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Abstract. TheOdd Cycle Transversal problem (oct) asks whether
a given graph can be made bipartite (i.e., 2-colorable) by deleting at
most ℓ vertices. We study structural parameterizations of oct with re-
spect to their polynomial kernelizability, i.e., whether instances can be
efficiently reduced to a size polynomial in the chosen parameter. It is a
major open problem in parameterized complexity whether Odd Cycle

Transversal admits a polynomial kernel when parameterized by ℓ.

On the positive side, we show a polynomial kernel for oct when parame-
terized by the vertex deletion distance to the class of bipartite graphs of
treewidth at most w (for any constant w); this generalizes the parameter
feedback vertex set number (i.e., the distance to a forest).

Complementing this, we exclude polynomial kernels for oct parame-
terized by the distance to outerplanar graphs, conditioned on the as-
sumption that NP * coNP/poly. Thus the bipartiteness requirement for
the treewidth w graphs is necessary. Further lower bounds are given for
parameterization by distance from cluster and co-cluster graphs respec-
tively, as well as for Weighted oct parameterized by the vertex cover
number (i.e., the distance from an independent set).

1 Introduction

Odd Cycle Transversal (oct), also called Graph Bipartization, is the
task of making an undirected graph bipartite by deleting as few vertices as pos-
sible; such a set is a transversal of the odd-length cycles in the graph. The oct

problem has applications in computational biology [23, 25], amongst others. It
is NP-complete and admits a polynomial-time O(log n)-factor approximation al-
gorithm [10]; no constant-factor approximation is possible unless Khot’s Unique
Games Conjecture fails [16, 25].

In this work we study the parameterized complexity [6] of oct, focusing
on data reduction and kernelization. Parameterized analysis measures the com-
plexity of an algorithm in two dimensions, the input size |x| and an additional
parameter k ∈ N which expresses some property of the instance, such as the size
of the desired solution. A parameterized problem is a language Q ⊆ Σ∗ × N,

⋆ This work was supported by the Netherlands Organization for Scientific Research
(NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”.
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and Q is (strictly uniformly) fixed-parameter tractable (FPT) if there is an algo-
rithm that decides whether (x, k) ∈ Q with running time bounded by f(k)|x|O(1)

for some computable function f .
In the standard parameterization of Odd Cycle Transversal which we

call ℓ-oct, the parameter k := ℓ measures the number of allowed vertex dele-
tions ℓ: an instance is a tuple ((G, ℓ), k := ℓ) where G is a graph and ℓ ∈ N, and
the question is whether there is a set S ⊆ V (G) of size at most ℓ such that G−S
is bipartite. The ℓ-oct problem has been very important to the development
of parameterized algorithmics, since the algorithm given by Reed, Smith and
Vetta [22] to solve ℓ-oct in O(4ℓℓmn) time1 introduced the technique of iter-
ative compression which has turned out to be a key ingredient in finding FPT
algorithms for Directed Feedback Vertex Set [4] and Multicut [3, 20],
amongst others. There has been a significant amount of work on improved exact
and parameterized algorithms for oct and related problems [21, 11, 8, 13, 15, 19].

Kernelization is an important subfield of parameterized complexity which
studies polynomial-time preprocessing [12]. A kernelization algorithm (or ker-
nel) for a parameterized problem Q is a polynomial-time algorithm which trans-
forms an input (x, k) ∈ Σ∗ ×N into an equivalent reduced instance (x′, k′) such
that |x′|, k′ ≤ f(k) for some computable function f , which is called the size of
the kernel. All problems in FPT admit kernels for some suitable function f , but
polynomial kernels (where f(k) ∈ kO(1)) are of particular interest. It is a famous
open problem whether or not ℓ-oct admits a polynomial kernel [13, 11]. At the
2010 workshop on kernelization WORKER, this was stated as one of the two
main open problems in kernelization to date. Even finding a polynomial kernel
for ℓ-oct restricted to planar graphs was listed as an open problem by Bod-
laender et al. in the full version of their work [1], despite the fact that planarity
makes it significantly easier to obtain polynomial kernels.

Our contribution. We study the existence of polynomial kernels for various
structural parameterizations of the oct problem. While we have not been able
to settle the question of whether ℓ-oct admits a polynomial kernel, we do give
several upper- and lower bound results for kernel sizes that we believe are im-
portant steps towards resolving the main problem. All parameterized problems
we consider fit into the following scheme, where F is a class of graphs:

Odd Cycle Transversal parameterized by vertex-deletion dis-
tance to F [(F)-OCT]
Input: A graph G, an integer ℓ and a set X such that G−X ∈ F .
Parameter: k := |X |.
Question: Is there a set S ⊆ V (G) of size at most ℓ such that G− S is
bipartite?

We give kernelization upper- and lower bounds for such parameterized problems.
Upper bounds. Our initial goal was to study oct parameterized by the size of

a feedback vertex set (FVS) of the input graph. Recall that a FVS can be defined
as a set of vertices whose deletion turns the graph into a forest, and hence this

1 Hüffner [13] re-analyzed the algorithm and showed it has time complexity O(3ℓℓmn).
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is the (forest)-oct problem. After having obtained a polynomial kernel for
this problem, we considered generalizations and were able to extend our result
significantly. Let bip denote the class of all bipartite graphs, and let Gtw(w)

denote the graphs of treewidth at most w. It is well-known that forest =
bip ∩ Gtw(1). We extended our result for feedback vertex number by showing
that for every constant w, the problem (bip ∩ Gtw(w))-oct has a polynomial
kernel. Using an approximation algorithm to compute the set X we can even
drop the requirement that the set X is given in the input; the size of the reduced
instance will then be bounded polynomially in the minimum-size of such a set X .
Our result can therefore be stated as follows: for every fixed w ≥ 1 there is a
polynomial-time algorithm that transforms an instance (G, ℓ) of oct into an
equivalent instance whose size is bounded by a polynomial in |X |, where X ⊆
V (G) is a smallest vertex set such that G−X ∈ bip ∩ Gtw(w).

We believe that the ingredients of our kernelization will be useful for solving
the main open problem of whether ℓ-oct admits a polynomial kernel. Our kernel
uses several powerful techniques from the area of parameterized algorithmics;
here is a brief overview. We introduce an annotated version of the problem
and show that using these annotations the problem essentially reduces to a
connectivity problem with respect to the vertices of the deletion set X . We
give a lemma which shows that the main structure of the problem instance lies
within an |X |O(1)-sized set of connected components of the graph G−X . Using a
technique originating in the study of protrusion-based kernelization [1] we show
the fact that G−X ∈ Gtw(w) implies that the number of vertices from V (G)\X
on the boundary of such regions can be bounded by a constant. We analyze the
structure of a solution inside such a region in terms of combinatorial properties
of separators in labeled graphs. Using the concept of important separators as
introduced by Marx [18] we prove that the number of separators which are
relevant to the problem can be bounded polynomially in |X |. To obtain the
polynomial kernel we then show how to get rid of vertices which do not belong
to any relevant separator.

Lower bounds. As described in the previous paragraph, we show the exis-
tence of polynomial kernels for (bip ∩ Gtw(w))-oct. We can also prove that
the bipartiteness condition cannot be dropped (under a reasonable complexity-
theoretic assumption). Observe that Gtw(1) coincides with the class of forests,
and hence only contains bipartite graphs. But Gtw(2) is the first class of bounded-
treewidth graphs which contains non-bipartite graphs, and we prove using cross-
composition [2] that (Gtw(2))-oct does not admit a polynomial kernel unless
NP ⊆ coNP/poly, which implies a collapse of the polynomial-time hierarchy to
the third level (PH = Σp

3 ) and further. We actually prove that (outerplanar)-
oct does not admit a polynomial kernel under this assumption, which is a
stronger statement since outerplanar ⊆ Gtw(2). We also show that if we take F
to be a class of non-bipartite but very simply structured graphs (such as clus-
ter graphs, the union of cliques, or their edge-complements co-cluster graphs)
then we cannot obtain polynomial kernels: (cluster)-oct and (co-cluster)-
oct do not admit polynomial kernels unless NP ⊆ coNP/poly. Since (co)cluster
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graphs have a very limited structure, the vertex-deletion distance to these graph
classes will often be very large; our results show that even for such a large pa-
rameter one should not expect to find a polynomial kernel. Finally we look at the
vertex-weighted version of oct and prove that in the presence of vertex weights
we cannot even obtain a polynomial kernel measured by the vertex deletion dis-
tance to an edgeless graph: (edgeless)-Weighted Odd Cycle Transversal

(which is equivalent to Weighted Odd Cycle Transversal parameterized
by the cardinality of a vertex cover) does not admit a polynomial kernel unless
NP ⊆ coNP/poly. All parameterizations for which we prove kernel lower bounds
can be seen to be fixed-parameter tractable because the classes F have bounded
cliquewidth [5] and therefore the cliquewidth of the input graphs is bounded by
a function of the parameter.

Related work. Recent work of Kratsch and Wahlström [17] gives a ran-
domized polynomial kernel for ℓ-oct, using matroid theory. To the best of our
knowledge no deterministic (and combinatorial) polynomial kernel is known for
ℓ-oct or for any non-trivial parameterizations of the oct problem. Wernicke [25]
used several reduction rules for oct as part of his branch-and-bound algorithm,
but these rules were not analyzed within the framework of kernelization and do
not give provable bounds on the size of reduced instances with respect to any
graph parameter. Kernelization with respect to structural parameterizations has
been studied by a handful of authors, e.g., [7, 2, 14, 24].

Organization. We start by giving some preliminaries. In Section 3 we give
combinatorial bounds for separators in labeled graphs, which will be used in
the kernelization algorithm. Section 4 presents the polynomial kernel for (bip ∩
Gtw(w))-oct. We briefly discuss the kernelization lower bounds in Section 5 and
conclude in Section 6.

2 Preliminaries

All graphs considered in this work are simple, undirected, and finite. If G is
a graph then V (G) and E(G) denote the vertex- and edge set, respectively.
We let length and parity of a path refer to the number of its vertices. For a
vertex v ∈ V (G) the open neighborhood is denoted by NG(v) and the closed
neighborhood isNG[v] := NG(v)∪{v}. The open neighborhood of a set S ⊆ V (G)
is NG(S) :=

⋃

v∈S NG[v]\S. The graphG−S is the result of removing all vertices
in S and their incident edges from G. We use [n] as a shorthand for {1, . . . , n}.
The term

(

X
n

)

denotes the collection of all size-n subsets of the finite set X ,

whereas
(

X
≤n

)

represents the collection of size at most n subsets of X . The sizes

of these collections are denoted by
(

|X|
n

)

and
(

|X|
≤n

)

, respectively.

3 Combinatorial properties of separators in labeled
graphs

An important part of our kernelization relies on a combinatorial bound on the
number of essentially distinct ways to separate terminals from labeled vertices in
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a graph: we prove that if the number of terminals and the size of the separators is
taken as a constant, then the number of distinct ways to separate the labels grows
polynomially with the number of labels. We believe this to be of independent
interest. Some definitions are needed to formalize these claims.

Definition 1. A labeled graph is a tuple (G,L, f) where G is a graph, L is a
finite set of labels, and f : V (G) → 2L is a labeling function which assigns to
each vertex a (possibly empty) subset of the labels. For a subset S ⊆ V (G) and
terminal t ∈ V (G) we denote by R(t, S) the vertices of V (G)\S reachable from t
in G− S. The labels reachable from t in G− S are L(t, S) :=

⋃

v∈R(t,S) f(v).

Definition 2. Let (G,L, f) be a labeled graph and let T = t1, . . . , tn be a se-
quence of distinct terminal vertices in G. The cut characteristic K(S, T ) of
a set S ⊆ V (G) with respect to the terminals T is an n-dimensional vector
K(S, T ) := (L(t1, S),L(t2, S), . . . ,L(tn, S)) whose elements are subsets of L. The
set of distinct cut characteristics Km(T ) for separators of size at most m ≥ 1

is Km(T ) :=
{

K(S, T )
∣

∣

∣
S ∈

(

V (G)
≤m

)

}

.

Marx [18] introduced the notion of important separators, and proved their
number to be bounded, independently of the graph size. An involved argument
which relates important separators to distinct cut characteristics yields the fol-
lowing theorem.

Theorem 1. Let κ(n,m, r) denote the maximum of |Km(T )| over all labeled
graphs (G,L, f) with |L| ≤ r and over all sets of terminals T = {v1, v2, . . . , vn} ⊆
V (G), i.e., the maximum number of distinct cut characteristics induced by m-
vertex separators in an n-terminal graph labeled with r different labels. Then
κ(n,m, r) ∈ O(m2n · rnm(m+3)/2 · 4nm), which is polynomial in r for fixed n,m.

4 Polynomial kernelization for (BIP ∩ Gtw(w))-OCT

In this section we describe our polynomial kernelization for (bip ∩ Gtw(w))-oct.
Note that the definition of (bip∩Gtw(w))-oct assumes a deletion set to be given
in the input, and our kernelization will relate to its size. We will discuss the
approximability of the deletion set at the end of the section, which will extend
our kernelization to the case that no deletion set is given.

To simplify the formulation of the reduction process, we will actually work
with an annotated version of the problem. To obtain the final reduced instance
we will later undo these annotations at a small cost.

Annotated (BIP ∩ Gtw(w))-OCT
Input: A graph G, a set X ⊆ V (G) such that G−X ∈ (bip ∩ Gtw(w)),

a set M ⊆
(

X
2

)

, and an integer ℓ.
Parameter: k := |X |.
Question: Is there a set S ⊆ V (G) of size at most ℓ such that G− S is
bipartite, and there is a proper 2-coloring c of G−S such that c(p) = c(q)
for all {p, q} ∈ M?
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We call vertex pairs {p, q} ∈ M monochromatic, and these annotations allow
us to easily talk about vertices which are constrained to have the same color
in G − S. Observe that the dual notion, vertices p, q ∈ X which must receive
different colors in the bipartite graph G − S, is expressed simply through the
existence of an edge {p, q}. We will therefore refer to vertices p, q ∈ X which are
adjacent as vertices to be annotated as bichromatic. There is no reason a priori
that a pair {p, q} cannot be constrained to be simultaneously bichromatic and
monochromatic; this condition implies that any valid solution has to delete at
least one vertex of the pair before a proper coloring 2-coloring can be found. A
coloring is said to respect all annotations if it respects all edges between vertices
of X as well as the monochromatic pairs given by the set M .

The following straightforward lemma will be used in a number of proofs
throughout this section. It shows that any partial 2-coloring of a graph whose
uncolored parts are bipartite can either be extended to a 2-coloring of the whole
graph, or one finds a path between two already colored vertices whose parity does
not match their colors (e.g., the path has an odd number of internal vertices but
the color of the endpoints is different).

Lemma 1. Let G be a graph, let S ⊆ V (G) be such that G − S is bipartite,
and let c : S → {0, 1} be a proper 2-coloring of G[S]. Then in polynomial time
one finds either an extension of c to a proper 2-coloring of G, or a connected
component C of G− S and vertices p, q ∈ NG(C) ⊆ S as well as a p− q path P
such that either

– P has an odd number of internal vertices and c(p) 6= c(q), or
– P has an even number of internal vertices and c(p) = c(q).

Furthermore, all internal vertices of P are from V (G)\S and P is simple except
possibly for p = q (in the latter case P is in fact an odd cycle through p).

Now, for instructive purposes, consider an instance (G,X,M, ℓ) of the anno-
tated problem and assume that there is a connected component C of G−X such
that the parity of all paths between vertices of X which run through C matches
annotations: e.g., if there is an odd p− q path, p, q ∈ X , with internal vertices
from C then p and q are annotated as monochromatic, {p, q} ∈ M (resp. for
an even path we already have {p, q} ∈ E(G)). Since C is bipartite, Lemma 1
now implies that any 2-coloring of G[X ] that respects all annotations can be
extended to a proper 2-coloring of G[X ∪ V (C)], i.e., extended onto C.

Thus, since the components of G − X are already bipartite, we are only
interested in paths between vertices of X that they provide, in particular in
paths that do not match annotations. The following definition formalizes these
as X-paths and important X-paths.

Definition 3. An X-path of length r between (not necessarily distinct) ver-
tices p, q ∈ X in an instance of the annotated problem is a simple path P =
{v1, . . . , vr} in G−X such that there are distinct edges {p, v1}, {vr, q} ∈ E(G).
A p− q X-path is important if (a) its length is odd, p 6= q, and {p, q} 6∈ M , or
(b) its length is even and {p, q} 6∈ E(G).
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Observe that the definition of a p−q X-path excludes the possibility where p = q
and the odd p− p X-path P consists of only one vertex v1 = vr, because in that
case the edges {p, v1} and {vr, q} are not distinct.

With the following lemma we begin to explore the structure of the impor-
tant X-paths. Given a graph G and a set X such that G − X is bipartite we
count vertex-disjoint odd and even length p − q X-paths for all p, q ∈ X . For
each pair and parity the lemma will provide in polynomial time either a small
hitting set intersecting all important X-paths, or point out that the number of
paths exceeds our budget of ℓ vertex deletions (this is indicated by the sets A, B,
and C which will later be turned into annotations, edges, and vertex deletions);
Algorithm 1 shows this in detail. We remark that both the lemma and the algo-
rithm can also be applied to any other parameterization of oct, given that X
is a deletion set to any class of bipartite graphs (it is easy to see that ℓ < |X | in
all interesting cases); in particular it can be applied to the standard parameter-
ization whose kernelizability is still open.

Lemma 2. Let G be a graph, ℓ be an integer, and X ⊆ V (G) such that G−X is
bipartite. Then ComputeHittingSet(G,X, ℓ) computes sets A,B ⊆

(

X
2

)

, a set C ⊆

X, and a set H ⊆ V (G)\X of size at most 4ℓ·|X |2 such that for all {u, v} ∈
(

X
2

)

:

1. If {u, v} ∈ A (resp. {u, v} ∈ B) then there are at least ℓ+1 vertex-disjoint X-
paths of even (odd) length between u and v.

2. The set H intersects all even (odd) length u − v X-paths with {u, v} /∈ A
(resp. {u, v} /∈ B).

Furthermore, if v ∈ C then there are at least ℓ+1 even v− v X-paths (i.e., odd
cycles that intersect only in v), and H intersects all such paths for v ∈ X \ C.

Now, let us see how to turn the sets A, B, and C into annotations, edges,
and vertex deletions such that H is a hitting set for all important X-paths in
the resulting annotated instance, i.e., H will intersect each important X-path.

Lemma 3. Let (G,X, ℓ) be an instance of (bip ∩ Gtw(w))-oct and let A,B ⊆
(

X
2

)

, let C ⊆ X, and let H ⊆ V (G)\X as given by Lemma 2. Then in polynomial
time one can find an equivalent instance (G′, X ′,M, ℓ′) with X ′ ⊆ X and ℓ′ ≤ ℓ
of the annotated problem such that H intersects all important X ′-paths in G′.

We will now turn our attention to the relation between the connected com-
ponents of G−X and the set H intersecting all important X-paths. It is obvious
that no component of (G−X)−H contains an important X-path. However, to
use the fact that each such path needs to leave the component via a vertex of H
and cross at least one other component before returning to X , we need to restrict
the number of neighbors that any such component has in H . This is also the
point from which on we need to use that G−X has bounded treewidth. The fol-
lowing lemma, following along the lines of the protrusion partitioning lemma [1,
Lemma 2] of Bodlaender et al., permits us to extend the set H slightly while
decreasing the neighborhood size of the components obtained.
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Algorithm 1 ComputeHittingSet(G,X, ℓ)

Input: A graph G and vertex subset X ⊆ V (G) such that G−X is bipartite.
Output: Three sets of annotations A, B, and C as well as a hitting set H .

Initialize H,A,B,C := ∅
Let P ∪Q be a bipartition of G−X {Computable by BFS}
for each {u, v} ∈

(

X

2

)

do

PP := VertexCut(G,P,Q;u, v, P, P )
QQ := VertexCut(G,P,Q;u, v,Q,Q)
PQ := VertexCut(G,P,Q;u, v, P,Q)
QP := VertexCut(G,P,Q;u, v, Q,P )
if |PQ| > ℓ or |QP | > ℓ then {> ℓ disjoint even-length u− v X-paths}

A := A ∪ {{u, v}}
else {Set PQ ∪QP intersects all even-length u− v X-paths}

H := H ∪ (PQ ∪QP )
if |PP | > ℓ or |QQ| > ℓ then

B := B ∪ {{u, v}}
else {Set PP ∪QQ intersects all odd-length u− v X-paths}

H := H ∪ (PP ∪QQ)
for each v ∈ X do

PQ := VertexCut(G,P,Q; v, v, P, Q)
if |PQ| > ℓ then {> ℓ disjoint even-length v − v X-paths}

C := C ∪ {v}
else {Set PQ intersects all even-length v − v X-paths}

H := H ∪ PQ

return (A,B,C,H)

Lemma 4. Let G be a graph, let T be a tree decomposition of G of width w,
and let S ⊆ V (G). There is a polynomial-time algorithm that, given (G, T , S),
computes a superset S′ ⊇ S of size at most 2(w + 1)|S| such that for each
connected component C of G− S′ it holds that |NG(C) ∩ S′| ≤ 2w.

The following lemma bounds the number of components of (G − X) − H ,
regardless of the structure of the set H ; similar but simpler than Lemma 2.

Lemma 5. Let (G,X,M, ℓ) be an instance of the annotated problem and let H
be a set of vertices of G. By deleting connected components of (G−X)−H one
can in polynomial time create an equivalent instance (G′, X,M, ℓ) such that (G′−
X)−H has at most 2 · (ℓ+ 1) · (|X |+ |H |)2 connected components.

With the next lemma, we prepare the ground for applying the combinatorial
bounds on the number of cut characteristics in labeled graphs. It formalizes and
proves the fact that we may freely modify any given odd cycle transversal by
replacing its intersection with a connected component with a separator of the
same cut characteristic. It is crucial that all important paths must intersect the
hitting set H and that each component is adjacent to only few vertices of H ; the
hitting set will correspond to terminals of certain labeled graphs, whose labels
express adjacency to X .
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Algorithm 2 VertexCut(G,P,Q;u, v, S, T )

Input: A graph G such that G[P∪Q] is bipartite with bipartition P∪Q, vertices u, v ∈
V (G) \ (P ∪Q), and sets S, T ∈ {P,Q}.

Output: A cut Y ⊆ P ∪Q separating NG(u) ∩ S from NG(v) ∩ T in G− Y .

Let G′ := G[P ∪Q]
Add a source s with NG′(s) := NG(u) ∩ S and a sink t with NG′(t) := NG(v) ∩ T

Compute a minimum-size s− t vertex-cut Y in G′ using a flow algorithm
return Y

Lemma 6 (Separator replacement lemma). Let (G,X,M, ℓ) be an instance
of the annotated problem. Let H ⊆ V (G) \X be a set of vertices that intersects
all important X-paths of the instance. Let R be a solution to the problem, i.e.,
an odd cycle transversal such that G − R has a proper 2-coloring respecting
the annotations. Consider a connected component C of the graph (G−X)−H
and consider the terminal vertices NG(C) \ X. Define D as the subgraph of G
induced by the set NG[C] \ X. Let T = t1, . . . , tn be a sequence containing the
terminals NG(C)\X in an arbitrary order. We define a labeling for the graph D
as follows. The set of labels is the set of vertices in the modulator X augmented
with one label per terminal in T , and the labeling function f is defined as follows
for v ∈ V (D):

f(v) :=

{

NG(v) ∩X If v 6∈ T .

(NG(v) ∩X) ∪ {v} If v ∈ T .

Let S := V (C)∩R be the vertices from C chosen in the solution R. If S′ ⊆ V (C)
is a subset such that S and S′ have the same cut characteristic in the labeled
graph (D,X ∪ T, f) with respect to the terminals T , then R′ := (R \ S) ∪ S′ is
also a valid solution, or more formally: if K(S, T ) = K(S′, T ) with respect to the
labeled graph (D,X ∪ T, f) then G − R′ has a proper 2-coloring respecting the
annotations.

Now, we will use the Separator Replacement Lemma and the combinatorial
bound on the number of cut characteristics (Theorem 1) to limit the choice of
vertices that may be deleted from the connected components. The idea is that it
suffices to have one separator for each cut characteristic; vertices outside these
separators need not be considered for deletion. To this end we introduce a re-
stricted version of the annotated odd cycle transversal problem. As an additional
restriction a set Z of vertices is provided, and the task is to find a (small) odd
cycle transversal that is a subset of Z.

Restricted Annotated (BIP ∩ Gtw(w))-OCT
Input: A graph G, a set X ⊆ V (G) such that G−X ∈ (bip ∩ Gtw(w)),

a set Z ⊆ V (G) of deletable vertices, a set M ⊆
(

X
2

)

, and an integer ℓ.
Parameter: k := |X |.
Question: Is there a set S ⊆ Z of size at most ℓ such that G − S is
bipartite, and there is a proper 2-coloring c of G−S such that c(p) = c(q)
for all {p, q} ∈ M?
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Lemma 7. Let (G,X,M, ℓ) be an instance of Annotated (bip∩Gtw(w))-oct
and let H ⊆ V (G) \X be a set of vertices such that:

1. H intersects all important X-paths of G,
2. (G−X)−H has at most α connected components,
3. and each connected component of (G−X)−H has at most δ neighbors in H.

For each fixed value of δ it is possible to compute in polynomial time an equiv-
alent instance (G,X,M, ℓ, Z) of Restricted Annotated (bip ∩ Gtw(w))-oct
where |Z| ≤ |X |+ |H |+α ·δ ·κ(δ, δ−1, |X |+ δ), with κ as defined in Theorem 1.

This final lemma provides the reduction from the restricted annotated prob-
lem back to (bip ∩ Gtw(w))-oct. The number of vertices in Z in the restricted
instance determines the size of the vertex set in the new (equivalent) instance.

Lemma 8. An instance (G,X,M, ℓ, Z) of Restricted Annotated (bip ∩
Gtw(w))-oct can be transformed in polynomial time into an equivalent instance
(G′, X ′, ℓ) of (bip ∩ Gtw(w))-oct with |V (G′)| bounded by |Z|+ (ℓ+ 1) · |Z|2.

Now we can wrap up our kernelization with the following theorem. The ker-
nelization follows the lemmas and motivation given so far.

Theorem 2. For each fixed integer w ≥ 1 the problem (bip∩Gtw(w))-oct admits

a polynomial kernel with O(kO(w3)) vertices.

Approximating a minimum-size deletion set. For our kernelization we
have assumed that a deletion set X to the class (bip ∩ Gtw(w)) is given. If G
is a graph for which the minimum size of such a deletion set is opt, then we
can compute in polynomial time a deletion set of size O(opt · log3/2 opt) as
follows. Observe that Gtw(w) is characterized by a finite set of forbidden minors,
and excludes at least one planar graph as a minor. We can use the recent ap-
proximation algorithm by Fomin et al. [9] to approximate a deletion set Stw(w)

to a graph of treewidth at most w. Then we may find a minimum-size odd cy-
cle transversal Soct in the bounded-treewidth graph G − Stw(w) which can be
computed in polynomial time using Courcelle’s theorem, since w is a constant.
The union X := Stw(w) ∪ Soct is then a suitable deletion set, which we can use
to run our kernelization. This procedure is formalized in the following lemma.

Lemma 9. Let w ≥ 1 be a fixed integer. There is a polynomial-time algorithm
which gets as input a graph G, and computes a set X ⊆ V (G) such that G−X ∈

bip ∩ Gtw(w) with |X | ∈ O(opt · log3/2 opt), where opt is the minimum size of
such a deletion set.

5 Lower bounds for kernelization

In this section we state the lower bound results for various structural kerneliza-
tions of oct. All results use the recent notion of cross-composition introduced
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by Bodlaender et al. [2]. It extends the notion of a composition, showing that
a reduction of the OR of any NP-hard problem into an instance of the target
parameterized problem with small parameter value excludes polynomial kernels,
assuming that NP 6⊆ coNP/poly.

Theorem 3. Assuming NP 6⊆ coNP/poly the following parameterized problems
do not admit polynomial kernels:

– (outerplanar)-oct (Theorem 7 in the appendix),
– (cluster)-oct (Theorem 8 in the appendix),
– (co-cluster)-oct (Theorem 9 in the appendix),
– Weighted Odd Cycle Transversal parameterized by the size of

a vertex cover (Theorem 10 in the appendix).

6 Conclusion

We have studied the existence of polynomial kernels for structural parameter-
izations of oct. We have shown that in polynomial time the size of an in-
stance (G, ℓ) of oct can be reduced to a polynomial in the minimum number
of vertex deletions needed to transform G into a bipartite graph of constant
treewidth. We also gave several kernelization lower bounds when the parameter
measures the vertex-deletion distance to a non-bipartite graph with a simple
structure. These lower bounds show that even for very large parameters such
as the deletion distance to a cluster graph, it is unlikely that oct admits a
polynomial kernel.

The important open problem remains to determine whether the natural pa-
rameterization ℓ-oct admits a deterministic polynomial kernel. Encouraged by
the recent randomized kernelization result [17], we believe this to be the case. We
think that several components we introduced in this work, such as the notion of
important X-paths and the algorithm to find a small hitting set for these paths,
will be useful ingredients for a deterministic kernelization. These ingredients do
not rely on our structural parameterization and are therefore directly applicable
to the general ℓ-oct problem.
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On Polynomial Kernels for Structural Parameterizations of OCT 13

A On the number of cut characteristics in a labeled
graph

For ease of reading we present all the material of this section in the original form,
introducing concepts when they are needed in the natural flow of the material.
This involves a repetition of some material from the main text.

Definition 4. Let G be a graph and let s, t ∈ V (G) be distinct non-adjacent
vertices. A set S ⊆ V (G) is an s − t vertex-cut if s, t 6∈ S and S intersects
each s− t path in G.

Theorem 4 (Menger’s Theorem [Sch03], Corollary 9.1a). If G is a graph
and s, t ∈ V (G) are distinct non-adjacent vertices then the maximum number of
internally vertex-disjoint s − t paths is equal to the minimum size of an s − t
vertex-cut.

Definition 5. A labeled graph is a tuple (G,L, f) where G is a graph, L is a
finite set of labels, and f : V (G) → 2L is a labeling function which assigns to
each vertex a (possibly empty) subset of the labels. For a subset of labels J ⊆ L

we use the abbreviation V f
G (J) := {v ∈ V (G) | f(v) ∩ J 6= ∅} to denote the

vertices which carry a label from J .

For readability we omit the superscript on the term V f
G (J) when this does not

lead to confusion. We also use the concept of an important separator as intro-
duced by Marx [Mar06].

Definition 6 (Important separators). Let G be a graph. For subsets X,S ⊆
V (G) the set of vertices reachable from X \ S in G− S is denoted by RG(X,S).
For X,Y ⊆ V (G) the set S is called an (X,Y )-separator if Y ∩ R(X,S) =
∅. An (X,Y )-separator is minimal is none of its proper subsets is an (X,Y )-
separator. An (X,Y )-separator S′ dominates an (X,Y )-separator S if |S′| ≤ |S|
and R(X,S) ( R(X,S′) (proper subset). A subset S is an important (X,Y )-
separator if it is minimal, and there is no (X,Y )-separator S′ that dominates S.

Carefully observe the boundary cases of this definition; note in particular that for
every X ⊆ V (G) the empty set ∅ is an important (X, ∅)-separator. To improve
readability we will write (t, Y )-separator instead of ({t}, Y )-separator when the
first set is just a singleton. Similarly we will write RG(t, S) instead of RG({t}, S).

We use several results from recent work by Marx and Razgon [MR10]. Al-
though the notation used in the recent work is slightly different than in the
original paper by Marx [Mar06], the results also hold for the original notation
that we use here. The following claim originates from [MR10, Proposition 2.5],
and follows from the given definitions.

Proposition 1. Let G be a graph, let X,Y ⊆ V (G) and let S be an impor-
tant (X,Y )-separator. For all v ∈ S it holds that S \ {v} is an important (X \
{v}, Y \ {v})-separator in the graph G− {v}.
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In the original paper on important separators, Marx showed a bound of 4k
2

on
the number of important (X,Y )-separators of size at most k. An improvement of
this bound was implicit in work by Chen et al. [CLL09], which was summarized
and made explicit by Marx and Razgon [MR10, Lemma 2.6]. This bound also
holds for the original definition of important separators.

Lemma 10 ([MR10]). If X and Y are arbitrary vertex sets of a graph G then
there are at most 4m important (X,Y )-separators of size at most m ≥ 0.

We need the following simple lemma about minimal separators.

Lemma 11. Let G be a graph, and let X,Y ⊆ V (G) be vertex subsets. If S ⊆
V (G) is a minimal (X,Y )-separator then for every s ∈ S it must hold that s ∈
R(X,S \ {s}).

Proof. If S is an (X,Y )-separator containing s ∈ S with s 6∈ R(X,S \ {s})
then S \ {s} is also an (X,Y )-separator, showing that S is not minimal. ⊓⊔

We also need a lemma on the structure of important separators which inter-
sect the set they are separating.

Lemma 12. Let G be a graph, and let X,Y ⊆ V (G) be vertex subsets. If S ⊆ Y
is an important (X,Y )-separator then for every set Y ′ satisfying S ⊆ Y ′ ⊆ Y
the set S is an important (X,Y ′)-separator.

Proof. Since Y ′ ⊆ Y it is easy to see that S separates X from Y ′. Since S is
an important (X,Y )-separator, it is a minimal (X,Y )-separator which implies
by Lemma 11 that for all s ∈ S we have s ∈ R(X,S \ {s}). Since S ⊆ Y ′ this
proves that S is a minimal (X,Y ′)-separator. If there is an (X,Y ′)-separator S′

which dominates S, then R(X,S) must be a proper subset of R(X,S′); but this
is only possible if S ∩ R(X,S′) 6= ∅ which implies by S ⊆ Y ′ that S′ is not, in
fact, an (X,Y ′)-separator. This concludes the proof. ⊓⊔

Lemma 13. Let G be a graph, let X,Y ⊆ V (G), and let S ⊆ V (G) be an im-
portant (X,Y )-separator with S * Y . Then there is a set P = {P0, P1, . . . , P|S|}
of distinct simple paths such that:

1. each path Pi connects a vertex of Y and a vertex of S,
2. the paths P1, . . . , P|S| are pairwise vertex-disjoint, i.e. V (Pi) ∩ V (Pj) = ∅

for 1 ≤ i < j ≤ |S|, and
3. the path P0 is vertex-disjoint from the paths P2, . . . , P|S|, i.e. V (P0)∩V (Pi) =

∅ for 2 ≤ i ≤ |S|,
4. the paths P0 and P1 intersect only in their endpoint in the set S, i.e. V (P0)∩

V (P1) = {s} with s ∈ S.

Proof. Let S0 := S ∩ Y and let S1 := S \ Y ; clearly S1 6= ∅. Let a graph G′ be
obtained from G in the following way. Delete the set S0 and then add a vertex s∗

with neighborhood NG′(s∗) := NG(S1) \S0. Let S
′ := S1 ∪{s∗}. Add a source p

with NG′(p) := Y \S and add a sink q with NG′(q) := S′. (Note that G−S0 is a
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subgraph of G′, i.e. G− S0 = G′ − {p, q, s∗}.) Let P ′ be a maximum packing of
internally vertex-disjoint p − q paths in G′. By Menger’s theorem (Theorem 4)
the size |P ′| equals the size of a minimum p− q vertex-cut. Observe that there
are at most |S′| = |S1|+1 such paths, matching the degree of q. The main part
of the proof is devoted to showing that |P ′| = |S′| = |S1| + 1 when S is an
important (X,Y )-separator. We will prove this claim, and afterwards we show
how to obtain a set of paths in G as mentioned in the statement of the lemma.

So assume for a contradiction that |P ′| ≤ |S1| and let A ⊆ V (G′)\{p, q} be a
corresponding minimum p−q vertex-cut in G′, which has size equal to |P ′| ≤ |S1|
by Menger’s theorem. Observe that A 6= S1: if there is a p − q path in G′,
then there is such a path which avoids S1 since any p − q path that reaches q
via S1 ⊆ NG′(q) can be routed via s∗, avoiding S1. Indeed, such a path must be
of the form (p, y, . . . , s, q) with y ∈ Y , s ∈ S1, and with y 6= s since Y ∩ S1 = ∅.
Hence it reaches S1 from a vertex in NG(S1) \ S0 implying that there is also a
path (p, y, . . . , s∗, q) avoidingA = S1. This shows that if there is a p−q path inG′

then S1 is not a p− q vertex-cut in G′ and therefore A 6= S1; if there is no p− q
path in G′ then the non-empty set S1 cannot be a minimum-size p−q vertex-cut
(the empty set is a minimum-size vertex-cut), and so we again find A 6= S1.

Knowing that A 6= S1, we will now show that (i) A∪S0 is an (X,Y )-separator
in G and (ii) that the (X,Y )-separator A ∪ S0 dominates the separator S.

i) Let P be any x − y path in G for some x ∈ X and y ∈ Y . If P contains
a vertex of S0 ⊆ A ∪ S0 we are done. Otherwise there must be a vertex w ∈
S1 = S \ S0 on P , i.e., P = (x, . . . , w, . . . , y), since S separates X and Y .
Furthermore, P must exist also in G′ (which contains G − S0). Hence, there
must be a vertex of A on P separating w and y, since A separates S1 from Y
in G′. Thus A ∪ S0 separates X and Y in G.

ii) We now prove that A ∪ S0 dominates S. Assume for a contradiction
that A contains a vertex v ∈ R(X,S); since it follows from Definition 6 that S ∩
R(X,S) = ∅ we must have v 6∈ S. Since A is a minimum p− q vertex-cut in G′

there must be a p− q path P in G′ that intersects A only in v. Furthermore, P
must leave p to some vertex y ∈ Y \ S = NG′(p), i.e., P = (p, y, . . . , v, . . . , q).
Note that y 6= v, otherwise X \ S would reach Y \ S in G− S.

Since v ∈ R(X,S) but S is an (X,Y )-separator, there must be a vertex w
of S between y and v on P , i.e., P = (p, y, . . . , w, . . . , v, . . . , q). Since w is a vertex
of G′ it follows that w /∈ S0 = S ∩ Y . Thus w ∈ S1, w 6= y ∈ Y , and w 6= v /∈ S.
However, w is adjacent to q in G′ which gives rise to a p− q path (p, y, . . . , w, q)
in G′ that is not intersecting A since v is not contained in it (and P contains
no other vertices of A), a contradiction. Thus, A contains no vertices reachable
from X in G−S and the same must be true for A∪S0 as S0 ⊆ S. Therefore we
have R(X,S) ⊆ R(X,A ∪ S0).

Now, to see that R(X,S) is a proper subset of R(X,A ∪ S0) let us fix a
vertex v ∈ S1 \ A (such a vertex exists since |A| ≤ |S1| and A 6= S1). If v ∈ X
then v ∈ R(X,A∪S0)\R(X,S) which proves the proper subset relation. If v 6∈ X
then since S is minimal, there must be a vertex u which is adjacent to v in the
set R(X,S) (otherwise S \{v} would also be an (X,Y )-separator). Therefore we
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must have u ∈ R(X,A ∪ S0) (as shown above) and since v 6∈ A ∪ S0 this shows
that v ∈ R(X,A ∪ S0), completing the argument that A ∪ S0 dominates S.

We have seen that the assumption that |P ′| ≤ |S1| leads to the construction of
an (X,Y )-separator separator A∪S0 which dominates S, thereby proving that S
is not an important separator. Hence if S is an important (X,Y )-separator we
must find a packing P ′ of |S1|+1 internally vertex-disjoint p−q paths in graphG′,
as claimed.

We will now define a packing P of paths in G that matches our claim. Let P ′′

be obtained from P ′ by removing the vertices p and q from each path; it follows
that P ′′ is a packing of vertex-disjoint paths which connect NG′(p) = Y \ S
to NG′(q) = S1 ∪ {s∗} in graph G′; since p and q are not adjacent in G′ all
paths in P ′′ are non-empty, and since NG′(p) ∩NG′(q) = ∅ all such paths have
at least two vertices. Since |P ′′| = |S1| + 1 we know that each path in P ′′

ends in a unique vertex of S1 ∪ {s∗}. Denote by P ′
0 the path which ends in

vertex s∗. Since NG′(s∗) = NG(S1) \ S0 there is at least one vertex s′ ∈ S1

which is adjacent in G to the predecessor of s∗ on path P ′
0. Let P1 be the path

in P ′′ which ends in s′, and let P2, . . . , P|S1| be the remaining paths of P ′′ in
arbitrary order. Each of the paths P1, . . . , P|S1| also exists in graph G. If we
replace the occurence of vertex s∗ on path P ′

0 by vertex s′ to obtain path P0,
then the resulting path P0 also exists in graph G and only intersects P1 in the
single vertex s′ ∈ S. We are now ready to define the final packing of paths P .
We start with the paths P0, P1, . . . , P|S1|. For each vertex v ∈ S0 we add a
singleton path on vertex v - since v ∈ S0 = Y ∩ S such a path trivially connects
a vertex from Y to a vertex in S, and because the vertices of S0 do not exist
in the graph G′ from which the other paths were taken, the new paths we add
in this way are vertex-disjoint from the others. The resulting set of paths has
size 1 + |S1|+ |S0| = |S|+1, and it is easy to verify that these paths satisfy the
stated claims on disjointness. ⊓⊔

Lemma 14. Let (G,L, f) be a labeled graph, let X be a subset of vertices and
let J ⊆ L be a subset of labels. If S is an important (X,VG(J))-separator of

size k then there is a set J∗ ⊆ J with |J∗| ≤
∑k

i=1(i + 1) such that S is an
important (X,VG(J

∗))-separator.

Proof. We prove the statement by induction on k.

Base case If k = 0 then S is the empty set, which happens when the vertices
carrying labels from J do not occur in the same connected component as vertices
of X . Take J∗ := ∅ which implies that VG(J

∗) = ∅. It follows from the definition
of important separators that S = ∅ is an important (X, ∅)-separator, which
proves the base case.

Induction step Consider the more interesting case that k > 0, and let S =
{s1, . . . , sk}.

We first handle the case that S ⊆ VG(J). So assume that S ⊆ VG(J), which
implies that each vertex from S carries at least one label from J . Let zi ∈
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J ∩ f(si) be a label from J carried by vertex si for 1 ≤ i ≤ k, and define J∗ :=
{z1, . . . , zk}. It is clear that J∗ ⊆ J and |J∗| ≤ k. It is not hard to see that S ⊆
VG(J

∗) ⊆ VG(J). Lemma 12 now shows that since S is an important (X,VG(J))-
separator with S ⊆ VG(J) and S ⊆ VG(J

∗) ⊆ VG(J), the set S must also be an
important (X,VG(J

∗))-separator. This concludes the proof of the lemma for the
case that S ⊆ VG(J).

In the remainder we attack the harder case that S 6⊆ VG(J), by considering
the structure of the separator S. Since S is an important (X,VG(J))-separator
it follows from Lemma 13 (re-numbering the vertices from S if need be) to-
gether with the assumption that S 6⊆ VG(J) that there is a set of S − VG(J)
paths P1, . . . , Pk and an additional path P0 such that:

1. path Pi for 1 ≤ i ≤ k connects a vertex vi ∈ VG(J) carrying label zi ∈
f(vi) ∩ J to vertex si (the i-th vertex of the separator S),

2. the paths P1, . . . , Pk are pairwise vertex-disjoint,
3. VG(P0) ∩ VG(P1) = {s1} and VG(P0) ∩ VG(Pi) = ∅ for 2 ≤ i ≤ k,
4. path P0 connects vertex v0 ∈ VG(J) carrying label z0 ∈ f(v0)∩J to vertex s1.

The vertex s1 which is the endpoint of the two paths P0 and P1 plays a special
role in our argument. By Proposition 1 we know that the set S′ := S \ {s1} is
an important (X \ {s1}, VG(J) \ {s1})-separator of size k− 1 in the graph G′ :=
G−{s1}. Since the set VG(J)\{s1} contains exactly those vertices of G′ carrying
a label from J , it follows that VG(J) \ {s1} = VG′(J) and therefore S′ is an
important (X \ {s1}, VG′(J))-separator in graph G′. We may therefore apply
induction to find a set J ′ ⊆ J such that S′ is an important (X \ {s1}, VG′(J ′))-

separator in graph G′ with |J ′| ≤
∑k−1

i=1 (i + 1). We will use the set J ′ to build
the desired set of labels J∗, as follows.

Define J∗ := J ′ ∪ {z0, z1, . . . , zk}, from which it is easy to see that |J∗| ≤
∑k

i=1(i+1). We claim that S is an important (X,VG(J
∗))-separator in graph G.

Since S is an important (X,VG(J))-separator and VG(J
∗) ⊆ VG(J) (since J∗ ⊆

J) it follows immediately that S is also an (X,VG(J
∗))-separator; hence if S is

not an important separator then S is not minimal or it is dominated by some
other separator. So let S∗ with |S∗| ≤ k be an (X,VG(J

∗))-separator in graph G
which is either a proper subset of S, or which dominates S: we will derive a
contradiction.

Claim. The separator S∗ must contain exactly one vertex from each path Pi

for 0 ≤ i ≤ k.

Proof. We first prove by contradiction that S∗ contains at least one vertex from
each path. So assume that there is a path Pi such that V (Pi)∩S∗ = ∅, and let s ∈
S be the endpoint of path Pi in the set S. Since S is an important (X,V (J))-
separator in G, we know by the definition of important separators that S is a
minimal (X,V (J))-separator, which implies by Lemma 11 that s ∈ R(X,S\{s}).
As the next step we will show that s ∈ R(X,S∗).

– If s ∈ X then the assumption that V (Pi) ∩ S∗ = ∅ proves together with s ∈
V (Pi) that s 6∈ S∗ and therefore s ∈ R(X,S∗).
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– If s 6∈ X , then since s ∈ R(X,S \ {s}) there is a simple path Px−s from a
vertex x ∈ X \ (S \ {s}) = X \ S to the vertex s in the graph G− (S \ {s}),
and since s 6∈ X this path must contain at least two vertices. Consider the
subpath Px−u of Px−s which leads from x to the predecessor u of vertex s on
path Px−s. Then s 6∈ V (Px−u) and path Px−u does not use any vertices of S\
{s} (since it is a subpath of Px−s in G− (S \ {s})), and therefore V (Px−u)∩
S = ∅, which together with the fact that x ∈ X \ S implies that V (Px−u) ⊆
R(X,S). Since S∗ is either a proper subset of S, or an (X,VG(J

∗))-separator
which dominates S, we must have R(X,S) ⊆ R(X,S∗). By combining these
two facts we see that V (Px−u) ⊆ R(X,S) ⊆ R(X,S∗), and since u is adjacent
to s with s 6∈ S∗ this then proves that s ∈ R(X,S∗).

We now know that s ∈ R(X,S∗) and that path Pi starts at vertex s with V (Pi)∩
S∗ = ∅; this shows that V (Pi) ⊆ R(X,S∗). But the endpoint vi of path Pi carries
the label zi ∈ J∗ and therefore vi ∈ VG(J

∗) and vi ∈ R(X,S∗); but this then
proves that S∗ is not an (X,VG(J

∗))-separator, a contradiction. Hence we know
that S∗ contains at least one vertex from each path Pi for 0 ≤ i ≤ k.

To complete the proof we show that S∗ cannot contain more than one vertex
from each path Pi with 0 ≤ i ≤ k. By the structure of the paths we know
that the set P1 := {P0, P2, . . . , Pk} contains k paths which are mutually vertex-
disjoint, and the set P2 := {P1, P2, . . . , Pk} also contains k paths which are
mutually vertex-disjoint. Since we already showed that S∗ of size k must contain
at least one vertex from each path in the set P1 and the paths in that set are
vertex-disjoint, it must contain exactly one vertex from each path in the set P1.
The same argument shows that S∗ must contain one vertex from each of the k
disjoint paths in P2. But P1 and P2 together contain all paths Pi for 0 ≤ i ≤ k,
so we have shown that S∗ contains exactly one vertex on each path. ⊓⊔

Claim. Separator S∗ must contain vertex s1.

Proof. Recall that the paths Pi are chosen such that paths P0 and P1 only
intersect at s1, and other pairs do not intersect at all. By the previous claim S∗

must contain exactly one vertex from each Pi. Since |S∗| ≤ k and there are k+1
paths, the only way this can be done is if S∗ contains at least one vertex which
lies on multiple paths. But s1 is the only such vertex, hence s1 ∈ S∗. ⊓⊔

Now that we have some more information about the structure of potential
sets S∗ we will finish the proof by showing that S∗ cannot exist.

– Assume first that S is not a minimal (X,V (J∗))-separator because there is
a proper subset S∗ ( S which is also an (X,V (J∗))-separator. Since |S| = k
this would imply |S∗| < k, but since the first claim shows that S∗ must
contain one vertex from each path Pi and the paths P1, . . . , Pk are mutually
vertex-disjoint, no set of size less than k can satisfy this requirement. Hence
the set S must be a minimal (X,V (J∗))-separator.

– For the remaining case, assume that S is a minimal but not important
(X,V (J∗))-separator because it is dominated by a separator S∗, which im-
plies that RG(X,S) ( RG(X,S∗). Since s1 ∈ S∩S∗ by the second claim, we
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know that RG(X,S) = RG′(X \ {s1}, S \ {s1}) and similarly RG(X,S∗) =
RG′(X\{s1}, S∗\{s1}). ThereforeRG′(X\{s1}, S\{s1}) ( RG′(X\{s1}, S∗\
{s1}). By Lemma 1 it follows that S∗\{s1} is an (X\{s1}, VG′(J∗))-separator
in G′, and since J ′ ⊆ J∗ this implies that S∗ \ {s1} is an (X \ {s1}, VG′(J ′))-
separator in G′ with RG′(X \ {s1}, S \ {s1}) ( RG′(X \ {s1}, S∗ \ {s1})
and |S∗ \ {s1}| ≤ |S \ {s1}| = |S′|; but this then proves that S′ is not an im-
portant (X \ {s1}, VG′(J ′))-separator in G′ which contradicts the induction
hypothesis which was invoked earlier on in the proof. Hence such a set S∗

cannot dominate the separator S with respect to separation of (X,V (J∗)).

We have seen that the assumption that S is not an important (X,V (J∗))-
separator leads to a contradiction; this concludes the proof. ⊓⊔

Definition 7. Let (G,L, f) be a labeled graph and let t ∈ V (G) be a distin-
guished terminal vertex in G. If S ⊆ V (G) is a subset of vertices then the set of
labels reachable from t in G− S is defined as:

L(t, S) :=
⋃

v∈R(t,S)

f(v).

Lemma 15. Let (G,L, f) be a labeled graph with a terminal vertex t ∈ V (G)
and let S ⊆ V (G) be a subset of vertices. Let J := L \ L(t, S) be the labels
which are unreachable from t in G − S. Then there is an important (t, VG(J))-
separator S′ such that |S′| ≤ |S| and the sets S and S′ separate the same set of
labels from t: L(t, S) = L(t, S′).

Proof. Assume the conditions in the statement of the lemma hold. It follows from
the definition of L that the set S must be a (t, VG(J))-separator. Hence if S is
an important (t, VG(J))-separator then taking S′ = S satisfies all conditions
of the lemma, and we are done. So assume for the remainder that S is not an
important (t, VG(J))-separator because S is not a minimal separator, or because
there is a (t, VG(J))-separator which dominates S. If S is not minimal then
let S′ be a proper subset which is still a separator; if S is dominated then let S′

a separator which dominates S. In both cases it is easy to see from the definitions
that R(t, S) ⊆ R(t, S′) and |S′| ≤ |S|. This implies that for every vertex v ∈
VG(J) which is reachable from t inG−S, this vertex is still reachable inG−S′ and
therefore L(t, S) ⊆ L(t, S′). Now observe that since S′ is a (t, VG(J))-separator,
by the definition of separation we know that no vertices carrying a label of J
can be reachable from t after deleting S′. Since the set J contains exactly those
labels which were not reachable from t in G − S, we know that none of these
labels are reachable from t in G−S′. Hence we must also have L(t, S′) ⊆ L(t, S),
which together with our earlier fact shows L(t, S) = L(t, S′).

If S′ is an important (t, VG(J))-separator then the sets S′ and J satisfy all
conditions of the lemma, and we are done. If S′ is not important then we can
repeat the argument to find a separator S′′ which is a subset of S′ or domi-
nates S′, and for which L(t, S′) = L(t, S′′). We can repeat this process until we
have found an important separator, and since we either decrease the size of the
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separator or move to a dominating separator at each step, the process terminates
after a finite number of steps. This proves the lemma. ⊓⊔

Definition 8. Let (G,L, f) be a labeled graph and let T = t1, . . . , tn be a se-
quence of distinct terminal vertices in G. The cut characteristic K(S, T ) of a
set S ⊆ V (G) with respect to the terminals T is an n-dimensional vector whose
elements are subsets of L, and which is defined as:

K(S, T ) := (L(t1, S),L(t2, S), . . . ,L(tn, S)) .

Define the set of distinct cut characteristics Km(T ) for separators of size at
most m ≥ 1 as:

Km(T ) :=

{

K(S, T )

∣

∣

∣

∣

S ∈

(

V (G)

≤ m

)}

.

The final goal of this section is to bound Km(T ) for arbitrary sets of termi-
nals T . As the next step we will show how to bound this term when T = {t} is
a singleton.

Lemma 16. Let (G,L, f) be a labeled graph and let t be a distinguished terminal

vertex in G. Then |Km({t})| ≤
(

|L|
≤m′

)

4m, where m′ = m(m+ 3)/2.

Proof. Assume the conditions in the statement of the lemma hold. We will de-
fine a set H ⊆

(

V (G)
≤m

)

of bounded size, and show that for every S ∈
(

V (G)
≤m

)

there is a S′ ∈ H such that L(t, S) = L(t, S′), which will then imply a bound
on |Km({t})|. Let m′ := m(m+ 3)/2. Now define H as follows:

H :=

{

S ∈

(

V (G)

≤ m

)
∣

∣

∣

∣

∃J ∈

(

L

≤ m′

)

: S is an important (t, VG(J))-separator

}

.

We will show that the size of H is bounded independently of the number of
vertices in the graph G. Consider some set of labels J ′ ∈

(

L
≤m′

)

and the ver-

tices VG(J
′) on which those labels appear. By Lemma 10 the number of impor-

tant (t, V (J ′))-separators of size at most m is bounded by 4m. Hence the number
of separators in the set H which are added because of this J ′ is at most 4m. Since
the number of different options for J is |

(

L
≤m′

)

| it follows that |H| ≤
(

|L|
≤m′

)

4m.

It is easy to see that the set {L(t, S) | S ∈ H} is not larger than H. To complete
the proof we will therefore show that this is a superset of Km({t}). From the

definition of the set Km({t}) it suffices to show that for every S ∈
(

V (G)
≤m

)

there

is a set S′ ∈ H such that L(t, S) = L(t, S′), which will be the subject of the
remainder of the proof.

So let S ∈
(

V (G)
≤m

)

. Now take J := L\L(t, S); it follows that S is a (t, VG(J))-

separator. By Lemma 15 we know that there is an important (t, VG(J))-separator
S′ with |S′| ≤ |S| ≤ m and L(t, S) = L(t, S′). By Lemma 14 there exists a

set J∗ ⊆ J satisfying |J∗| ≤
∑|S|

i=1(i + 1) ≤
∑m

i=1(i + 1) = m′ such that S′

is an important (t, VG(J
∗))-separator. But since |J∗| ≤ m′ we must have J∗ ∈

(

L
≤m′

)

, and therefore S′ ∈ H. Since L(t, S) = L(t, S′) and S′ ∈ H this proves

that {L(t, S) | S ∈ H} is indeed a superset of Km({t}), and since we showed

earlier that |H| ≤
(

|L|
≤m′

)

4m this concludes the proof of the lemma. ⊓⊔
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X

G−X

P1

P2

p

q

r

s

Fig. 1. A graph G and an odd cycle transversal X . Suppose M = {{r, s}}. The
dashed path P1 is an important p − q X-path. The dashed path P2 is a non-
important r−s X-path. Further, the two vertices marked by gray boxes intersect
all important X-paths.

Lemma 17. If (G,L, f) is a labeled graph and T = t1, . . . , tn is a sequence
of distinct terminal vertices in G then the number of distinct cut characteris-
tics for separators of size at most m is polynomial in |L| for fixed values of m

and n: |Km(T )| ≤ (
(

|L|
≤m′

)

4m)n, where m′ = m(m+ 3)/2.

Proof. Assume the conditions in the lemma statement to hold. The set Km(T )
contains n-tuples of sets of labels. If we look at the set of all such n-tuples and
restrict our attention to column number i for 1 ≤ i ≤ n, then the elements oc-
curring in that column are exactly the elements of the set Km({ti}). Lemma 16

shows that |Km({ti})| ≤
(

|L|
≤m′

)

4m. So Km(T ) contains n-tuples where the ele-

ments of the i-th column are taken from a domain with at most
(

|L|
≤m′

)

4m different

members; this shows that the number of distinct tuples is at most (
(

|L|
≤m′

)

4m)n,
which concludes the proof. ⊓⊔

Theorem 1 follows directly from Lemma 17 by simple formula manipulation.

B Omitted proofs of Section 4

B.1 Proof of Lemma 1

Proof. We use the following procedure to try to extend c to a proper 2-coloring
of G. Pick a colored vertex u that has an uncolored neighbor v and define c(v) :=
1− c(u). For constructing the claimed path, let us orient the edge {u, v} from u
to v. Repeat until no colored vertex has an uncolored neighbor. (We will later
color the vertices that are not connected to a vertex of S.)

We observe that every colored vertex has a unique directed path from S to
itself (since each vertex has at most one incoming edge) and that all directed
edges (u, v) we have c(u) 6= c(v).
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Let us assume that this extension of the coloring fails and that there is an
edge {u, v} with c(u) = c(v). Since we extended a proper coloring for G[S]
it follows that at least one of the vertices u and v is not in S; w.l.o.g. v ∈
V (G) \ S. Let Pu and Pv be the unique paths that connect S to u and v (note
that possibly Pu = (u) in the case that u ∈ S). We note that all edges along
the two paths are properly colored and that all vertices except for the starting
vertices in S are from V (G)\S. Furthermore, the two paths can at most overlap
in their endpoints in S: indeed, if they share a vertex w ∈ V (G)\S, then it can be
easily seen that G− S must contain an odd cycle, contradicting the assumption
that G− S is bipartite (the subpaths from w to u and v are contained in G− S
and they are properly colored).

Thus concatenating the two paths via the edge {u, v} we obtain a path P
between two vertices p, q ∈ S which is simple except possibly for p = q. It can be
easily seen that one of the two conditions on the parity of the length of P must
hold. E.g., if the path has 2t + 1 internal vertices, then it has 2t + 1 directed
edges and as well as the edge {u, v}. This corresponds to a chain of 2t + 1
disequalities and one equality (recall that c(u) = c(v)) between the colors of p
and q, giving c(p) 6= c(q).

If the procedure succeeds then we obtain a proper 2-coloring of all connected
components of G that intersect S. By assumption all other components are
bipartite and we can efficiently find proper 2-colorings for them. This completes
the proof. ⊓⊔

B.2 Proof of Lemma 2

Proof. Let V (G) \X = P ∪Q be a bipartition of G−X . We point out that any
odd X-path between two vertices u, v ∈ X must be of the form (u, x, . . . , y, v)
where either x, y ∈ P or x, y ∈ Q, since G − X is bipartite. Similarly, for any
even X-path (u, x, . . . , y, v) we must have either x ∈ P and y ∈ Q or x ∈ Q
and y ∈ P .

We call Algorithm 1 as ComputeHittingSet(G,X, ℓ). It computes for each
pair {u, v} ∈

(

X
2

)

vertex sets PP , QQ, PQ, and QP intersecting all u − v X-
paths that enter and leaveG−X in the respective side of the bipartition (e.g., PP
intersects all paths (u, x, . . . , y, v) with x, y ∈ P ).

Clearly, if PP > ℓ or QQ > ℓ then there are more than ℓ odd u− v X-paths
and {u, v} is correctly added to B: we rely on the fact that by Menger’s theorem,
the maximum number of internally vertex-disjoint u− v paths equals the size of
a minimum u− v vertex-cut. Otherwise, PP ∪QQ is a set of at most 2ℓ vertices
that intersects all odd u− v X-paths. The above observation that odd u− v X
paths can only enter and leave G − X in these two ways is crucial here. The
analog, for even paths, is true when PQ > ℓ or QP > ℓ.

Then, for all vertices v ∈ X , sets PQ are computed in the same way. It is
easy to see that the same argumentation applies there and that computation of
sets QP is not necessary. Note that each such path is indeed a p − p X-path
since it enters and leaves G−X in different vertices. Clearly, the total size of H

is bounded by 4ℓ ·
(

(

|X|
2

)

+ |X |
)

≤ 4ℓ · |X |2.
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Finally, it is easy to see that this computation can be performed in polynomial
time. The main work lies in the subroutine calls to VertexCut(G,P,Q;u, v, S, T )
(with S, T ∈ {P,Q}) which can be implemented as follows: Make an auxiliary
graph H by taking G[P ∪Q] and adding a source s adjacent to all neighbors of u
in S and a sink t adjacent to the neighbors of v in T . Then use a polynomial-time
algorithm to compute a maximum set of internally vertex-disjoint s − t paths
in H . Schrijver [Sch03, Theorem 9.3] gives an O(nm) time algorithm providing
a maximum packing of paths as well as a corresponding vertex-cut of the same
cardinality. ⊓⊔

B.3 Proof of Lemma 3

Proof. We start from the obviously equivalent instance (G,X,M, ℓ) with M = ∅.
Each transformation can be easily seen to be correct.

First, we consider single vertices p ∈ X . If p ∈ C then there are more than ℓ
even length p − p X-paths in G that are vertex-disjoint (by definition p is not
part of the X-path). Hence there are more than ℓ odd cycles in G which pairwise
intersect only in p, and therefore any odd cycle transversal of G of size at most ℓ
must contain p. Therefore, we may delete p from G and decrease ℓ by 1. This
does not affect X-paths between other vertices since p /∈ V (G) \X .

Next, we consider pairs of vertices {p, q} ∈
(

X
2

)

. If {p, q} ∈ A then there are
more than ℓ even length X-paths. Hence, no deletion of at most ℓ vertices can
remove all those paths implying that whenever there is a set S ⊆ V (G) of size at
most ℓ such that G−S is bipartite, then if p, q 6∈ S then vertices p, q must receive
different colors in any proper 2-coloring of G− S, since at least one p− q path
with an even number of vertices will not be intersected by S: hence we may add
an edge between p and q without changing the instance. Similarly, if {p, q} ∈ B
then we may add the annotation {p, q} to M .

The set X ′ is simply what is left of X after the vertex deletions. It is easy
to see that all important p− q X ′-paths in the obtained instance must be such
that p, q /∈ C and (depending on their parity) {p, q} /∈ A or {p, q} /∈ B, since we
added annotations respectively deleted the vertices in the other cases. Hence, H
is a hitting set for all important X ′-paths. ⊓⊔

B.4 Proof of Lemma 4

Proof. Let T be rooted at an arbitrary vertex. We will mark bags (nodes) of T
to select a set S′. First, for every v ∈ S we mark a bag of T that contains v (i.e.,
at most |S| bags).

Second, for any two marked bags, we also (exhaustively) mark their lowest
common ancestor in T by the following procedure. Let all bags marked so far
be active; there are at most |S| such bags. Identify the lowest bag, say B, that
is a common ancestor of at least two active bags, say B1 and B2. Mark B (if
it was unmarked) and set it active. Furthermore, set all other marked bags in
the subtree rooted at B to inactive (this includes B1 and B2). Observe that
any lowest common ancestor of a bag in the subtree and some bag B′ outside
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the subtree is also a lowest common ancestor of B and B′. Hence it suffices to
proceed only for the active bags. Since the number of active bags is reduced by at
least one each time that another bag is marked, we mark at most |S| additional
bags.

Let B denote the set of marked bags; clearly |B| ≤ 2|S|. Now, let S′ denote the
set of all vertices that are in a marked bag of T ; a total of at most 2|S|(w + 1)
vertices. Clearly S ⊆ S′ since we marked a bag for each v ∈ S. To establish
the lemma it remains to prove that the number of neighbors that a connected
component of G− S′ has in the set S′ is appropriately bounded.

So let C be an arbitrary connected component of G − S′ and let s ∈ S′ be
a neighbor of C in S′. There must be a connected component TC of T − B that
contains all vertices of C. Furthermore, s must be contained in at least one bag
of TC . Since s is also contained in at least one marked bag, there must be a
marked bag that is adjacent to TC in T which contains s. The reason is that
all occurrences of a vertex in bags of T must be connected and that all bags
adjacent to TC are marked (as TC is a connected component of T − B). This
argument shows that all neighbors of C in the set S′ must occur in marked bags
adjacent to TC . To be able to bound the number of such neighbors, we show
that the number of adjacent marked bags is at most two.

Let us assume for contradiction that TC is adjacent to at least three marked
bags. It follows that at least two of those bags are children of TC (i.e., they are
adjacent to TC in T and they are below TC with respect to the root of T ). This,
however, would imply that TC must contain the lowest common ancestor of two
marked bags; a contradiction.

Hence TC is adjacent to at most two marked bags and, therefore, C can have
at most 2(w + 1) neighbors in S′ ⊇ S ∪ S′.

For a bound of at most 2w neighbors consider the following: a neighbor s
of C must be in a marked bag, say B ∈ B, adjacent to TC , but it must also be
contained in a bag together with a vertex of C. Let B′ denote a bag of TC that
contains vertices of C and that is nearest to B (i.e., adjacent to B or connected
to it by a path of bags that contain no vertices of C). This bag is unique since
bags containing vertices of C form a subtree of TC . It is easy to see that all S′-
neighbors of C which are in B must also be contained in B′. That bag, however,
must also contain at least one vertex of C. Hence, each marked bag adjacent
to TC can contribute at most w neighbors, and C has at most 2w neighbors
in S′ = S ∪ S′. ⊓⊔

B.5 Proof of Lemma 5

Proof. Let C denote the set of connected components of (G−X)−H . To identify
connected components in C that may be safely deleted, we use a similar but
simpler procedure as in the proof of Lemma 2.

The main idea is that the way in which a component C ∈ C affects the
problem instance is by possibly providing a path between two vertices p, q ∈ X∪
H : the coloring implications along this path might prevent some colorings of X∪
H from being valid, and in a solution we might want to delete a vertex from C to
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break this path of implications. But if there are more than ℓ components which
provide a path of the same parity between p and q, then we cannot destroy all
such paths by ℓ vertex deletions, and hence this fixes the relative colors of p
and q in every solution. As soon as there are more than ℓ components which
provide a path of a given parity for some pair p, q ∈ X ∪ H , the existence of
additional components which realize the same path is not relevant to the problem
anymore, and we can remove such components if they are not relevant to any
pair p, q ∈ X ∪ H . In the remainder of the proof we formalize this idea into a
reduction procedure.

For each pair of vertices p, q ∈ X ∪ H (also for p = q) and a choice of
odd or even parity, we test for each component C ∈ C whether there is a path
from p to q whose internal vertices lie in C and for which the number of internal
vertices matches the chosen parity. We can perform this test by 2-coloring the
component C (which is bipartite since it is a subgraph of G − X), observing
that C provides a p − q path of odd (resp. even) parity if and only if p and q
have neighbors of the same color (resp. different colors) in the component. For
the given choice of p, q and given parity, we mark the first ℓ+1 components of C
that provide an appropriate path.

After doing this for all pairs, we delete all unmarked components of C from G,
obtaining G′. Clearly, we have marked at most 2·(ℓ+1)·(|X |+|H |)2 components,
and only those exist also in (G′ −X)−H .

Let us argue equivalence of the two instances. Clearly, deleting vertices of G
can only make the problem easier, so assume for contradiction that (G′, X,M, ℓ)
is yes, but that (G,X,M, ℓ) is no. Accordingly, let S ⊆ V (G′) be a set of at
most ℓ vertices of G′ such that G′−S is bipartite and let c′ : V (G′−S) → {0, 1}
be a proper 2-coloring of G′ − S which respects the annotations. We will show
how to extend c′ to a proper 2-coloring of G − S, proving that (G,X,M, ℓ) is
yes too.

We start from a partial 2-coloring c ofG−S which is obtained by restricting c′

to the vertices of X ∪ H . We will show how to extend c to a 2-coloring of the
entire graph G−S. Note that (G−X)−H is bipartite (since it is a subgraph of
the bipartite graph G−X) and hence we may apply Lemma 1 to the graph G−S
with the 2-coloring c of G[X ∪ H ], letting X ∪ H play the role of the set S in
the statement of Lemma 1. By the lemma we either find an extension of c to a
proper 2-coloring of the entire graph G − S (and we would be done, since this
2-coloring of G − X must respect the annotations since c′ does), or we find a
path P between two vertices p, q ∈ X ∪ H such that the parity of this path
conflicts with the colors assigned to p, q by function c. We will show that this
latter case leads to a contradiction, and that therefore we must always be able
to extend to a proper 2-coloring. By the guarantee of the lemma, all internal
vertices on P are from the set (G−S)− (X ∪H) and hence the internal vertices
of P are all contained within a single connected component C ∈ C.

It is not hard to see that if G′ − S can be properly 2-colored with the given
colors for vertices p and q, then there can be no path between p and q in the
graph G′ − S whose parity equals the parity of P . So in particular, the compo-
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nent C cannot exist in graph G′ and must have been deleted when forming G.
But by the definition of the reduction procedure, if the component C was deleted
it was not marked, and hence we marked ℓ+1 components which provided a p−q
path of the same parity. Since at least one of these components is not intersected
by S (which has size at most ℓ), this shows that G′ − S must contain a p − q
path of the same parity as P ; a contradiction to the assumption that c′ properly
2-colors the graph G′ − S.

This contradiction shows that when applying Lemma 1 we must always obtain
a proper 2-coloring c of G − S, and since c assigns the same colors to X ∪ H
as the function c′ which respects the annotations, we find that c is a 2-coloring
of G − S which respects the annotations; this proves that (G,X,M, ℓ) is a yes

instance and completes the proof. ⊓⊔

B.6 Proof of Lemma 6

Proof. Let c : V (G−R) → {0, 1} be a proper 2-coloring of G−R that respects
the annotations on X . Let a partial coloring c′ : V (G − R′) → {0, 1} of G − R′

be defined via: c′(v) := c(v) for all vertices that are not in the component C
of (G−X)−H . Note that R and R′ differ only on these vertices and, hence, (G−
V (C))−R = (G−V (C))−R′. Thus c′ is a proper 2-coloring of (G−V (C))−R′ and
respects the annotations, since X ⊆ V (G)\V (C) and c respects the annotations.

We apply Lemma 1 on the graph G−R′, the coloring c′ and using the vertex
set V (G)\(V (C)∪R′) as the set S in the lemma. Let us assume for contradiction
that we obtain a connected component C′ ⊆ C and a simple path P between
two vertices p, q ∈ NG−R′(C′) ⊆ X ∪H whose internal vertices are from V (C′),
with the guarantee that P cannot be properly 2-colored given the colors of p
and q. We will derive a contradiction by a case analysis on the status of p and q.

(i) : p, q ∈ X : We first consider the case that both endpoints of the path
are contained in X . Lemma 1 guarantees that either p 6= q and P is a simple
path, or that p = q and P is an odd cycle through p = q. Let P ′ be the interior
of the path: P ′ is obtained from P by deleting p and q, and it is not hard to
verify that P ′ cannot be empty if c is a proper coloring. Clearly, P ′ is an X-
path between p and q. Since H intersects all important X-paths and all vertices
of P ′ lie in C′ ⊆ C which is a component of (G − X) − H , it is clear that P ′

is not an important X-path. This, however, implies that there must be either
an edge {p, q} in G or an annotation {p, q} in M and that the path P ′ has a
matching length. But P ′ cannot be properly colored given the colors of p and q,
whereas the fact that P ′ is not important implies that whenever the endpoints
are colored according to the annotations, the path can be properly colored: this
implies that c does not respect the annotations, which is a contradiction.

(ii) : p, q ∈ T : In this case the vertices p and q are terminals of the labeled
graph (D,X ∪ T, f). If p = q then by Lemma 1 we know P is an odd cycle
through p = q, and since P is entirely contained within D (which is a subgraph
of G − X) this contradicts the assumption that G − X is bipartite. Hence in
the remainder of this case we assume that p 6= q. Since P is a p − q path
in G−R′ whose internal vertices are from C, and since S′ = V (C)∩R′, the set S′
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does not separate p from q in C. It follows from the definition of the labeling
function f and Definition 1 and Definition 2 that we must have p ∈ L(q, S′)
and q ∈ L(p, S′). Since the cut characteristics of S and S′ with respect to this
labeled graph are the same by the assumption that K(S, T ) = K(S′, T ), we must
have p ∈ L(q, S) and q ∈ L(p, S) which shows that vertices p and q are also
connected in D − S. If we take a path P ′ from p to q in the graph D − S,
then P ′ must also be a p − q path in the graph G − R. Now, if the parities
of P and P ′ differ then P ∪ P ′ ⊆ V (C) ∪ T must contain an odd cycle, which
contradicts the assumption that G−X is bipartite. If the parities are the same,
then the fact that P cannot be properly 2-colored given the colors of p, q implies
that P ′ cannot be properly 2-colored, which contradicts the assumption that c
is a proper 2-coloring of G−R.

(iii) : w.l.o.g. p ∈ T, q ∈ X : Observe that the requirements for this case
imply p 6= q and hence P is a p − q path in G − R′ whose internal vertices
are contained in C: hence the subpath P − {q} also exists in the graph D − S′

and connects p to a neighbor of q, showing by the definition of the labeling
function that q ∈ L(p, S′). Since S and S′ have the same cut characteristic
with respect to the labeled graph (D,X ∪ T, f) we must have q ∈ L(p, S): this
implies that in D − S there is a path from vertex p to a vertex labeled q, and
this vertex labeled q must be a neighbor to q in the graph G. Hence there is
a path P ′ from p to q through the component C in the graph G − R. Since c
is a proper 2-coloring of G − R, it must properly 2-color the path P ′. Since P
cannot be properly 2-colored given the colors of p and q, it follows that the
paths P and P ′ must have different parities. Since P and P ′ are two paths of
different parities between distinct vertices p and q, their union must contain an
odd cycle. Since G−X is bipartite by assumption, the union of P and P ′ must
contain an odd cycle Q through a vertex in X , and hence this odd cycle must
intersect q. Let x, y be the predecessor and successor to q on the odd cycle Q;
it is easy to see that x, y ∈ V (C). It follows that Q − {q} is a path between x
and y in G −X containing an even number of vertices. Since C is a connected
component containing x and y, there is a simple path P̂ from x to y which only
uses vertices from C. Since G−X is bipartite all simple paths between two given
vertices in G−X must have the same parity, which shows in particular that P̂
must contain an even number of vertices since Q − {q} is a path between x
and y in G −X with an even number of vertices. Now P̂ is entirely contained
within C, and P̂ forms an odd cycle with q; but by Definition 3 this implies
that P̂ is an important q − q X-path, contradicting the assumption that H
intersects all important X-paths. This concludes the proof of this last case.

Thus, in all cases we have found a contradiction. This implies that the ap-
plication of Lemma 1 must provide a proper 2-coloring of G − R′ that is an
extension of c′. Thus, G− R′ has a proper 2-coloring that respects the annota-
tions and, hence, R′ is also a valid solution, as claimed. ⊓⊔
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B.7 Proof of Lemma 7

Proof. The proof is organized as follows. First, for each component C of (G −
X) − H we will partition all separators of size at most δ − 1 into equivalence
classes according to their cut characteristic with respect to a labeled graph whose
labels express adjacency to X and to the neighborhood of the component; ac-
cordingly these separators are subsets of V (C)∪ (N(C)∩H). We will arbitrarily
pick one minimum-size representative for each class and mark its vertices in C
as deletable. All other vertices of the component C will remain undeletable. Do-
ing this for all components we obtain an instance of the restricted annotated
problem. Second, we will show that for each odd cycle transversal R of G which
allows a 2-coloring of G−R respecting the annotations, there is a transversal R′

of at most the same size that intersects each component of (G − X) − H in
deletable vertices (i.e., in a representative separator). From this, equivalence of
the instance of the restricted annotated problem follows immediately.

For each component C of (G−X)−H we define the necessary vertex sets to
express the cut characteristics of its separators and to be able to invoke Lemma 6
later on. We will omit subscripts C for readability and always focus only on one
component at a time. Let T = {t1, . . . , tδ′} = NG(C)\X be the set of the δ′ ≤ δ
vertices of H that are adjacent to C. We define a labeled graph (D,X ∪T, f) on
the base graph D := G[V (C)∪ T ]. Its vertices are labeled by f : V (D) → X ∪ T
(exactly as in Lemma 6), i.e., each vertex is labeled by its set of neighbors in X
plus possibly by itself if it is in T :

f(v) :=

{

NG(v) ∩X If v 6∈ T .

(NG(v) ∩X) ∪ {v} If v ∈ T .

Now, we consider all separators of size at most δ − 1, i.e., all S ∈
(

V (C)∪T
≤δ−1

)

.

We let two such separators S and S′ be equivalent, if they have the same cut
characteristic in the labeled graph (D,X ∪T, f) with respect to the terminals T ,

i.e., if K(S, T ) = K(S′, T ). It can be easily checked that a partition of
(

V (C)∪T
≤δ−1

)

into equivalence classes can be computed in time polynomial in
(

|V (C)|+|T |
≤δ−1

)

+

|V (G)|: the main work consists of running |T | breadth-first searches for each
separator to identify the set of reachable labels. Since we assume δ to be a
constant, this takes polynomial time in the input size.

We arbitrarily pick one separator of minimum size as the representative for
each class. Each equivalence class is characterized by a tuple in Kδ−1(T ) with
respect to the labeled graph (D,X ∪T, f). By Theorem 1 the number of equiva-
lence classes is therefore bounded by κ(δ, δ− 1, |X |+ δ) since we are considering
labeled graphs with n = δ terminals, for which we look at separators of size at
most m = δ−1 in a graph with |X |+ δ′ ≤ |X |+ δ different labels. We now mark
as deletable all vertices of C which occur in a representative separator (of size at
most δ − 1). Thus, per component, we mark less than δ vertices for each repre-
sentative separator, resulting in a total number of at most δ · κ(δ, δ− 1, |X |+ δ)
marked vertices per component C.
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After doing this for all α components there are at most α ·δ ·κ(δ, δ−1, |X |+δ)
vertices marked as deletable in (G −X)−H . In addition we mark the vertices
of X and H as deletable. We now let Z contain the marked vertices, from which
it easily follows that Z does not exceed the stated size bound. It remains to prove
that the instance (G,X,M, ℓ) of Annotated (bip∩Gtw(w))-oct is equivalent to
instance (G,X,M, ℓ, Z) of Restricted Annotated (bip ∩ Gtw(w))-oct. This
equivalence will follow mainly from the following claim.

Claim. Let R ⊆ V (G) be a set of vertices such that G − R is bipartite and
has a proper 2-coloring that respects the annotations. Then there is another
set R′ ⊆ Z of deletable vertices of size |R′| ≤ |R| such that G − R′ is bipartite
and and has a proper 2-coloring that respects the annotations.

Proof. Let R be an odd cycle transversal of G such that G−R has a 2-coloring
respecting the annotations. If R ⊆ Z we are done, so assume that R contains at
least one undeletable vertex and let C be the connected component of (G−X)−H
containing the vertex. Let T contain the neighbors that C has in H in some
arbitrary order, i.e., T := NG(C)∩H . Let S := R∩(V (C)∪T ) be the intersection
of R with C augmented by its neighborhood in H .

We will show that we can obtain a solution R′ which is not bigger than R, and
which only intersects C in deletable vertices; we will then appeal to induction
to show that this process can be repeated to obtain a solution which is a subset
of Z. To find a set R′ such that R′ ∩ V (C) ⊆ Z we distinguish between two
cases.

– We first consider the case that |S| ≤ δ − 1. Let S′ be the representative
separator that has the same cut characteristic as S with respect to the labeled
graph (D,X ∪ T, f) (as defined above). Since we remembered a minimum-
size representative of each class, we must have |S′| ≤ |S|. We now argue
that S ∩ T = S′ ∩ T . Assume there is a terminal ti ∈ T \ S. Since this
terminal is labeled with itself, we have ti ∈ f(ti) and since ti 6∈ S we must
have ti ∈ L(ti, S). Since the cut characteristics of S and S′ are identical, we
must have ti ∈ L(ti, S′) and it follows directly from Definition 1 this is only
possible if ti 6∈ S′. Similarly for every ti ∈ T ∩ S we have ti 6∈ L(ti, S) which
is only possible if ti 6∈ L(ti, S′). Hence the fact that S∩T = S′∩T is implied
by the fact that S and S′ have the same cut characteristic.
Now, from applying Lemma 6 for S \ T and S′ \ T (both subsets of V (C))
we get that

R′ = (R \ (S \ T )) ∪ (S′ \ T ) = (R \ S) ∪ S′

is also an odd cycle transversal of G such that G−R′ has a proper 2-coloring
respecting the annotations, and since S′ is a representative separator whose
vertices were marked as deletable we have R′ ∩ V (C) = S′ ⊆ Z.

– If |S| ≥ δ then we replace it by the set T , i.e., R′ = (R \ S) ∪ T , implying
that |R′| ≤ |R|. Let us briefly argue that R′ is indeed a valid solution. Let c
be a proper 2-coloring of G − R that respects the annotations, and create
a 2-coloring of R′ by first copying the coloring of c onto all vertices outside
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of V (C)∪ T . Since all X-paths through C (not crossing vertices of H) must
match annotations (and edges) among vertices ofX , it follows from Lemma 1
that a greedy extension of the 2-coloring of X into C cannot fail (e.g., see
also the argument in the proof of Lemma 5 and note that all neighbors of C
in G−R′ are in X).

In both cases we have identified an odd cycle transversal R′ of at most the
same size as R that only intersects C in deletable vertices, and which ensures
that G−R′ has a 2-coloring respecting the annotations. Since this replacement
step within the component C does not affect the intersection of the solution with
any other components of (G−X)−H , we may repeatedly apply such replacement
steps until we arrive at a solution which is entirely contained within Z. This
completes the proof of the claim. ⊓⊔

The given claim allows us to prove that the restricted annotated instance
is equivalent tot he annotated instance. Clearly, restricting the set of deletable
vertices can only make the problem harder: if the restricted instance is yes then
the same deletion set is a valid solution to the original. For the other direction
it follows from the claim that if the original is yes, then the restricted instance
is also yes. This completes the proof of the lemma. ⊓⊔

B.8 Proof of Lemma 8

Proof. Let (G,X,M, ℓ, Z) be an instance of the restricted annotated problem.
Clearly, if G − Z is not bipartite, then the instance is no and we may return a
dummy no instance of (bip ∩ Gtw(w))-oct.

We argue that we may assume w.l.o.g. thatM = ∅: IfM is not empty, then for
each {u, v} ∈ M ⊆

(

V
2

)

we may add a new vertex w adjacent to u and v. Since w
is not in Z it may not be deleted. Hence, for any odd cycle transversal S ⊆ Z,
either u ∈ S or v ∈ S or u and v must have the same color in any 2-coloring
of G− S. This does not affect ℓ or Z. Henceforth, we assume M = ∅.

We construct the graph G′, starting from G′ = G[Z]. For all p, q ∈ Z we do
the following:

– If there is an odd Z-path between p and q in G, i.e., a p−q path with internal
vertices only from V (G) \ Z, then add ℓ + 1 new vertices to G′ and make
them adjacent to both p and q.

– If there is an even Z-path between p and q in G, then add the edge {p, q}
(unless it exists already in G[Z]).

Recall, that the existence of odd and even p − q Z-paths can be easily checked
by 2-coloring G− Z and checking whether p and q have neighbors of the same,
respectively, different colors in some component of G− Z.

Finally, we let X ′ := Z and return the instance (G′, X ′, ℓ). Clearly, G′ −X ′

is an independent set, and hence it is bipartite and has bounded treewidth, since
we only added vertices that are adjacent to Z (but not to one another).

Claim. (G,X,M, ℓ, Z) is yes if and only if (G′, X ′, ℓ) is yes.
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Proof. (⇒) : Assume first that (G,X,M, ℓ, Z) is yes and let S ⊆ Z be an odd
cycle transversal of G of size at most ℓ (recall that M = ∅). To see that S is
also an odd cycle transversal of G′, let c : V (G − S) → {0, 1} be a proper 2-
coloring of G − S. We will show how the restriction of c to Z can be extended
to a proper 2-coloring of G′ − S. Recall, that G′ is the same as G[Z] except
possibly for additional edges between vertices of Z and additional vertices that
are adjacent to pairs of vertices from Z.

Let us check first that the additional edges pose no problem: if p, q ∈ Z \ S
and {p, q} is an edge of G′ but not of G then there must be an even Z-path
between p and q in G. This path exists in G − S, since p, q /∈ S and S ⊆ Z.
Hence, c(p) 6= c(q).

Now, let us consider the additional vertices: if p, q ∈ Z \ S have a shared
neighbor in G′ then there must be an odd Z-path between p and q in G. Again
this path must exist also in G−S, implying that c(p) = c(q). Therefore, we may
color such a shared neighbor with color 1−c(p). It follows that S is an odd cycle
transversal of G′ and that (G′, X ′, ℓ) is yes.

(⇐) : Now, assume that (G′, X ′, ℓ) and let S′ be an odd cycle transversal
of G′ of size at most ℓ. We let S := S′ ∩ Z and claim that S is an odd cycle
transversal of G (clearly S ⊆ Z and |S| ≤ ℓ).

Let c′ : V (G′−S′) → {0, 1} be a proper 2-coloring of G′−S′. We will extend
its restriction to Z to a proper 2-coloring of G− S′. Let us first note that G[Z]
is a subgraph of G′[Z] and hence c′ is a proper 2-coloring for G[Z]. It is easy
to see that a greedy extension of the coloring onto V (G− S′) \ Z suffices: First
of all, G− Z is bipartite, so connected components that do not intersect Z can
be 2-colored arbitrarily. Second, if the coloring fails then there must be an odd
path between two vertices p, q ∈ Z \ S with different colors under c′, or an even
path between vertices of the same color. In both cases, such a path led to adding
an edge (for an even path) or ℓ+ 1 shared neighbors (for an odd path) between
those vertices in G′. In the first case, the two vertices must have different colors
(as c′ is proper for G′−S′[Z] = G′−S[Z]). In the second case, S′ cannot contain
all shared neighbors, so the vertices must have the same color under c. Thus, in
both cases we find a contradiction, implying that G−S can be properly 2-colored
and that (G,X,M, ℓ, Z) is a yes instance.

This completes the proof of the claim. ⊓⊔

It is easy to see that the construction can be performed in polynomial time.
Correctness follows from the previous claim. To see that G′ has at most |Z|+(ℓ+
1) · |Z|2 vertices recall that the only additional vertices that we added to G[Z]
are at most ℓ+ 1 shared neighbors per pair of vertices from Z. ⊓⊔

B.9 Proof of Theorem 2

Proof. We will sketch the actions of the algorithm for some fixed integer w.
Let (G,X, ℓ) be an input of (bip ∩ Gtw(w))-oct, and let k := |X | be the size
of the parameter to the problem. Observe that we may assume without loss of
generality that ℓ < |X | = k, otherwise the set X is an OCT of size at most ℓ
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and therefore we can just output a constant-size yes instance. This implies that
we can assume that ℓ+ 1 ≤ k.

We first compute sets A,B ⊆
(

X
2

)

, a set C ⊆ X and a setH ⊆ V (G)\X of size
at most 4ℓ|X |2 by Lemma 2, and use these with Lemma 3 to obtain an instance
(G′, X ′,M, ℓ′) of Annotated (bip ∩ Gtw(w))-oct with X ′ ⊆ X and ℓ′ ≤ ℓ such
that H intersects all important X ′-paths of the annotated instance. We then
use Bodlaender’s algorithm [Bod96] to compute a tree decomposition T of the
graph G′ −X ′, which can be done in linear time since G′ −X ′ has treewidth at
most w which we treat as a fixed constant.

We now apply Lemma 4 to the triple (G′ − X ′, T , H): the set H plays
the role of S in the lemma statement. We find a superset H ′ ⊇ H of size at
most 2(w+1)|H | such that for each connected component C of G′ −X ′ it holds
that |NG′(C) ∩ H ′| ≤ 2w. Since H intersects all important X ′-paths of the in-
stance (G′, X ′,M, ℓ′) it is easy to see that the superset H ′ must also have this
property.

We now apply Lemma 5 to the instance (G′, X ′,M, ℓ′) and set H ′ to obtain
in polynomial time an equivalent instance (G′′, X ′,M, ℓ′) of Annotated (bip∩
Gtw(w))-oct with the guarantee that (G′′−X ′)−H ′ has at most 2(ℓ′+1)(|X ′|+
|H ′|)2 connected components; observe that the sets X ′,M and the value of ℓ′

remains unchanged by this step. Since the graph G′′ is an induced subgraph
of G′, it follows that H ′ is also a hitting set for the important X ′-paths in the
graph G′′.

Define α := 2(ℓ′+1)(|X ′|+ |H ′|)2 and δ := 2w; we may then apply Lemma 7
to the instance (G′′, X ′,M, ℓ′) and the set H ′ to obtain an equivalent instance
(G′′, X ′,M, ℓ′, Z) of Restricted Annotated (bip ∩ Gtw(w))-oct where |Z| is
bounded by |X ′|+ |H ′|+ α · δ · κ(δ, δ − 1, |X ′|+ δ).

As the final step of the kernelization we move from the instance of the re-
stricted, annotated problem back to the original problem. We apply Lemma 8 to
the instance (G′′, X ′,M, ℓ′, Z) to obtain an equivalent instance (G∗, X∗, ℓ∗) of
the original problem, and the lemma guarantees that |V (G∗)| ≤ |Z|+(ℓ′+1)·|Z|2.
If ℓ′ < 0 then the original input is equivalent to an instance which asks for a set
of negative size; hence the original input is no, and we can output a constant-
size no instance. If ℓ′ = 0 then we can decide the instance in polynomial time:
we output yes if and only if G∗ is bipartite. In the remaining cases, the in-
stance (G∗, X∗, ℓ∗) is used as the output to the kernelization algorithm and we
are guaranteed that ℓ∗ > 0. It follows directly from the intermediate lemmas
that this procedure takes polynomial time for each fixed w, and that the output
instance (G∗, X∗, ℓ∗) is equivalent to the original input (G,X, ℓ). It remains to
prove that the size of the output instance is indeed bounded polynomially in
the parameter to the input problem, which is k = |X |. This is just a matter of
formula manipulation using the facts we collected above.

|V (G∗)| ≤ |Z|+ (ℓ′ + 1) · |Z|2 By Lemma 8. (1)

≤ 2k|Z|2 ℓ′ ≤ ℓ < k. (2)

δ = 2w By definition. (3)
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|X ′| ≤ |X | ≤ k Since X ′ ⊆ X . (4)

|H ′| ≤ 2(w + 1)|H | ≤ 2δ|H | By Lemma 4. (5)

|H | ≤ 4ℓ|X |2 ≤ 4ℓk2 ≤ 4k3 By Lemma 3. (6)

|H ′| ≤ 8 · δ · k3 By (5), (6). (7)

|X ′|+ |H ′| ≤ k + 8 · δ · k3 ≤ 9 · δ · k3 By (7). (8)

α = 2(ℓ′ + 1)(|X ′|+ |H ′|)2 By definition. (9)

≤ 2k(|X ′|+ |H ′|)2 ℓ+ 1 ≤ k. (10)

≤ 2k(9 · δ · k3)2 By (8). (11)

≤ 162 · k7 · δ2 Simplifying. (12)

|X ′|+ |H ′| ≤ α By (9). (13)

|Z| ≤ |X ′|+ |H ′|+ α · δ · κ(δ, δ − 1, |X ′|+ δ) By Lemma 7. (14)

≤ α+ α · δ · κ(δ, δ − 1, |X ′|+ δ) By (13). (15)

≤ 2α · δ · κ(δ, δ − 1, |X ′|+ δ) δ, κ(. . .) > 0. (16)

≤ 2α · δ · κ(δ, δ, k + δ) Def. of κ(·). (17)

κ(δ, δ, k + δ) ∈ O(δ2δ · (k + δ)δ
2(δ+3)/2 · 4δ

2

) By Thm. 1. (18)

κ(δ, δ, k + δ)2 ∈ O(δ4δ · (kδ
2(δ+3) + δδ

2(δ+3)) · 16δ
2

) Simplifying. (19)

|Z|2 ∈ O(α2δ2κ(δ, δ, k + δ)2) (20)

|Z|2 ∈ O(k14δ4δ4δ · (kδ
2(δ+3) + δδ

2(δ+3)) · 16δ
2

) (21)

If we now treat w (and therefore δ) as a fixed constant, we find:

|Z|2 ∈ O(kO(w3)) By (21). (22)

|V (G∗)| ∈ O(kO(w3)) By (2) and (22).

Since this shows that the size of a reduced instance is appropriately bounded,
this concludes the proof. ⊓⊔

C On approximating the deletion distance to a bipartite
treewidth-w graph

Proposition 2 ([RS86,RS04]). Let w ≥ 1 be an integer. There is a finite set
of graphs Ftw(w) containing at least one planar graph, such that for any graph G
we have tw(G) ≤ w if and only if G excludes all graphs H ∈ Ftw(w) as a minor.

Proof. It is well-known that the treewidth of a graph does not increase when
taking a minor. Hence the set of graphs Gtw(w) of treewidth at most w is minor-
closed, and by the Graph Minor Theorem [RS04] there is a finite obstruction
set F such that for all graphs G we have G ∈ Gtw(w) if and only if G ex-
cludes all graphs H ∈ F as a minor. Observe that the k × k grid graph has
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treewidth k [RS86] (we ignore the easy case that w ≤ 1). Therefore Gtw(w)

does not contain the (w+1)× (w+1) grid graph. Since F is an obstruction set
for Gtw(w) there must be a graph H ′ ∈ F which is a minor of the (w+1)×(w+1)
grid. But since a grid graph is planar, and planarity is preserved when taking
minors, the graph H ′ must be planar; this proves the claim. ⊓⊔

We use the following theorem from recent work by Fomin et al. [FLM+11,
Theorem 3].

Theorem 5. Let F be an obstruction set containing a planar graph. Given a
graph G, in polynomial time we can find a subset S ⊆ V (G) such that G − S

contains no element of F as a minor and |S| ∈ O(opt · log3/2 opt). Here opt

is the minimum size of such a set S.

We also use Courcelle’s theorem for graphs of bounded treewidth.

Proposition 3 ([ALS91,Bod96,BPT92,Cou90,CM93]). Let φ be a prop-
erty that is expressible in Monadic Second Order Logic. For any fixed inte-
ger w ≥ 1, there is an algorithm that, given a graph G of treewidth at most w
as input, finds a largest (alternatively, smallest) set S of vertices of G that sat-
isfies φ in time f(w, |φ|)|V (G)|.

Lemma 18. For every fixed value of w ≥ 1 there is a linear-time algorithm
which given a graph G of treewidth at most w computes a minimum-size odd
cycle transversal S ⊆ V (G).

Proof. We will apply Courcelle’s theorem, using the fact that OCT can be ex-
pressed in Monadic Second Order Logic: if G is a graph then finding a minimum
OCT is equivalent to minimizing the cardinality of a set S ⊆ V (G) which satisfies
the following MSOL formula φ(S):

φ(S) :=∃X,Y ⊆ V (G) : ∀v ∈ V (G) : [v ∈ S ∨ v ∈ X ∨ v ∈ Y ]∧

Independent(X) ∧ Independent(Y )

where

Independent(Z) :=∀u, v ∈ Z : ¬Adj(u, v)

The formula uses the fact that if S is an odd cycle transversal then G − S is
bipartite and hence the vertices of G − S can be covered by two independent
sets. Since the formula φ(S) is fixed and does not depend on w, the lemma now
follows from Proposition 3. ⊓⊔

Lemma 19. Let w ≥ 1 be a fixed integer. There is a polynomial-time algorithm
which gets as input a graph G, and computes a set X ⊆ V (G) such that G−X ∈

bip ∩ Gtw(w) with |X | ∈ O(opt · log3/2 opt), where opt is the minimum size of
such a deletion set.

Proof. We introduce a little bit of terminology to simplify the proof. Let G be a
graph. A subset S ⊆ V (G) is called a treewidth-w deletion set for G if G− S ∈
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Gtw(w). If the graph G − S is also bipartite, then S is a treewidth-w odd cycle
transversal.

Now fix an integer w ≥ 1: we will sketch the actions of the algorithm on
input G. Let opttw(w) denote the minimum cardinality of a treewidth-w deletion
set for G, and let opttw(w)oct be the minimum cardinality of a treewidth-w odd
cycle transversal.

By Proposition 2 there is a finite set of graphs Ftw(w) such that for all S ⊆
V (G) we have tw(G−S) ≤ w if and only if G−S excludes all graphs of Ftw(w)

as a minor, and Ftw(w) includes a planar graph. Hence we may apply Theorem 5
to compute in polynomial time a set Stw(w) such that G − Stw(w) excludes all
graphs of Ftw(w) as a minor (and hence tw(G − Stw(w)) ≤ w), and |Stw(w)| ∈

O(opttw(w) · log
3/2

opttw(w)).
Observe that we have opttw(w) ≤ opttw(w)oct since a treewidth-w odd cycle

transversal must also be a treewidth-w deletion set. Now consider the graph G−
Stw(w) which has treewidth at most w, but which might not be bipartite. We will
compute our approximate treewidth-w odd cycle transversal by taking the union
of Stw(w) and a minimum odd cycle transversal of the graphG−Stw(w). SinceG−
Stw(w) has treewidth at most w and we take w to be a constant, Lemma 18 shows
we can compute an optimal odd cycle transversal Soct of G − Stw(w) in linear
time. Observe that since a treewidth-w odd cycle transversal cannot be smaller
than an odd cycle transversal of a subgraph, we must have |Soct| ≤ opttw(w)oct.
Since the graph (G − Stw(w)) − Soct has treewidth at most w and is bipartite,
we find that X := Stw(w) ∪Soct is a treewidth-w odd cycle transversal of G and
it follows from our earlier observations that this set satisfies the claimed size
bound. ⊓⊔

D Omitted proofs and definitions of Section 5

Definition 9 ([BJK11]). An equivalence relation R on Σ∗ is called a polyno-
mial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into at most (maxx∈S |x|)O(1) classes.

Definition 10 ([BJK11]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗×N be a param-
eterized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt be-
longing to the same equivalence class of R, computes an instance (x∗, k∗) ∈
Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that:

1. (x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 ≤ i ≤ t,
2. k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

We point out that all logarithms are base two. For ease of reading we let a
sequence of R zeros be the binary expansion of 2R (this still gives one unique
representation for all numbers from 1 to 2R).
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Theorem 6 ([BJK11], Corollary 10). If a set L is NP-hard under Karp
reductions and L cross-composes into a parameterized problem Q then there is
no polynomial kernel for Q unless NP ⊆ coNP/poly.

The following Theorems 7, 8, 9, and 10 together imply Theorem 3.

Theorem 7. (outerplanar)-oct does not admit a polynomial kernelization
unless NP ⊆ coNP/poly.

Proof. We prove the lower bound by a cross-composition from (unparameter-
ized) Vertex Cover. An instance x of Vertex Cover consists of a graphG =
(V,E) and an integer ℓ, asking whether G has a vertex cover of size at most ℓ. We
define two instances (Gi = (Vi, Ei), ℓi) and (Gj = (Vj , Ej), ℓj) to be equivalent
under a relation R if and only if |Vi| = |Vj |, |Ei| = |Ej |, and ℓi = ℓj < |Vi|.
For technical reasons, we let all ill-formed instances, i.e., those not encoding a
graph G and an integer ℓ, be equivalent under R. Since those instances are
trivially no, they may equivalently be deleted from the input to the cross-
composition and we will tacitly ignore them henceforth. Similarly, we let all
instances (G, ℓ) with ℓ ≥ |V (G)| form one equivalence class. However, since such
an instance is trivially yes, the output can be any dummy yes-instance, if such
an instance is in the input to the cross-composition; henceforth ℓ < |V (G)|.
Clearly, R is a polynomial equivalence relation since instances of size at most N
are partitioned into at most N3 + 2 classes, and equivalence can be checked in
polynomial time.

Let x1, . . . , xt be t instances of Vertex Cover that are equivalent under R.
W.l.o.g. we assume t = 2R for some integer R (otherwise we could copy one
instance sufficiently often, at most doubling the input size). Each instance xi

asks whether a graph Gi on n vertices and m edges has a vertex cover of size
at most ℓ. We construct an instance of odd cycle transversal parameterized by
a modulator from an outerplanar graph, by first constructing a graph G′ by
adding instance selectors, a solution selector, and edge checkers :

– Instance selectors: An instance selector consists of R vertex-disjoint tri-
angles T1, . . . , TR. Two vertices of each triangle are called 0-vertex respec-
tively 1-vertex. Any odd cycle transversal for the instance selector must
contain at least R vertices. We make a total of n copies of this construction,
which gives a total cost of at least n ·R vertex deletions for handling all odd
cycles of the instance selectors.

– Solution selector: We start from a clique on n vertices, corresponding to
the n vertices in each of the graphs Gi, and subdivide each of its edges once.
We obtain a bipartite graph with bipartitions of size n (the original vertices)
and

(

n
2

)

vertices. The so obtained independent set of size n will encode the

selection of n vertices. The other
(

n
2

)

vertices will serve to complete odd
cycles.

– Edge checkers: We add n copies of the following edge checker for each of
the m edges of each of the t graphs. The construction will be outerplanar.
We start with a path of at least R vertices and with an even number of
vertices (i.e., R or R+ 1 vertices). To the first R of these vertices we add a
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triangle with a pending vertex. Let v be such a vertex on the path: then we
add vertices av, bv, and cv with edges {v, av}, {v, bv}, {av, bv}, and {bv, cv}
(i.e., a triangle on the vertices v, av, and bv with a pending vertex cv at bv).
We note that any odd cycle transversal for an edge checker has size at least R
since it contains R vertex-disjoint triangles. This implies a total cost of at
least n · mt · R vertex deletions for removing all odd cycles from all edge
checkers (as there are n ·mt edge checkers in total).
An edge checker for an edge {p, q} of Gi is connected to the instance selectors
as well as to p and q in the solution selector in the following way; it ensures
that one of p or q must be chosen if the i-th instance is chosen. Let v1, . . . , vR
be the R vertices on the path to which we added triangles. For j ∈ [R], if
the jth bit of the binary expansion of i is zero then we connect bvj and cvj
to the 0-vertex of the jth triangle Tj of each instance selector. Otherwise
we connect bvj and cvj to the 1-vertex of Tj . In both cases the vertices bvj
and cvj form a triangle with a vertex of Tj. Finally, we connect the first
vertex of the path to p and the last vertex to q (this latter connection is
arbitrary, the roles of p and q may be exchanged without harm).

The cross-composition generates an instance x′ = (G′, ℓ′, X), where ℓ′ := n ·R+
n·mt·R+ℓ, and X contains all vertices of the instance and the solution selectors.
Clearly, G′−X is an outerplanar graph, as it is a disjoint union of edge checkers,
and the parameter value k′ = |X | of x′ is bounded by n · 3R+ n+

(

n
2

)

, which is
polynomial in maxi |xi|+ log t. It is easily checkable that the construction of G′

can be performed in time polynomial in
∑

i |xi|.
For correctness of the cross-composition we will show that x′ is yes if and

only if at least one instance xi is yes. I.e., we establish that G′ has an odd cycle
transversal of size at most ℓ′ if and only if at least one of the graphs Gi has a
vertex cover of size at most ℓ.

(⇒) We assume that some instance xi is yes, and we let S be a vertex cover
for Gi of size at most ℓ. We define a set S′ to serve as an odd cycle transversal
of G′. First, we include from the solution selector the ℓ vertices that correspond
to S. Second, we add from each of the n instance selectors 0- and 1-vertices
matching the complement of the binary expansion of i: if the jth bit of i is 0
then we add the 1-vertex of Tj to S′ and otherwise we add the 0-vertex. In edge
checkers for edges of Gi we add the b-vertices from the triangles. For other edge
checkers, say, for graphs Gi′ with i′ 6= i, we pick a position j where the binary
expansions of i and i′ differ, and add vj to S′. For the other positions we add bvj′
to S′ for all j′ ∈ [R]\{j}. Thus we pick a set S′ of size at most n·R+n·mt·R+ℓ.

Let us argue that S′ is indeed an odd cycle transversal for G′. First, we
observe that there are no odd cycles in the instance selectors in G′−S′, since we
selected the 0 or the 1 vertex of each triangle. Second, let us consider the edge
checkers:

– In edge checkers for Gi we added all b-vertices of the triangles, hence those
checkers are disconnected from the instance selectors in G′ − S′. Further-
more, for each of the corresponding edges the set S contains one of its end-
points, and hence we have added one of its endpoints in the solution selector
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to S′. It can be easily checked that the remainders of those edge checkers are
(caterpillar) trees attached to at most one of the endpoints (in the solution
selector) of the corresponding edge.

– In other edge checkers, for graphs Gi′ , we have also added all b-vertices of
the triangles except for one position, say j, where the binary expansions
of i and i′ differ; there we added vj . Hence, also these edge checkers are
disconnected from the instance selectors since our choice on the instance
selector (in particular in position p) is exactly opposite to i (and matching i′).
By adding vj to S′ we have ensured that in G′ − S′ such an edge checker is
split into two (caterpillar) trees each attached to at most one vertex in the
solution selector.

Clearly, the solution selectors are already bipartite in G′ (and we have checked
for odd cycles via the edge checkers). Hence S′ is indeed an odd cycle transversal
of G′, and x′ is yes.

(⇐) We assume that x′ is yes. Let S′ be an odd cycle transversal of G′ of
size at most ℓ′. From each instance selector and from each edge checker, S′ must
contain R vertices. Therefore it contains at most ℓ vertices from the solution
selector. We define a set S to contain all vertices of S′ that are in the inde-
pendent set of size n (corresponding to vertices of the graphs Gi). Furthermore,
for each vertex of S′ that is contained in the independent set of size

(

n
2

)

of the
solution selector (i.e., the one obtained by subdividing all edges of the initial
clique on n vertices), we arbitrarily include one of its two neighbors (instead of
the subdivision on, say, {p, q}, we include p or q). Clearly, the size of S is at
most ℓ.

Let us first see that there must be an instance selector where S′ selects
exactly R vertices (recall that the minimum is R). The reason is that the total
size of S′ would otherwise be at least

n · (R+ 1) + n ·mt ·R = n ·R + n ·mt ·R+ n > n · R+ n ·mt ·R + ℓ = ℓ′,

since ℓ < n. Similarly it can be seen that for each edge of any graph Gi there
must be an edge checker where S′ picked the minimum number of R vertices.
For the following, let us focus on one instance selector and one edge checker per
edge and instance where S′ selected the minimum of R vertices.

Let us first consider the instance selector. Since there are R triangles in the
selector, S′ must contain one vertex of each. We choose an integer i via its binary
expansion: for all j ∈ [R], if S′ does not include the 0-vertex of triangle Tj of
the selector, then we let the jth bit be 0; otherwise we let it be 1.

We claim that S is a vertex cover of Gi, i.e., that xi is yes. Let {p, q}
be an edge of Gi and consider the edge checker (i.e., one where S′ selected
exactly R vertices) corresponding to this edge. By choice of i, for each j ∈ [R]
the corresponding vertex of triangle Tj in the edge checker is present in G′ −S′.
Hence, for each j ∈ [R], there is a triangle formed by bvj , cvj , and a vertex of Tj ,
but S′ does not contain the latter. Hence S′ must contain bvj or cvj (in fact
it must be bvj on account of the triangle at vj). Therefore, S

′ cannot contain
any of the vertices v1, . . . , vR. This implies that the path through these vertices
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together with p, q, and the subdivision of the former edge {p, q} would give an
odd cycle, and the only free option is that S′ contains p, q, or the subdividing
vertex. In any case, S must contain p or q, proving that it is indeed a vertex
cover of Gi. ⊓⊔

Theorem 8. (cluster)-oct does not admit a polynomial kernelization unless
NP ⊆ coNP/poly.

Definition 11 ([BJK11]). The K4-in-a-box graph BK4
(see Figure 2) is the

graph obtained from a complete graph on 4 vertices {a, b, c, d} by adding a new
degree-2 vertex v for each pair {a, b}, {b, c}, {c, d}, {d, a} such that v is adjacent
to both vertices of the pair. The vertices {a, c} are the 0-labeled terminals of the
graph, and the vertices {b, d} are the 1-labeled terminals of the graph.

0 0

1

1

Fig. 2. The K4-in-a-box graph BK4
with labeled vertices.

Proof (Theorem 8). We give a cross-composition from (unparameterized) oct.
An instance x of oct consists of a graph G = (V,E) and an integer ℓ, asking
whether G has an odd cycle transversal of size at most ℓ. We use the same
equivalence relation R as in the proof of Theorem 7; w.l.o.g. ℓ < |V |.

Let x1, . . . , xt be t instances of oct that are equivalent under R. W.l.o.g. we
assume t = 2R (otherwise we could copy one instance sufficiently often, at most
doubling the input size). Each instance xi asks whether a graph Gi on n vertices
and m edges has an odd cycle transversal of size at most ℓ.

Consider a graphGi before and after subdividing each edge with two vertices,
i.e., with a path P2 of two vertices. It is easy to see that the subdivisions do not
change whether or not Gi has an odd cycle transversal of size at most ℓ, since
they do not change the parity of any path (i.e., the number of edges on any
path is multiplied by three). In a slight abuse of notation we use G1, . . . , Gt to
denote the graphs obtained after the subdivision. Each consists of m P2 as well
as of an independent set of n vertices; we assume both the P2’s as well as the n
independent vertices to be numbered from 1 to m and from 1 to n, respectively
(in each graph Gi).

We will now construct a graph G′ for the cross-composed instance, starting
from a disjoint union of the graphs G1, . . . , Gt:
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– There are t P2’s in G′ for any given number i ∈ [m] at this point. We identify
all of them to a single P2, for each i ∈ [m], and obtain m P2’s.

– We remark that all of the numbered vertices are only adjacent to P2’s at this
point (due to the subdivisions). For each i ∈ [n] we turn all t vertices with
number i into a clique by adding all possible edges between them. We add
one universal vertex to each of these n cliques (i.e., a new vertex adjacent
to all vertices of the clique). Thus, the independent set of all tn numbered
vertices is turned into a disjoint union of n cliques each containing 1 vertex
from each graph Gi plus one new vertex (i.e., size t+ 1). Note that each Gi

is still an induced subgraph of G′.
– For each p ∈ [R] we add n copies of the BK4

graph. For α ∈ {0, 1}, we
connect the α-labeled terminals of each copy to all vertices of the cliques
which correspond to a graph Gi such that the pth position in the binary
expansion of i is α.

We let x′ := (G′, ℓ′, X) denote the cross-composed instance. The set X denotes
the set of all vertices in the m P2’s as well as all vertices of the n · R copies of
the BK4

graph. Clearly G′ − X is a cluster graph since it consists only of the
disjoint union of the n cliques. The size of X , and hence the parameter value
of x′, is equal to 2m+ 8nR, i.e., polynomial in maxi |xi|+ log t. The instance x′

asks for an odd cycle transversal of G′ of size at most ℓ′ := (t− 1) · n+2nR+ ℓ.
We will now show that x′ is yes if and only if at least one of the instances xi

is yes.
(⇒) Assuming that xi is yes, let S be an odd cycle transversal for Gi of

size at most ℓ. We choose an odd cycle transversal S′ of G′. First, we add the at
most ℓ vertices of S (asGi is a subgraph of G′). Next, we add the (t−1)·n vertices
of the n cliques to S′ which correspond to graphs Gi′ with i′ ∈ [t]\ {i}. Then we
add 2 vertices from each BK4

graph to S′, matching the binary expansion of i.
The total size of S′ is at most (t− 1) · n+ 2nR+ ℓ.

We argue that G′−S′ must be bipartite. Let us first consider the BK4
graphs

in G′−S′. In G′ a BK4
graph has neighbors in the n cliques; they are connected

either to its 0- or its 1-terminals. The set S′ contains all those vertices, except for
some that correspond to Gi. However, S

′ was selected to contain exactly those
terminals of the BK4

graphs that are adjacent to the vertices which correspond
to Gi. Hence, in G′ − S′ the remainders of the BK4

graphs form (bipartite)
connected components of their own (bipartiteness after deletion of either 0- or 1-
terminals can be easily checked).

Now let us consider the other components of G′−S′. There is a copy of Gi−S
and there are the vertices which were added to the n cliques as universal vertices
(1 per clique), but the latter are adjacent to at most one vertex of Gi −S, since
they are only adjacent to vertices of their clique and S′ deletes all vertices of
other graphs Gj from G′. Hence any 2-coloring of Gi−S can be easily extended
to G′ − S′, implying that x′ is a yes-instance.

(⇐) Assuming that x′ is yes, let S′ be an odd cycle transversal of G′ of
size at most ℓ′ = (t − 1) · n+ 2nR+ ℓ. Clearly, S′ must contain at least (t − 1)
vertices from each of the n cliques, since each of them contains t + 1 vertices.
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Similarly, it must contain at least 2 vertices of each BK4
graph, since it contains

two vertex-disjoint triangles.
If S′ would contain more than 2 vertices from all n copies of the BK4

graph
corresponding to some position p ∈ [R] then the total size of S′ would exceed ℓ′:

|S′| ≥ 3n+2n · (R− 1)+ (t− 1) ·n= 2nR+(t− 1) ·n+n > 2nR+(t− 1) ·n+ ℓ,

since ℓ < n. Let us consider one BK4
and the selection of S′ for each p ∈ [R].

It can be easily checked that there are exactly two odd cycle transversals of size
two for BK4

, namely choosing either the 0- or the 1-terminals. Let i ∈ [t] such
that the pths position of its binary expansion matches the choice of terminals
of S′ in the corresponding BK4

. We claim that xi is yes.
Let v be a vertex in one of the cliques that corresponds to a graph Gi′

with i′ ∈ [t] \ {i}. Let p ∈ [R] such that the binary expansions of i and i′ differ
in position p. Thus there must be a BK4

graph corresponding to position p in
which S′ picked exactly the terminals that match i, and therefore the other two
terminals are present in G′−S′. Since those two terminals form a triangle with v
in G′, we may conclude that S′ contains v.

Hence, in G′ − S′ there are no vertices left that correspond to graphs other
than Gi. Let us consider the induced copy of Gi in G′ (as per construction) and
the set of vertices S in which S′ intersects it. Clearly, the induced copy does not
contain the BK4

graphs and also does not contain the (t− 1) ·n vertices of other
graphs Gi′ . Therefore, since S′ intersects those other parts of G′ in a total of at
least (t−1) ·n+2nR vertices, the set S contains at most ℓ vertices. Since G′−S′

is bipartite, the same must be true for Gi − S, which implies that xi is yes. ⊓⊔

Theorem 9. (co-cluster)-oct does not admit a polynomial kernelization un-
less NP ⊆ coNP/poly.

Proof. We give a cross-composition from (unparameterized) oct. An instance x
of oct consists of a graph G = (V,E) and an integer ℓ, asking whether G has an
odd cycle transversal of size at most ℓ. We use essentially the same equivalence
relation R as in the proof of Theorem 7, except that w.l.o.g. ℓ < |V | − 2 (since
instances with ℓ ≥ |V | − 2 are trivially yes).

Let x1, . . . , xt be t instances of oct that are equivalent under R. Each in-
stance xi asks whether a graph Gi on n vertices and m edges has an odd cycle
transversal of size at most ℓ. Again we assume that t = 2R.

Consider a graphGi before and after subdividing each edge with two vertices,
i.e., with a path P2 of two vertices. It is easy to see that the subdivisions do not
change whether or not Gi has an odd cycle transversal of size at most ℓ, since
they do not change the parity of any path (i.e., the number of edges on any
path is multiplied by three). In a slight abuse of notation we use G1, . . . , Gt to
denote the graphs obtained after the subdivision. Each consists of m P2 as well
as of an independent set of n vertices; we assume both the P2’s as well as the n
independent vertices to be numbered from 1 to m and from 1 to n, respectively
(in each graph Gi). For i ∈ [t] we let Ii denote the independent set on the n
numbered vertices of Gi.
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We will now construct a graph G′ for the cross-composed instance, starting
from a disjoint union of the graphs G1, . . . , Gt:

– There are t P2’s in G′ for any given number i ∈ [m] at this point. We identify
all of them to a single P2, for each i ∈ [m], and obtain m P2’s.

– It can be easily seen that
⋃

i Ii is an independent set in G′. We add all
edges {u, v} for any u ∈ Ii and v ∈ Ij with i 6= j. Thus G′ now contains I1⊕
. . .⊕ It, i.e., the join of the t independent sets. Note that each Gi is still an
induced subgraph of G′.

– We add vertices vp,i,j , with p ∈ [R] and i, j ∈ [n], which we connect to the
independent sets I1, . . . , It as follows:
• We add an edge to the ith vertex of the rth independent set if the pth
bit in the binary expansion of r is zero.

• We add an edge to the jth vertex of the rth independent set if the pth
bit in the binary expansion of r is one.

We note that each such vertex vp,i,j has exactly t neighbors: one in each
independent set of the co-cluster.
We make a total of 2n copies of vp,i,j for each p ∈ [R] and i, j ∈ [n].

Let X be a subset of the vertices of G′ containing the 2m vertices of the m P2’s
as well as the 2n · Rn2 copies of vertices vp,i,j . Clearly, G

′ − X is a co-cluster
since it only contains the join of the t independent sets. We let ℓ′ := (t−1) ·n+ ℓ
and define the cross-composed instance as x′ := (G′, ℓ′, X). It is easy to see that
the parameter value, i.e., the size of X , is polynomial in maxi |xi| + log t and
that the construction can be performed in polynomial time.

For correctness of the cross-composition we will now show that (G′, ℓ′, X) is
yes if and only if one of the instances (Gi, ℓ) is yes:

(⇐) Let i ∈ [t] such that (Gi, ℓ) is yes and let S be an odd cycle transversal
for Gi of size at most ℓ. To get an odd cycle transversal S′ for G′ we add to S all
vertices of the independent sets Ij for j 6= i. The graph remaining after deletion
of

⋃

j 6=i Ij contains a copy of Gi plus the vertices vp,i,j but the latter have only
one neighbor in Gi (since they have exactly one per independent set). Thus any
2-coloring of Gi − S can be extended to G′ − S′, and hence S′ = S ∪

⋃

j 6=i Ij
is an odd cycle transversal of G′ of size at most (t − 1) · n + ℓ. This implies
that x′ = (G′, ℓ′, X) is yes too.

(⇒) Let S′ be an odd cycle transversal of G′ of size at most ℓ′ = (t−1)·n+ℓ.
We first observe that S′ must contain all vertices of all but at most two of the
independent sets Ii, since any three vertices from different independent sets
induce a triangle. Therefore, S′ cannot contain all 2n copies of any vp,i,j vertex,
since then its total size would be at least t ·n > (t−1) ·n+ ℓ; taking into account
the 2n copies and the at least (t− 2) · n vertices of the (t− 2) independent sets
that it contains.

Now, consider any two vertices say u and v from different independent sets,
say Ir and Is, with r 6= s. Let p be a bit position where r and s differ. Hence
there are integers i and j such that vp,i,j vertices are adjacent to u and v in G′.
Since S′ cannot contain all vp,i,j vertices, it must contain at least one of u and v;
as u, v, and vp,i,j induce a triangle. Thus S′ must contain all vertices from at
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least (t − 1) independent sets, say from all but Ij . Restricting S′ to Ij and
the P2-vertices we must obtain an odd cycle transversal S for (the subdivided
version of) Gj . Clearly, S is of size at most ℓ since we remove at least (t− 1) · n
vertices from S′ to get it. Thus (Gj , ℓ) is a yes-instance. ⊓⊔

Theorem 10. Weighted Odd Cycle Transversal Parameterized by

the size of a Vertex Cover does not admit a polynomial kernelization unless
NP ⊆ coNP/poly.

Proof (sketch.). The proof is similar to the one for Theorem 9. We will only
sketch the construction and mention the main idea of how the weights are used.
As for Theorem 9 the proof goes by cross-composition from oct. We use the
same polynomial equivalence relation, so let the input for the cross-composition
be instances (G1, ℓ), . . . , (Gt, ℓ) where each Gi is a graph with n vertices and m
edges. Further, for ease of presentation, we assume all graphs to already have
passed the subdivision step, where each edge is subdivided by a P2 (see the proof
of Theorem 9). Finally w.l.o.g. t is a power of two.

The construction is as follows, starting from a graph G′ that is a disjoint
union of the graphs G1 through Gt. Recall that each graph Gi consists of an
independent set, denoted by Ii, as well as m non-adjacent P2’s, numbered arbi-
trarily from 1 to m.

– First, we identify all P2’s of the same number into one. We retain a graph
with the t independent sets I1, . . . , It as well as m non-adjacent P2’s. Note
that all the information about the graphs Gi now lies in the adjacency of
the independent sets to the P2’s. We also observe that each Gi (with the P2

subdivisions made) is an induced subgraph of our current graph G′ (the
identification does not change that). Thus, the final piece is an instance
selector which forces the deletion of all but one independent set.

– Recall the graph BK4
(see Definition 11) with the two pairs of vertices la-

beled 0 and 1 respectively. We add log t copies of it to our graph and connect
the labeled vertices to all independent set vertices according to the binary
expansions of their numbers (each BK4

corresponds to one of the log t bit po-
sitions). Recall that in each BK4

already two vertex deletions are necessary
to remove all odd cycles (delete the 0 or the 1 labeled vertices).

Giving the vertices of the BK4
graphs a very high weight w and allowing a

budget of ℓ′ = 2w log t + (t − 1)n + ℓ we force that in any solution of cost at
most ℓ′ exactly 2 vertices can be deleted in each BK4

; the cost is 2w log t. By
construction there will be exactly one independent set whose number i ∈ [t] is
such that it is disconnected from the remains of all BK4

graphs, i.e., such that
exactly the adjacent labeled vertices in the BK4

graphs were deleted. All vertices
of other independent sets are adjacent to two labeled vertices in at least one BK4

graph which gives rise to a triangle. As the budget prohibits the deletion of more
labeled vertices, all those vertices of the independent sets must be deleted; this
costs (t− 1)n. What is left is a copy of one graph Gi with subdivided edges plus
the (disconnected) bipartite remainders of the BK4

graphs. Thus the remaining
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budget of ℓ must go into an odd cycle transversal for that graph Gi. Clearly,
making w larger than (t−1)n+ℓ, e.g., w = tn is sufficient for the above to work. It
is straightforward to construct an odd cycle transversal for G′ at cost at most ℓ′

given a transversal of size at most ℓ for one graph Gi. Finally, the set X defined
to contain the 2m vertices of the (identified) P2’s as well as the 8 log t vertices
of the BK4

graphs can be given as a vertex cover for G′; its size is bounded by
a polynomial in the maximum instance size (larger than n + m) and log t, as
required. Clearly, polynomial time is enough to perform the construction. ⊓⊔

E Bibliography for appendix

In this section we list the bibliographic information for items which were ref-
erenced in the appendix. Since these will not be present in the camera-ready
version, we do not want to sacrifice space for these references in the alloted 12
pages.
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