in such a way that, given the signatures of
edges (a, b) and (b, c), it is possible to compute the signature for the edge (or path) (a, c) without
the signer’s secret. Constructions for undirected graphs are known but the case of directed graphs
remains open. A first solution for the case of directed trees (DTTS) was given by Yi at CT-RSA
2007. In Yi’s construction, the signature for an edge is O(n(log(n log n))) bits long in the worst
case. A year later, Neven designed a simpler scheme where the signature size is reduced to O(n log n)
bits. Although Neven’s construction is more efficient, O(n log n)-bit long signatures still remains
impractical for large n.

In this work, we propose a new DTTS scheme such that, for any value λ ≥ 1 and security
parameter κ:

• Signatures for edges are only O(κλ) bits long.

• Signing or verifying a signature for an edge requires O(λ) cryptographic operations.

• Computing a signature for an edge requires O(λn1/λ) cryptographic operations.

To the best of our knowledge this is the first construction with such a trade off. In particular, we can
achieve O(κ log(n))-bit long signatures while taking only O(log(n)) time to generate edge signatures,
verify or even compute edge signatures.

Our construction relies on hashing with common-prefix proofs, a new variant of collision resistance
hashing. A family H provides hashing with common-prefix proofs if for any H ∈ H, given two strings
X and Y equal up to position i, a Combiner can convince a Verifier that X[1..i] is a prefix of Y by
sending only H(X),H(Y ), and a small proof. We believe that this new primitive will lead to other
interesting applications.

Keywords: Transitive Signatures, Authenticated Data-structures, Collision-resistant Hashing,
Hashing with common-prefix proofs.

1 Introduction

Transitive signatures is a primitive introduced by Micali and Rivest [14] where a signer wants to authen-
ticate a graph. The main property of such scheme is that, given the signatures of edges (a, b) and (b, c),
it is possible to compute - without the knowledge of the secret - a signature for the edge (a, c). In their
work, the authors propose an efficient scheme for undirected graphs based on the difficulty of computing
discrete logarithm for large groups. They left the existence of a transitive signature scheme for directed
graph (DTS) as a challenging open question. The easier problem of building transitive signatures for
directed trees was first addressed by Yi [19]. The construction, based on a special assumption for the
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RSA cryptosystem, produces signatures of size O(n log(n logn)) bits, where n is the number of vertices
of the tree. Neven described in [16], a simpler solution based only on the existence of standard digital
signatures which also improves the bound on the size of the signature to O(n log n) bits.

In this work we describe a new construction for DTTS schemes that enjoys much better worst-case
complexity. Using the number of cryptographic operations as our notion of time, we obtain for any λ ≥ 1:

• Signing a new edge (or verifying the signature for any edge) can be done in O(λ) time.

• The time to compute a signature for any edge is O(λn1/λ).

Moreover, signature size is also substantially improved: our signatures require only O(κλ) bits, where κ is
a security parameter. In particular, if λ = log(n) then signatures are only O(κ log(n)) bits, while allowing
efficient signature computation (O(log(n) time). Alternatively, by setting for example λ = 2, we obtain
an optimal edge signature size of O(2 ·κ) = O(κ) bits if we are willing to afford O(

√
n) computation time.

Our Approach. There are two main ideas in our construction. First we use the following fact observed
by Dietz in [8]: given a tree T , if Pre and Post are the strings representing the sequences of labels
obtained by a pre-order and respectively post-order depth first traversal, then there exists a path from a
to b if and only if a appears before b in Pre and b appears before a in Post. Armed by this result we can
reduce the problem of deciding if there is a path between vertices a and b to the one of comparing the
position of a and b in S. To do so we consider an order data structure – a concept also introduced in [8] –
where the idea is to dynamically insert elements into a sequence such that it is efficient to decide whether
an element is before or after another. We implement such data structure through a binary search tree
T ′, where each node of T ′ is associated to an element of the sequence S in the following way: if a ∈ S
(bound to a′ ∈ T ′) appears before b ∈ S (bound to b′ ∈ T ′), then a′ and b′ have a common ancestor c and
a′ belongs to the left (resp. b′ belongs to the right) sub-tree of c. We then label each left (resp. right)
edge of T ′ by 0, (resp. 1). Now we assign to a the string A formed by the concatenation of 0, 1’s from
the root of T ′ to the node a′ and similarly assign the string B to node b′. From this construction we can
define a total order relation on strings ≺ such that A ≺ B, means a appears before b in the sequence S.
The advantage of this order data structure is that it allows incremental computations of new order labels:
that is, every new string V (associated to an element v of S) will share all bits except one with another
already computed label. As shown in section 4, this property is crucial to enable efficient computation of
edge signatures. The problem that arises now is that large strings of O(n) bits are bound to the vertices
of T , so at first sight we have not won too much: the signature length is now O(n) bits v/s O(n logn)
bits for Neven’s construction. That is where our second idea comes into play: we design a new kind of
collision resistant hash functions family which enables the following: Given only two hash values H(A),
H(B) and a small proof a Combiner can convince a Verifier that A and B share a common prefix up
to a position i. We call this new primitive collision-resistant hashing with common-prefix proofs. We
can see that this primitive allows also to prove that A ≺ B for two strings A,B. Using this tool we
can complete our construction for DTTS. The last remaining difficulty is that the time to compute a
proof for strings of n bits involves a priori O(n) cryptographic operations. To overcome this drawback we
show how to balance the work between the Verifier and the Combiner using the natural idea of hashing
consecutive chunks of the initial string to obtain a shorter one, and repeat this operation several times.
This technique leads to the trade off O(λn1/λ) v/s O(λ) for λ ≥ 1 between the time to compute a proof
versus the time to verify a proof. The security of our primitive is based on the n-Bilinear Diffie Hellman
Inversion assumption, introduced by Boneh and Boyen in [3].

Related Work. The concept of transitive signatures was introduced by Rivest and Micali [14] who also
gave constructions for undirected graphs. Bellare and Neven in [2], as well as Shahandashti et al. in [18],
introduced new schemes based on bilinear maps (but still for undirected graphs). Hohenberger [11] showed
that the existence of transitive signatures for directed graphs (DTS) implies the existence of abelian
groups where inversion is computationally infeasible except when given a trapdoor. Such groups are not
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known to exist either. Transitive signatures are a special case of homomorphic signatures, a primitive
introduced by Rivest and explored in [12, 4, 5]. We observe that using accumulators techniques like [6, 7]
we can improve Neven’s construction [16] in order to obtain short signatures. Such a solution, however,
does not enable two key properties we seek and achieve on this paper’s construction: the computation of
edge signatures is paralellizable, and it tolerates unbounded growth for the trees (the construction can
increase the bound on the number of nodes by dynamically increasing the setup parameter, see sec. 3).
We explore a DTTS construction based on accumulators in appendix C.

Our contributions. Our contribution is twofold: first we introduce a general and practical new
primitive, collision-resistant hashing with common-prefix proofs, which enables efficient proofs that certain
strings share common-prefixes. We believe that this primitive may lead to many applications in the field
of authenticated data structures. Our second contribution is a practical DTTS scheme which is, to the
best of our knowledge, the most efficient one to the date.

Organization of the paper. In section 2 we introduce the notations, the definitions for DTTS and
the complexity assumptions that we use. Section 3 describes in details our new primitive. Then in section
4 we show how to use collision-resistant hashing with common-prefix proofs to obtain a practical DTTS
scheme.

2 Preliminaries

Notations and Conventions. If κ ∈ N is the security parameter then 1κ denotes the unary string
with κ ones. A function ν : N→ [0, 1] is said to be negligible in κ, if for every polynomial p(·) there exists
κ0 such that ∀κ > κ0 : ν(κ) < 1/p(κ). In the following, neg will denote some negligible function in κ.

An algorithm is said to be PPT if it is probabilistic and runs in polynomial time in κ. We write x
R← X

to denote an element x chosen at random from the set X . The time complexities expressed in the rest of
this work are relative to the number of cryptographic operations (signature, group exponentiation, and
application of a bilinear map).

Strings. Let n ∈ N. A string S of size |S| = n is a sequence of symbols S[1], S[2], ..., S[n] from an
alphabet Σ. We assume Σ is totally ordered, and note the order relation <. If n = 0 then S = ǫ is the
empty string. S[i..j] denotes the substring of S starting at position i and ending at position j (both S[i]
and S[j] are included). In particular if A = S[1..j] for some j ≥ 0 then we say that A is a prefix of S (by
convention A[1..0] for any string A is the empty string ǫ). We say a string C is a common prefix of A
and B if C is prefix of A and also of B. String C is said to be the maximum common prefix of A and B
if moreover C||σ is not a common prefix of A and B for any symbol σ ∈ Σ. The concatenation operator
on strings is denoted as ||. That is, if A,B are two strings of size n, then C = A||B is the string formed
by the sequence C[1] = A[1], C[2] = A[2], ..., C[n] = A[n], C[n + 1] = B[1], ..., C[2n] = B[n]. A symbol
σ ∈ Σ refers equivalently to the symbol or the string of length one. If A and B are strings then A ≺ B
means A appears before B w.r.t. the lexicographical order. $ is a special (and implicit) symbol that is
used only to mark the end of a string. For example the empty string is written $ and the string with
symbols a followed by b is represented by ab$.

Trees. Let T be a directed tree where each node is identified by a unique vertex-label a ∈ N. Our
construction makes use of trees which edges are associated to a symbol σ ∈ Σ. This means a node can
also be identified by a string (or path-label) A which is the concatenation of the symbols present on the
path from the root to this node. Moreover, if α is a vertex label, we write α ∈ T to mean the node with
label α belongs to T . If we assume that each path-label A is unique then node(A) refers to the node in
T with path-label A. We say a node a ∈ T is a descendant of c if a belongs to the sub-tree rooted at c or
equivalently if there is a path from c to a. The lowest common ancestor of two nodes a, b of T is the node
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c such that a and b belong to the sub-tree rooted at c, and for any child d of c, a or b is not a descendant
of d. If we consider a depth-first traversal of a tree, We denote by Pre and Post the strings formed by
the successive labels of the nodes that are visited in a pre-order (the node is append to the string when
it is visited for the first time) respectively post-order (the node is append to the string when it is visited
for the last time). The transitive closure of T is T ∗ = {(a, b) : a, b ∈ T and there is a path from a to b}.
Collision Resistance and Standard Signatures Schemes. Let H be a family of functions and
H : {0, 1}∗ → {0, 1}κ an element of H. The family H is said to be collision-resistant (CRHF ) if, for
H randomly chosen in H, any computationally bounded adversary can not find two different messages
M and M ′ such that H(M) = H(M ′), except with negligible probability. Let AlgH(·) be a PPT
algorithm that computes H , then if AlgH(·) is fed with input X and returns y, we write X = H−1(y).
We denote by SSig = (SKG, SSig, SVf) a standard signature scheme. (sk, pk)← SKG(1κ) is the pair of
private/public keys created in the setup phase. Then for a message M ∈ {0, 1}∗ its associated signature is
σM = SSig(sk,M). The validation of a signature σ on M is done by running SVf(pk,M, σ) which returns
valid if σ is a valid signature for M under pk and ⊥ otherwise. For the security of digital signatures, we
use the standard notion of existential unforgeability under chosen message attack [9].

Transitive Signatures. In a transitive signature scheme, the Signer can sign the vertices of some
graph but also the edges. Then without the secret, given two signed edges (a, b) and (b, c) it is possible
to compute the signature of the path (or edge) (a, c). We can see that this property enables to compute
the signature for any path in the tree.

Definition 1. (Transitive Signature Scheme, [14, 16]) A transitive signature
scheme (for directed trees) is a tuple DTTS = (TSKG,TSign,TSComp,TSVf)
where:

• TSKG(1κ) : returns a pair of private/public keys (tsk, tpk).

• TSign(tsk, a, b) : returns the signature τ(a,b) of edge (a, b).

• TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): returns the signature τ(a,c) of path (a, c). Note that the secret
key is not required.

• TSVf((a, b), τ, tpk) : returns valid if the τ is a valid signature for the path (a, b) and ⊥ otherwise.

Intuitively, a transitive signature scheme is secure if, for any PPT adversary it is infeasible to compute
a signature for a path that is outside the transitive closure of T .

Definition 2. (Security of Transitive Signature Schemes, [14, 16]) Let DTTS be a transitive signature
scheme. Consider the following experiment. The PPT adversary A is given the public key of the scheme
tpk. A asks for a polynomial number of edge signatures to the oracle OTSign(·). Finally A outputs (a, b)
and τ where a, b are nodes of the tree T formed by the successive edge insertions. The advantage of A is
defined by:

Advtuf-cma(A, κ) = Pr

[

(a, b) /∈ T ∗∧
TSVf((a, b), τ, tpk) = valid

]

The scheme is said to be secure if for any PPT adversary A
we have Advtuf-cma(A, κ) = neg(κ).

A trivial solution for DTTS can be implemented by simply concatenating standard edge signatures,
in which case the size of a signature grows linearly with the size of the path and may reach O(nκ) bits.
Yi’s solution [19] with O(n log(n logn)) bits signatures is clearly better than the trivial construction.
Neven’s DTTS scheme [16] reduces the size of signature to O(n log n) bits. We note that both solutions
need to maintain the state of the tree to enable new edge signature computations. As mentioned in [16]
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the initial definition of transitive signatures is stateless in the sense that signing a new edge should only
require the knowledge of the two vertices. Our solution is also stateful and thus we make it explicit by
introducing a third participant in addition to the Signer and the Verifier that we call the Combiner. His
role is to compute, without the help of the Signer, signatures for any path in the tree.

Bilinear maps. Our construction for collision resistant hashing with common-prefix proofs requires the
use of bilinear maps. Let G,GT , be cyclic groups of prime order p. We consider a map e : G× G→ GT

which is

• bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.

• non-degenerate: let g be a generator of G then e(g, g) also generates GT .

• efficiently computable: there exists a polynomial time algorithm BMGen with parameter 1κ that
outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT refer to the representation of both groups of size p (p being a
prime number of κ bits), g is a generator of G and ê is an efficient algorithm to compute the map.

For the sake of simplicity, in the following we will not distinguish between G,GT , e and Ĝ, ĜT , ê.

The security of our construction relies on the n-Billinear Diffie-Hellman Inversion (n-BDHI) assumption
which was introduced by Boneh and Boyen [3].

Definition 3. (n − BDHI assumption [3]) Let P = (p,G,GT , e, g) ← BMGen(1κ), s
R← Zp, and T =

(g, gs, gs
2

, ..., gs
n

). The n-Bilinear Diffie-Hellman Inversion (n-BDHI) problem consists in computing

e(g, g)
1
s , given P and T . We say the n−BDHI assumption holds if for any PPT adversary A we have:

Advn-BDHI(A, κ, n) = Pr
[

e(g, g)
1
s ← A(1κ, P, T )

]

= neg(κ)

3 Collision-Resistant Hashing with Common-Prefix Proofs

Standard collision-resistant hash functions have the property of compressing possibly large inputs strings
to small ones. In practice, hash functions are considered injective due to the collision-resistance property.
This makes them useful constructs to manipulate shorter strings without loosing much security. In that
context, proving some relations or predicates on pre-images using only the corresponding hash values
(and perhaps an additional short proof) is certainly very useful. For example, given two hash values
H(A), H(B), proving efficiently predicates like |A − B| ≥ 10 or A ≺ B may help to simplify some
protocols or make them more efficient.

With the above goal in mind, in this paper we consider the common prefix predicate for strings,
CommonPrefix: given A,B ∈ Σn, CommonPrefix(A,B, i) = true if and only if A and B share a common
prefix up to position i. We seek collision-resistant hash function families H with the following property:
given H(A) and H(B) where A and B share a common prefix until position i, it should be possible to
produce a certificate π such that running some verification algorithm on inputs i, π,H(A), H(B) one can
be convinced that CommonPrefix(A,B, i) = true. Any such scheme should be secure in the sense that if
CommonPrefix(A,B, i) = false then producing a forged π∗ that makes the verification algorithm accept
should be computationally infeasible. Clearly, there exists a trivial instantiation of this primitive: just
consider H a standard (collision-resistant) hash function and π = (A,B). Of course, this is not really
useful as the size of the certificate is proportional to the size of the longest string. Thus, interesting
implementations should have short certificates. Additionally, we want hash function H to be easily
updatable: given H(A) one should be able to compute H(A||σ), without knowing A (this concept is also
known as incremental hashing [1]).

Given a CommonPrefix predicate we can now implement more interesting predicates over strings such
as Compare, where Compare(A,B) = true if A ≺ B: If A ≺ B it follows that there exists a (possibly
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empty) common prefix C for A and B, such that (1) C||σ is a prefix of A, (2) C||σ′ is a prefix of B, and
(3) σ < σ′. In summary, once we know how to do proofs for Prefix, we can compare any two strings
only using their hash values and a short proof.

Collision-Resistant Hashing with common-prefix proofs (CRHwCPP ). Let κ ∈ {0, 1}∗ be the
security parameter, PK ∈ {0, 1}κ some public key, and n ∈ N a bound on the size of the input which is
a polynomial in κ. We denote by H = {HPK,n,κ} a hash function family.

Definition 4. (Collision-Resistant Hashing with common-prefix proofs - Syntax) A function family H of
collision-resistant hashing with common-prefix proofs (CRHwCPP ) is defined by the tuple of algorithms
(PHGen,PHEval,PHProofGen,PHCheck) where:

• PHGen(1κ, n): given a bound n on the length of the strings to hash, this probabilistic algorithm
returns a public parameter PK. Value PK implicitly defines a hash function H = HPK,n,κ ∈ H
where H : {0, 1}n → {0, 1}κ.

• PHEval(M,PK): given M ∈ {0, 1}n, this deterministic algorithm returns a string H(M) ∈ {0, 1}κ.

• PHProofGen(A,B, i, PK): given two messages A, B ∈ {0, 1}n, and an index 1 ≤ i ≤ n, this
deterministic algorithm computes a proof π ∈ {0, 1}κ that will be used by the PHCheck algorithm.

• PHCheck(HA, HB, π, i, PK): a deterministic algorithm that, given HA, HB ∈ {0, 1}κ, two hash
values, and a proof π ∈ {0, 1}κ, returns either valid or ⊥.

The scheme is said to be correct if for any strings A,B and i ∈ N such that CommonPrefix(A,B, i) =
true, and π = PHProofGen(A,B, i, PK), we have that PHCheck on inputs (H(A), H(B), π, i, PK) returns
valid.

The notion of security is also rather natural: for any PPT adversaryA it should be difficult to compute
two n-bit strings A,B, an index i ∈ {1, . . . , n}, and a proof π ∈ {0, 1}κ such that PHCheck(H(A), H(B),
π, i, PK) returns valid but A[1..i] 6= B[1..i]. Note that the adversary is required to output pre-images A
and B to win, which assures that the hash values H(A) and H(B) have been correctly computed.

Definition 5. (Collision-Resistant Hashing with Common-Prefix Proofs - Security) Let H be a family of
collision-resistant hash functions with common-prefix proofs and A a PPT adversary. The CRHwCPP
advantage of A is

AdvCRHwCPP
H (A, κ, n) = Pr





PK ← PHGen(1κ, n);A,B, π, i← A(1κ, n, PK) :
A[1..i] 6= B[1..i] ∧HA = H(A) ∧HB = H(B)∧

PHCheck(HA, HB, π, i, PK) = valid





We say H is a secure prefix collision resistant hash function family if for every PPT A, we have
AdvCRHwCPP

H (A, κ, n) = neg(κ).

The following proposition shows that collision resistance hashing with common-prefix proofs imply
(standard) collision resistance. We omit the proof.

Proposition 1. Let H be a family of collision-resistant hashing with common-prefix proofs. Then H is
a collision-resistant hash function family (in the standard sense).

The Construction. We assume that the description of the hash function H - which is the tuple (gs, gs
2

,
..., gs

n

) of the n−BDHI problem - has been computed securely by a trusted third party or using multi-

party computations techniques. The idea is to represent a binary stringM by H(M)
def
= gM [1]s ·gM [2]s2 · · ·

gM [n]sn . Now if some message M ′ is equal to M up to position i then the value ∆ = H(M)
H(M ′) will be
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a product of gs
j

factors for 1 ≤ j ≤ n where for all j ≤ i the exponents are equal to 0. Hence,
∆ =

∏n
j=i+1 g

cjs
j

where cj ∈ {−1, 0, 1}. So with the knowledge of M ,M ′ and H we can compute a proof

π =
∏n

j=i+1 g
cjs

j−(i+1)

. The intuition behind this is that as M and M ′ are equal up to position i then
we can represent the difference of M and M ′ using only n− i positions. Verifying that proof π is valid
then consists in using the bilinear map to “shift forward” the exponents in the proof by i positions, in
order to get back the value H(M)/H(M ′). More precisely, π will be a valid proof for H(M), H(M ′) if

and only if e( H(M)
H(M ′) , g) = e(π, gs

i+1

). Details follow.

Construction 1. (Collision-Resistant Hashing with Common-Prefix Proofs - Construction) Let PH be
the scheme defined by the following algorithms:

• PHGen(1κ, n): run BMGen(1κ) to obtain P = (p,G,GT , e, g). Let s
R← Zp, and T = (g, gs, gs

2

, ..., gs
n

).
Return PK = (P, T ).

• PHEval(M,PK): M ∈ {0, 1}n. Compute H(M) =
∏n

j=1 g
bjs

j

where bj = M [j] for j ∈ {1, . . . , n}.
Return H(M).

• PHProofGen(A,B, i, PK): given n-bits strings A,B, let C be the array such that ∀j ∈ {1, . . . , n} :
C[j] = A[j]−B[j]. Return π =

∏n
j=i+1 g

C[j]sj−(i+1)

.

• PHCheck(HA, HB, π, i, PK): compute ∆ = HA

HB
, then return valid if e(∆, g) = e(π, gs

i+1

), otherwise
return ⊥.

Proposition 2. Under the n-BDHI assumption the hash functions family defined by the scheme PH is
a secure CRHwCPP .

Proof. Given an adversary A that breaks the security of PH, we construct an adversary B that breaks
the n − BDHI assumption as follows. Once B receives as input the parameters (P, T ) where T =

(g, gs, gs
2

, . . . , gs
n

), it forwards them to A. Eventually, A will output values A,B, π, i such that
PHCheck(H(A), H(B), π, i, PK) = valid, that is,

e(∆, g) = e(π, gs
i+1

) (1)

Then, B computes the array C defined as C[j] = A[j]−B[j] = cj for j ∈ {1, . . . , n}. Since A[1..i] 6= B[1..i],

let k < i, be the smallest index such that ck 6= 0. Clearly i− k > 0. From (1) it follows that π = ∆
1

si+1 ,
and then:

E = e(π, gs
i−k

) = e(∆
1

si+1 , gs
i−k

)

=
∏n

j=k e(g, g)
cjs

j−k−1

= e(g, g)
ck
s

∏n
j=k+1 e(g, g)

cjs
j−k−1

= e(g, g)
ck
s D

As all the cj are known, and ck = ±1, B can compute (ED )1/ck = e(g, g)
1
s .

Additional properties. Our construction for CRHwCPP functions family H is homomorphic in the
following sense: for any H ∈ H, any bit b, H(M ||b) = H(M) ·H(0|M|||b). Moreover, since H(0|M|||b) =
gbs

|M|+1

can be computed in constant time w.r.t |M |, our construction yields in fact to an incremental
hash function [1]. Furthermore, its computation can be easily parallelizable as obtaining a proof only
involves group multiplications. In particular, with O(n) processors, we can compute a proof using only
O(log n) (sequential) group multiplications. Finally note that, handling strings of length m > n can be
done dynamically, without having to recompute any proof, by simply extending the public parameter T =
(g, gs, gs

2

, . . . , gs
n

) say by invoking the distributed procedure (or calling the trusted generator) to compute

gs
n+1

, . . . , gs
m

. Finally, let Σ be a non binary alphabet with an efficient mapping to Zp. We observe that

we can adapt our construction to handle such alphabets by defining H as H(S) =
∏|S|

i=1 g
S[i]si .
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4 Short Transitive Signature for Directed Trees

Our construction for DTTS is based on the following idea: handling a growing tree can be reduced
to maintaining two ordered sequences, one corresponding to the pre-order traversal and another to the
post-order traversal in a depth first search. This was first observed by Dietz [8].

Proposition 3. ([8]) Let T be a tree and consider a depth-first traversal. Let Pre and Post be the strings
formed by the nodes that are visited in pre-order and post-order respectively, then for any pair of nodes
a, b in T , b is descendant of a if and only if ∃i, j : 0 < i < j and ∃i′, j′ : 0 < j′ < i′ such that:

(Pre[i] = a ∧ Pre[j] = b) ∧ (Post[i′] = a ∧ Post[j′] = b)

For example if we look at the last tree in the first column of figure 1, we get Pre = acdbe and
Post = dcbea. We can check that as there is a path from c to d, c appears before d in Pre and D appears
before c in Post. Also note that if there is no path between two nodes x and y (recall that the tree is
directed from top to bottom) then y may appear before x in Pre or x may appear before y in Post. See
for example pairs (c, b), (e, d) or (b, a).

The challenge to use this result is that the ordered sequences are dynamic (new elements can be
inserted between any two existent elements). Such problem is addressed by the so called order data
structure [8, 15]. In such a data structure we want to compare any pair of elements and also compute a
new element such that it lies between two existing ones. A naive way - as mentioned in [8] - to implement
the proposed data structure, would be to consider the interval [0..2n − 1] for the indexes; to insert an
element between X and Y one would use index ⌊X+Y

2 ⌋. This way we can always find an element between
two others and the comparison algorithm consists in comparing the numbers. Unfortunately, in this
case the Signer would have to handle indexes of length n for each new edge to sign, because the string
representation of the new index cannot be easily obtained from already computed values. So our first
improvement is a way to design the order data structure such that, if we want to insert an element
between X and Y , the new resulting string for index Z (where X < Z < Y ) will share all bits except one
with the string representing X or or the one representing Y .

Before describing our construction we introduce the formal definition of an order data structure [15].

Definition 6. Let U be a totally ordered set. An order data structure consists of three algorithms:

• ODSetup() : initializes the data structure.

• ODInsert(X,Y ) : compute an element Z that will lie between the two consecutive elements X,Y ∈ U .
• ODCompare(X,Y ): returns true if X precedes Y in the total order.

Our data structure uses a binary search tree [13] to insert elements. Then comparing two elements in
the data structure reduces to finding their lowest common ancestor c and checking whether one of them is
descendant of c’s left child or whether one element is an ancestor of the other. The values (strings) from
the total order correspond to the path from the root to a node in this tree, where each edge is labelled
by 0 (left child) or 1 (right child).

Construction 2. . Let OrderDS be the data structure defined by the following operations.

• ODSetup(): create a tree with two nodes, a root −∞ and its right child ∞. The label of the root is
ǫ and the label of the right child is 1. Intuitively −∞ represents the lowest element of the universe
and ∞ the greatest.

• ODInsert(X,Y ) : let X,Y be to consecutive elements, i.e. in particular X ≺ Y . Search node(X)
and node(Y ) in the tree. If node(Y ) belongs to the right sub-tree of node(X) then add node(Z) as
the left child of node(Y ). If node(X) belongs to the left sub-tree of node(Y ) then add node(Z) as
the right child of node(X). Return Z||$, the label of node(Z) concatenated with the end marker $.
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• ODCompare(X,Y ) : If X or Y does not end with $ return false. If X = Y return false. Obtain
the index i such that C is the maximum common prefix of X and Y . If X [i+ 1] < Y [i+ 1], return
true else return false.

We observe that in the worst case the largest path of the tree may be of size n + 1, and thus the
largest label will contain n + 1 = O(n) bits. Note that now the elements X,Y, Z are strings and not
integers as in the naive order data-structure. This order data-structure has an important property: for a
pair of consecutive elements (strings) X,Y the string Z returned by ODInsert(X,Y ) is equal to X ||b or
Y ||b where b ∈ {0, 1}. This turns out to be crucial as these strings will be hashed using a hash function
with common-prefix proofs H, introduced in the previous section. As a consequence of the homomorphic
property of H it will require only a constant number of cryptographic operations in order to compute
H(Z) from H(X) or H(Y ). We remark that as we append the symbol $ at the end of all strings (i.e. we
consider the alphabet Σ = {0, 1, $} where 0 < $ < 1 and $ is the end of string marker), ODCompare(X,Y )
consists simply in comparing the strings X ,Y w.r.t. the lexicographic order.

Basic Construction. Our first construction is based only on standard digital signatures – as Neven’s
construction – but where the size of each path signature is O(n) bits instead of O(n log n) bits. The
construction works as follows. Each time an edge (and thus a vertex) is added to the tree T the pre/post-
order lists are updated with the new vertex label. We also update two order data-structures, one for the
pre-order and one for the post-order list. More precisely, to each vertex label v we associate a value αv

(resp. βv) computed by the order data-structure for pre-order (resp. post-order) such that if v appears
before some w in Pre (resp. Post) then ODCompare(αv, αw) = true (resp. ODCompare(βv, βw) = true).

Construction 3. (DTTS from Standard Digital Signatures) Let SSig = (SKG, SSig, SVf) be a standard
digital signature scheme, and let BasicDTTS be the scheme consisting of the following algorithms.

• TSKG(1κ) : use the SKG to generate a pair of keys (sk, pk). Set tsk = sk and tpk = pk. Initialize
two order data structures OrderDSPre and OrderDSPost that will be used to maintain the sequence
for pre-order and post-order traversal respectively. Return (tsk, tpk).

• TSign(tsk, a, b) :

– Add the vertex a or b to the graph if it does not exists. Let v (either a or b) be the vertex that
was inserted.

– Update OrderDSPre, OrderDSPost data structures to reflect the pre-order and post-order traversal
sequence of the new tree: let xPre and yPre be the elements in Pre such that v comes just
after xPre and lies just before yPre. Compute using OrderDSPre the label αv (that is we have
αx ≺ αv ≺ αy). Do the same for the post-order list Post and obtain βv.

– Sign using tsk the message Mv = v||αv||βv. We obtain the signature σv = SSig(tsk,Mv).

– Return τ(a,b) = (Ma, σa,Mb, σb).

• TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): parse τ(a,b) as (Ma, σa,Mb, σb) and τ(b,c) as (Mb, σb,Mc, σc).
Return τ(a,c) = (Ma, σa,Mc, σc).

• TSVf((a, b), τ, tpk) : parse τ as (Ma, σb,Ma, σb). Verify the signatures; if any of them is invalid or
Ma (resp. Mb) is not of the form a||αa||βa (resp. b||αb||βb) then return ⊥. If not, extract from
Ma,Mb the values αa, βa, αb, βb. Verify that αa ≺ αb and βb ≺ βa, using the algorithm ODCompare.
If the verification succeeds return valid else return ⊥.

Theorem 1. If SSig is a secure digital signature scheme under chosen message attack, then BasicDTTS

a is secure transitive signature scheme for directed trees where (a) the size of path signature is O(n) bits,
(b) the Signer generates an edge signature in time O(n/κ), and (c) the time to compute a path signature
for the Combiner is O(1).
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Proof. Direct from proposition 3.

Combining the basic construction and collision-resistant hashing with common-prefix proofs we can
shrink the size of a path signature to O(κ) bits (see theorem 3 in appendix A.1). Using the trade off
technique introduced in appendix B for our hashing family we obtain the following result. (The full
construction with trade off is outlined in section A.2.)

Theorem 2. Let λ ≥ 1. If SSig is a secure digital signature scheme under chosen message attack and
H is a family of secure collision-resistant hash functions with common-prefix proofs, then PHDTTS with
trade off is a secure DTTS scheme and (a) the size of the signature of an edge is O(λκ) bits, (b) the
Signer has to perform O(λ) cryptographic operations (O(λ) hash computations and O(1) signature) per
edge insertion, (c) the Verifier can check that there is a path between two nodes in time O(λ), and (d)
the Combiner requires O(λn1/λ) time to compute a path signature.

5 Conclusion and further work

In this work we introduced a new primitive collision resistant hashing with common-prefix proofs and
showed it could be used to obtain efficient transitive signatures for directed trees. We recall however that
the general problem of building transitive signatures for directed graphs remains open, as the problem of
building stateless DTTS. We believe that our new hashing primitive may find many useful applications
in particular in the design of authenticated data structures.
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A Full construction for DTTS with Hashing with Common-

Prefix Proofs.

A.1 Full construction (without trade off)

We extend our basic construction as follows. Using the same alphabet Σ = {0, $, 1} where 0 < $ < 1,
the string comparison is now done through their hash values and corresponding proofs provided by the
scheme PH. That is, in order to prove that two strings (that correspond to paths in the order data
structures) X,Y are such that X ≺ Y through their hashes H(X), H(Y ) the Combiner must compute:

• A maximum common prefix C of X and Y . E.g.: (X = 10001$, Y = 1001$, C = 100) or (X =
10001$, Y=100011$, C = 1000). Note that C will never contain the symbol $.

• A proof that C is a prefix of X up to position i = |C|.
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Step Tree T Pre/Post
order

traversal
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ǫ ∞
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β−∞ = $
β∞ = 1

1 a

ǫ ǫ

Pre = a
Post = a

−∞

ǫ ∞

a ǫ

−∞

ǫ ∞

a ǫ

αa = 10$
βa = 10$

2 a

ǫ b

Pre = ab
Post = ba

−∞

ǫ ∞

a

ǫ b

ǫ

−∞

ǫ ∞

a

b ǫ

ǫ

αb = 101$
βb = 100$

3 a

c b

Pre = acb
Post = cba

−∞

ǫ ∞

a

ǫ b

c ǫ

ǫ

−∞

ǫ ∞

a

b

c ǫ

ǫ

ǫ

αc = 1010$
βc = 1000$

4 a

c

d

b

Pre = acdb
Post = dcba

−∞

ǫ ∞

a

ǫ b

c

ǫ d

ǫ

ǫ

−∞

ǫ ∞

a

b

c

d ǫ

ǫ

ǫ

ǫ

αd = 10101$
βd = 10000$

5 a

c

d

b e

Pre = acdbe
Post = dcbea

−∞

ǫ ∞

a

ǫ b

c

ǫ d

e

ǫ

−∞

ǫ ∞

a

b

c

d ǫ

e

ǫ

ǫ

αe = 1011$
βe = 1001$

Figure 1: Example of several insertions in a directed tree and their effect on the order data structures.
Step 0: The tree T to authenticate has no nodes. The sequences Pre and Post are empty as well. The order data
structure OrderDSPre and OrderDSPost contain two nodes −∞ and ∞ that are the bounds of the ordered universe.
Each edge is marked implicitly by 0 (for a left child) and 1 (for a right child).
Step 1: The first node a of T is created. The pre/post-order lists contain only a. The order data structures are
updated in such a way they reflect the order −∞ ≺ a ≺ ∞. In particular we have that labels αa = βa = 10$.
The end marker $ is appended so it allows direct order label comparison through lexicographical order using that
0 < $ < 1.
Step 2: A child b is added to a. Now the pre-order sequence Pre is equal to ab and the post-order sequence is
ba. As b comes after a in Pre we have that b is the right child of a in OrderDSPre. Similarly b is the left child of a
in OrderDSPost as it comes before a in Post.
Step 3,4 and 5: We follow the same procedure and obtain for each node v its order labels αv and βv respectively.
Comparing two node labels: In step 5 we can check easily using the order labels that for example d is a
descendant of a. Indeed we have αa = 10$ and αd = 10101$ which means αa ≺ αd. Also we can check that βd =
10000$ ≺ βa = 10$. We can also observe that there is no path from b to c for example as αc = 1010$ ≺ αb = 101$
and also βc = 1000 ≺ βb = 100$.
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• A proof that C is a prefix of Y up to position i = |C|.

• A proof that H(C||x) is a prefix of X up to position i+ 1.

• A proof that H(C||y) is a prefix of Y up to position i+ 1.

Verifying that X ≺ Y will then consists basically in checking the proofs and also verifying that x < y.

Construction 4. (DTTS from CRHwCPP )
Let PH = (PHGen,PHEval,PHProofGen, PHCheck) be a prefix collision-resistant hash function family,

and let PHDTTS be the scheme consistent of the following algorithms.

• TSKG(1κ) :
First, generate the public parameters for the PH scheme as well as a pair of private/public keys
(sk, pk) for the Signer running SKG. Set tsk = sk and tpk = tk. Initialize two order data structures
OrderDSPre and OrderDSPost. Return (tsk, tpk).

• TSign(tsk, a, b) :
Do the same as in BasicDTTS except that the message to be signed is now Mv = v||Hαv ||Hβv , where
Hαv = H(αv) and Hβv = H(βv). Note that H(αv), H(βv) can be computed incrementally due to
the fact that H is homomorphic and that the labels αv (resp. βv), have been computed previously.

• TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk):
If τ(a,b) or τ(b,c) is invalid, then reject. To compute the signature of the edge (a, c) the Combiner
proceeds as follows. Find the lowest common ancestor in OrderDSPre for node(αa) and node(αc).
Denote it node(α′

d). Note that α′
d is a string without the terminating symbol $ but such that

H(αd) = H(α′||$) is part of an already signed message Md = d||H(αd)||H(βd). Let σd be the
signature of Md. We have that αd is the maximum common prefix of αa and αc. Let l = |αd|.
Compute the following values:

– π1 = PHProofGen(α′
d, αa, l − 1, PK)

– π2 = PHProofGen(α′
d, αc, l− 1, PK)

– π3 = PHProofGen(α′
d||x, αa, l, PK)

– π4 = PHProofGen(α′
d||y, αc, l, PK)

where (x, y) may be the pair of symbols (0, $) or (0, 1) or ($, 1). (Recall that 0 < $ < 1 and that all
strings are ended by $.) Finally obtain π5 = (Ma, σa,Mc, σc, Hα′

d
, σd, l, x, y) where Hα′

d
= H(α′

d).
Set πPre = (π1, π2, π3, π4, π5).
Compute similarly πPost and return τ(a,c) = (πPre, πPost).

• TSVf((a, b), τ, tpk) :
Extract πPre from τ = (πPre, πPost). Parse πPre as (π1, π2, π3, π4, π5).
Parse π5 as (Ma, σa,Mc, σc,Md, σd, Hα′

d
, l, x, y) where Mv = v||Hαv ||Hβv for v ∈ {a, c, d}. Check

that all the pairs of message-signatures are valid under public key tpk. Check that Hα′
d
·H(0l||$) =

Hαd
the second component of Md. Check that x and y are symbols. If one of the verification fails

return ⊥. Verify proofs π1, π2, π3, π4 using PHCheck, namely compute:

– PHCheck(Hα′
d
, Hαa , π1, l − 1, PK)

– PHCheck(Hα′
d
, Hαb

, π2, l − 1, PK)

– PHCheck(Hα′
d
·H(0l−1||x), Hαa , π3, l, PK)

– PHCheck(Hα′
d
·H(0l−1||y)), Hαb

, π4, l, PK)
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If all these verifications pass return valid otherwise return ⊥.
Theorem 3. If SSig is a secure digital signature scheme under chosen message attack and H is a family
of secure collision-resistant hash function with common-prefix proofs, then PHDTTS is a secure DTTS
scheme where (a) the size of the signature is O(κ) bits, (b) the Signer generates an edge signature in
O(1) time, and (c) the time to compute a path signature for the Combiner is O(n).

Proof. Let A a PPT adversary that breaks our scheme. We build an adversary B that breaks the security
of SSig or PH. B has access to a signing oracle OSSig(·) and is given the description of the prefix hash
function H as described in construction 1. B forwards all the public parameters to A. A asks for edges
signing to B who replies using the signing oracle OSSig(·) and H . Finally A outputs a signature τ such
that TSVf((a, b), τ, tpk) = valid and there is no path from a to b in T . We first consider the case where
signed messages Ma,Mb do not all correspond to edges insertion in T . This means that B has been able
to compute some signature for a message M ′ not previously requested to the oracle OSSig. So now we
assume that all signed messages reflects the history of edges insertions in the tree.

Let αa, αb and βa, βb be the order labels associated to vertices a, b in OrderDSPre and OrderDSPost
respectively. As there is no path from a to b, this means that (i) a appears before b in Pre and also a
appears before b in Post or (ii) b appears before a in Pre and also b appears before a in Post or (iii)
there is a path, but from b to a. Assume we are in case (i), and note that cases (ii) and (iii) are similar.
If indeed a appears before b in Pre then the adversary A managed to prove that b appears before a in
Post although the contrary is true. This means in particular that π1, π2, π3, π4 prove that there exists a
string C such that C||x is a prefix of βb and C||y is a prefix of βa and x < y. It is worth noting that,
although the proofs π1, π2, π3, π4 do not mention explicitly the strings tied to the nodes (only hash values
and lengths), these strings are present in the data structures OrderDSPre and OrderDSPost. If some hash
value is linked to two different pre-images then B has found a collision for H. In particular this means
that B knows C. Now, as indeed βa ≺ βb, there exists no such string C, so this means that either C||x
is not a prefix of βa or C||y is not a prefix of βb, therefore B has been able to break the security of the
scheme PH.

A.2 Sketch of the full construction with trade off

We sketch here the construction. We use a pair of order data structures for each level in the following way.
Consider the case of OrderDSPre (the case OrderDSPost can be treated similarly.) At level 0 we have the
label α that is a path in the binary search tree of OrderDS0Pre. When a path and its associated label α of
OrderDS0Pre becomes larger than n1/λκ then we compute H(α0) (where α0 is the n1/λκ bits long prefix of
α) and insert this new string in OrderDS1Pre, a new binary search tree. We store in the node of OrderDS0Pre
with label α0 the pointer to the node of OrderDS1Pre with label H(α0). Then if the length of the label
α continues to grow until reaching length 2n1/λκ and label α = α0||α1, we compute H(α1) and insert
this string in OrderDS1Pre starting from node with label H(α0). We follow the procedure for each chunk
of size n1/λκ, always inserting the new string in OrderDS1Pre. This process causes the tree OrderDS1Pre to
grow. We apply the same procedure to OrderDS1Pre by creating the tree OrderDS2Pre as described above.
We can follow this mechanics until reaching the tree OrderDSλ−1

Pre of maximal height n1/λκ. We observe
that in each tree the common ancestor between two nodes N1, N2 will be at maximum distance n1/λκ
from both nodes. This means that computing the proof for the PH will take time O(n1/λ). The Signer
will have to compute himself the hash values for all levels but only has to sign the final string of the last
level, so the time to compute a signature is O(λ). Finally signature for any path is O(λκ) bits long.

B Proof Generation and Verification Tradeoff

First, we can see that a simple optimization can be made to our scheme: instead of working with the
binary alphabet Σ = {0, 1} it is possible to encode the string S using Σ = {0, 1, ..., 2κ − 1} and thus
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Figure 2: Toy example of trade off data structure.
In this example, let n = 54, λ = 3, κ = 2 and the alphabet Σ = {a, b, c, d}. We have t = (54/2)1/3 = 3.
R and S are two strings that share the same prefix T until position i = i0 = 17 · 2 = 34. We start at
level 2. The Combiner shows that R2 and S2 are equal up to the position i2 = 1. Then he also proves
that da is a prefix of R2 and db is a prefix of S2. This means we need to find the common prefix of
strings H−1(a) = cba and H−1(b) = cbc. So we move up to level 1. Now the Combiner, using H−1(a)
and H−1(b), shows that R1 and S1 share a common j1-symbol prefix up the relative position j1 = 2.
This means that i1 = 1 · 3 + 2 = i2 · t+ j1 = 5. We move at the level 0. The Combiner then shows that
a,c are the symbols that come just after T 1 in R1 and S1 respectively. Now using H−1(a) = 001011 and
H−1(c) = 001010 the Combiner shows that R0 = R and S0 = S share a common prefix T 0 = T up to
the relative position j0 = 2. This means that i = i0 = 34 = (5 · 3 + 2) · 2 = (i1 · t+ j0)κ.

compute H(S) =
∏n/κ

i=1 g
σis

i

where ∀i : 1 ≤ i ≤ n/κ, σi ∈ {0, 1, ..., 2κ − 1}. This observation reduces
the number of cryptographic operations1 required to compute a proof from O(n) to O(nκ )

2. Although
simple, this observation is crucial for the following.

We now show how to balance the computational work between the Combiner – who generates the
hashes and the proofs – and the Verifier– who checks the proofs – as follows. We obtain a CRHwCPP
scheme such that, for any λ ≥ 1, the time it takes to compute a proof is reduced to O(λn1/λ) while the
time it takes to generate a signature or verify a proof is now O(λ). Let t > 0, and S = S0 be the n-bit
string (and thus n

κ symbols) to hash. Assume for clarity of the exposition that n
κ is a power of t. In order

to compute H(S), we first cut S in chunks of size tκ. For each chunk S0, S1, ..., Sn/(tκ)−1 we compute
the hash value H(Si) and obtain a new string S1 of size n

tκκ = n
t bits. We repeat the same procedure

with the new string S1 and obtain a string S2 of size n
t2κκ = n

t2 bits. We follow the same algorithm until

reaching a string S
log(n/κ)

log t −1 with at most t symbols (i.e. tκ bits) which hash is the final output.
To be more concrete, we set t = (nκ )

1/λ so that the new data structure has λ levels. In order to prove
that the n-bit strings R and S have a i-bit common prefix we do the following. Let R0, R1, ..., Rλ−1 and
S0, S1, ..., Sλ−1 be the sequences of strings obtained by following the above hashing algorithm on input
R0 = R and S0 = S, where Rℓ (resp. Sℓ) is the string processed at level ℓ. We start at level λ−1. At this
level there is only one chunk of size t = (nκ )

1/λ (number of symbols). Using PHProofGen, the Combiner
computes a proof πλ−1 showing that Rλ−1 and Sλ−1 share a common prefix T λ−1 until position iλ−1.

1For the sake of clarity we do not describe the case where the alphabet contains the special symbol $. The asymptotic
efficiency remains the same however.

2The proof of security remains the same, except that the symbols lie in a larger alphabet.
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Then the Combiner computes two additional proofs: one proof πλ−1,R, showing that T λ−1||σR,λ−1 is a
prefix of Rλ−1, and another one (say πλ−1,S), showing that T λ−1||σS,λ−1 is a prefix of Sλ−1. Notice that
since the Combiner has previously computed the hash values for each level, he knows the pre-images of
σR,λ−1 and σS,λ−1 under H : the tκ-bit long strings Rλ−2

iλ−1t
= H−1(σR,λ−1) (that is the chunk number

iλ−1t of R
λ−2) and similarly Sλ−2

iλ−1t
= H−1(σS,λ−1). The Combiner then moves up one level and repeats

the procedure at level λ − 2 now working on the strings H−1(σR,λ−1), H
−1(σS,λ−1) and generating a

proof (say πλ−2) that they have some jλ−2-symbol common prefix. We can see that, up to this point, the
Combiner has proven that strings Rλ−2 and Sλ−2 share a common prefix of length iλ−2 = iλ−1t+ jλ−2.
The procedure continues iteratively going up at the levels until it reaches level 0 (see example in figure
2) where i0 = (i1t+ j0)κ. The total size of the proof is O(λκ) bits.

The verification step at each level consists in verifying that (1) the proofs computed by the Combiner
are valid, and (2) for each two consecutive levels ℓ − 1 and ℓ the proofs for level ℓ are relative to the
pre-images H−1(σR,ℓ−1) and H−1(σS,ℓ−1). These considerations lead to the following result.

Theorem 4. Let λ ≥ 1. Under the n-BDHI assumption we can build a secure CRHwCPP function
family where (a) the time to compute a hash value is O(λ), (b) the time to compute a proof is O(λn1/λ),
and (c) the time to verify a proof is O(λ).

Proof. First we observe that the mapping between each level is a collision resistant hash function family.
Assume an adversary A manages to break the trade off scheme. Then we build an adversary B that

breaks the (simple) PH by computing a forged proof or finding a collision for H. Adversary B sends the
public parameters of the scheme to A who answers with a forgery for the trade off scheme. More precisely
A returns two strings R,S and valid proofs for each level that lead to the claim that R = R0 and S = S0

are equal up to position i although there exists some index k < i such that R[k] 6= S[k].
Let i = (i1 · t+ j0) ·κ the decomposition of i for the first level. If (i1 · t)κ ≤ k < (i1 · t+ j0)κ this means

that Ri1·t and Si1·t will not share a common prefix until relative position j1, thus B has found a forgery
for PH. If k < i1 · t we are reduced to the case where k′ = (⌈k/κ⌉)− (i1 · t) is such that R1

i2·t[k
′] 6= S1

i2·t[k
′]

as otherwise B would have found a collision for H. Now if i2 · t ≤ k′ < i2 · t+ j1 then again, B has broken
the security of PH. If k′ < i2 · t, we need to analyse similarly the case for the next level. Eventually we
will reach a level where B manages to break the security of PH because k < i and the decomposition of i
in base t is unique.

C Short DTTS using Cryptographic Accumulators

We first recall Neven’s signature scheme for directed trees.

Construction 5. (Neven’s scheme [16])

• TSKG(1κ) : returns a pair of private/public keys (tsk, tpk) for a standard digital signature scheme.

• TSign(tsk, a, b) : the state of the tree is maintained by its description as a graph G = (V,E), the
current root r and two tables up[·] and down[·] To sign a new edge we distinguish between the
following cases:

1. V = ∅:
r ← a;V ← V ∪ {a, b};E ← E ∪ {(a, b)}
up[a] = down[a] = down[b]← ǫ;up[b]← a

2. a ∈ V and b /∈ V :
V ← V ∪ {b};E ← E ∪ {(a, b)}
up[b]← up[a]||a; down[b]← ǫ
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3. a /∈ V and b = r:
r ← a;V ← V ∪ {b};E ← E ∪ {(a, b)}
up[a]← ǫ; down[a]← b||down[b]

In all other cases the Signer rejects because the query does not preserve the tree structure of
the graph. The Signer sets Ca ← (i, down[i]) and Cj ← (j, up[j]), and computes two standard
signatures σa = SSig(tsk, Ca) and σb ← SSig(tsk, Cb). The transitive signature for the edge (a, b)
is the tuple τ(a,b) ← (Ca, σa, Cj , σj).

• TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ca, σa, Cb, σb) and τ(b,c) as (Cb′ , σb′ , Cc, σc).
If b 6= b′ reject else return the composed signature for edge (a, c) as τ(a,c) ← (Ca, σa, Cc, σc).

• TSVf((a, b), τ, tpk) : Parse τ as (Ca, σa, Cb, σb), and parse Ca as (a, down) and Cb as (b, up). If
SVf(tpk, σa) = ⊥ or SVf(tpk, σb) = ⊥ return ⊥. If b occurs in down or a occurs in up or there
exists some c that occurs both in down and up then return valid else return ⊥.

Cryptographic Accumulators. An accumulator is a scheme that enables to represent a set by a
short value called accumulated value. Then given an element it is possible to prove that this elements
belongs to the set by exhibiting a proof called witness. An accumulator is dynamic if it is possible to
update the set. Two kinds of participants are involved in an accumulator scheme: the Manager that
holds the set, updates it and computes all the related values, and the User that can test for membership
of a given element. The next definition introduces the functionalities involved in a dynamic accumulator.
In our context the Manager would be the Signer and the User takes the role of the Verifier. The
Combiner is also a User that only computes witnesses for the accumulator scheme (still without knowing
the trapdoor).

Definition 7. (Syntax for Dynamic Accumulator, [7])
Let κ ∈ N be the security parameter. An accumulator scheme Acc consists of the following algorithms.

• Setup(1κ): This probabilistic algorithm takes κ in unary as input and returns a pair of public and
private keys (PK,SK), and the initial accumulated value for the empty set Acc∅. This algorithm
is run by the Manager.

• AccVal(X,Acc∅, PK, [SK]): Given a finite set of elements X (of at most polynomial size in κ),
a public key PK and the initial accumulated value Acc∅, this algorithm returns the accumulated
value AccX corresponding to the set X. This algorithm is run by the Manager. Depending on the
implementation, the secret key SK may also be given as optional parameter, often to improve the
efficiency3.

• Verify(x,w,AccX , PK): given an element x, a witness w, an accumulated value AccX , and a public
key PK , this deterministic algorithm returns valid if the verification is successful, meaning that
x ∈ X, or ⊥ otherwise. This algorithm is run by a User.

• WitGen(x,AccX , PK): this algorithm returns a witness w associated to the element x of the set X
represented by AccX . We consider the case where this algorithm is run by a User.

• AddEle(x,AccX , PK, [SK]): this algorithm computes the new accumulated value AccX∪{x} obtained
after the insertion of x into set X. This algorithm is run by the Manager.

• DelEle(x,AccX , PK, [SK]): this algorithm computes the new accumulated value AccX\{x} obtained
by removing the element x from the accumulated set X. This algorithm is run by the Manager. In
our application however we do not require it.

3The secret key may also be an optional parameter in the algorithms WitGen, AddEle, DelEle.
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Naturally, we say the scheme is correct if every valid witness leads to a successful verification.

Definition 8. (Correctness) Let X be a set and AccX its associated accumulated value, PK a public
key, SK the corresponding private key, and y ∈ Y . Let wy a value (witness) that satisfies wy ←
WitGen(y,AccY , PK, SK). We say that an accumulator scheme Acc is correct if and only if
Verify(y, wy, AccX , PK) = valid, for every such y, wy, X.

The security of an accumulator scheme is captured by an experiment where the adversary plays the
role of a User and attempts to forge a witness (i.e. finding a valid witness for an element that does
not belong to the set) while having access to an oracle that implements the operations relative to the
Manager. Such adversary must succeed with at most negligible probability on the security parameter.
This experiment is very similar to the one used to define the security of digital signatures.

Definition 9. (Security for Dynamic Accumulators, [7])
Let Acc be a dynamic accumulator scheme.
We consider the notion of security denoted UF-ACC described by the following experiment: on input

the security parameter κ, the adversary A has access to an oracle O(·) that replies to queries by playing
the role of the accumulator Manager. Using the oracle, the adversary can insert and delete a polynomial
number of elements of his choice. The oracle O(·) replies with the new accumulated value. The adversary
can also ask for witness computations or update information. Finally, the adversary is required to output
a pair (x,w).

The advantage of the adversary A is defined by:

AdvUF-ACC
Acc

(A) = Pr [Verify(x,w,AccX , PK) = valid ∧ x ∈ X ]

where PK is the public key generated by Setup, and AccX is the accumulated value of the resulting
accumulated set X. The scheme Acc is said to be secure if for every probabilistic polynomial time adversary
A we have:

AdvUF-ACC
Acc

(A) = neg(κ)

Short signatures for Neven’s scheme using Accumulators. The idea to shrink the size of edge
signatures for Neven’s scheme is simply to maintain an accumulator for each list up[·] and down[·]. The
accumulated values are signed using a standard signature scheme, and the Combiner can convince a
Verifier that a vertex belongs to some list by computing the appropriate witness. Using for example one
of the scheme introduced in [7, 17, 6] the edge signature will have constant size. Note that the accumulated
values are related in the following way: if y is a child of x then the Accy = AddEle(x,Accx, PK). This
means that instead of handling an accumulator for every node which would be costly, we only need to
compute the accumulated value on the fly. Then to obtain a witness, the procedure consists in recollecting
the values on the path for lists down[·] or up[·].

We can also handle the trade off (λ, λn1/λ) using accumulators with the tree technique presented for
example in [10]. Here the idea is to maintain pointers to the previous node that enables to compute a
witness / accumulated value.

To the best of our knowledge there is no way to parallelize the computation of witnesses for the
RSA accumulator [7] or NGuyen’s accumulator [17]. The accumulator presented in [6] allows parallel
computation for witnesses but the maximal size of the tree must be known before the scheme is initialized.

To summarize, our solution based on hashing with common prefix proof is the first one that (1) enables
the (λ, λn1/λ) trade off between the time to compute a path signature and to verify it, (2) allows the
parallelization of the computation of a path signature and (3) does not force the size of the tree to be
known beforehand.
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