Skip to main content

Chemical Analog Computers for Clock Frequency Control Based on P Modules

  • Conference paper
Membrane Computing (CMC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7184))

Included in the following conference series:

Abstract

Living organisms comprise astonishing capabilities of information processing for efficient adaptation to environmental changes. Resulting chemical control loops and regulator circuits are expected to exhibit a high functional similarity to technical counterparts subsumed by analog computers. A fascinating example is given by circadian clocks providing an endogenous biological rhythm adapted to the daily variation of sunlight and darkness. Its underlying biochemical principle of operation suggests a general functional scheme corresponding to frequency control using phase-locked loops (PLL). From a systems biology point of view, clock systems can be decomposed into specific modules like low-pass filters, arithmetic signal comparators, and controllable core oscillators. Each of them processes analog chemical signals on the fly. We introduce P modules in order to capture structure, behaviour, and interface of pure chemical analog computer models in terms of building blocks along with two simulation case studies. The first one is focused on chemical analog computer components including a controllable Goodwin-type core oscillator while the second one evolves an entire PLL-based frequency control by means of a pure chemical circadian clock model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J.: A survey on biological rhythms. Biological Rhythms 4, 3–10 (1981)

    Article  Google Scholar 

  2. Bequette, B.W.: Process control: modeling, design, and simulation. Prentice-Hall (2003)

    Google Scholar 

  3. Best, R.E.: Phase-locked loops: design, simulation, and applications. McGraw-Hill (2007)

    Google Scholar 

  4. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Botti, B., Youan, C. (eds.): Chronopharmaceutics. Science and technology for biological rhythm guided therapy and prevention of diseases. John Wiley & Sons (2009)

    Google Scholar 

  6. Cao, H., Romero-Campero, F.J., Heeb, S., Camara, M., Krasnogor, N.: Evolving cell models for systems and synthetic biology. Systems and Synthetic Biology 4(1), 55–84 (2010)

    Article  Google Scholar 

  7. Connors, K.A.: Chemical Kinetics. VCH Publishers, Weinheim (1990)

    Google Scholar 

  8. Cory, S., Perkins, T.: Implementing arithmetic and other analytic operations by transcriptional regulation. PLoS Computational Biology 4(4) (2008)

    Google Scholar 

  9. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  10. Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Science 372(2-3), 165–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Advanced Enzyme Regulation 3, 425–438 (1965)

    Article  Google Scholar 

  12. Hawkins, B.A., Cornell, H.V. (eds.): Theoretical Approaches to Biological Control. Cambridge University Press (1999)

    Google Scholar 

  13. Heiland, I., Bodenstein, C., Schuster, S.: Temperature compensation and temperature entrainment – amity or enmity? In: FEBS-SystemsX-SysBio 2011, Innsbruck, Austria (2011)

    Google Scholar 

  14. Helmreich, E.J.: The biochemistry of cell signalling. Oxford University Press (2001)

    Google Scholar 

  15. Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register Machine Computations on Binary Numbers by Oscillating and Catalytic Chemical Reactions Modelled using Mass-Action Kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinze, T., Lenser, T., Dittrich, P.: A Protein Substructure Based P System for Description and Analysis of Cell Signalling Networks. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Hinze, T., Lenser, T., Escuela, G., Heiland, I., Schuster, S.: Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 316–334. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulences. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  19. Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards Evolutionary Network Reconstruction Tools for Systems Biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 132–142. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Lewis, R.D.: Control systems models for the circadian clock of the New Zealand Weta. Hemideina thoracia. Journal of Biological Rhythms 14, 480–485 (1999)

    Article  Google Scholar 

  21. Manca, V.: Metabolic P Systems for Biochemical Dynamics. Progress in Natural Sciences 17(4), 384–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marhl, M., Perc, M., Schuster, S.: Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations. FEBS Letters 579(25), 5461–5465 (2005)

    Article  Google Scholar 

  23. Mori, T., Williams, D.R., Byrne, M.O., Qin, X., Egli, M., Mchaourab, H.S., Stewart, P.L., Johnson, C.H.: Elucidating the ticking of an in vitro circadian clockwork. PLoS Biology 5(4), 841–853 (2007)

    Article  Google Scholar 

  24. Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  25. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  26. Ruoff, P., Vinsjevik, M., Monnerjahn, C., Rensing, L.: The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian Clock. Journal of Biological Rhythms 14(6), 469–479 (1999)

    Article  Google Scholar 

  27. Samoilov, M., Arkin, A., Ross, J.: Signal Processing by Simple Chemical Systems. J. Phys. Chem. A 106(43), 10205–10221 (2002)

    Article  Google Scholar 

  28. Sharma, V.K., Joshi, A.: Clocks, genes, and evolution. The evolution of circadian organization. In: Kumar, V. (ed.) Biological Rhythms, pp. 5–23. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Systems Biology 3, 90 (2009)

    Article  Google Scholar 

  30. Wolkenhauer, O., Sreenath, S.N., Wellstead, P., Ullah, M., Cho, K.H.: A systems and signal-oriented approach to intracellular dynamics. Biochemical Society Transactions 33, 507–515 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinze, T., Bodenstein, C., Schau, B., Heiland, I., Schuster, S. (2012). Chemical Analog Computers for Clock Frequency Control Based on P Modules. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds) Membrane Computing. CMC 2011. Lecture Notes in Computer Science, vol 7184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28024-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28024-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28023-8

  • Online ISBN: 978-3-642-28024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics