Skip to main content

Sparse Solutions of Sparse Linear Systems: Fixed-Parameter Tractability and an Application of Complex Group Testing

  • Conference paper
Parameterized and Exact Computation (IPEC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7112))

Included in the following conference series:

Abstract

A vector with at most k nonzeros is called k-sparse. We show that enumerating the support vectors of k-sparse solutions to a system Ax = b of r-sparse linear equations (i.e., where the rows of A are r-sparse) is fixed-parameter tractable (FPT) in the combined parameter r,k. For r = 2 the problem is simple. For 0,1-matrices A we can also compute an O(rk r) kernel. For systems of linear inequalities we get an FPT result in the combined parameter d,k, where d is the total number of minimal solutions. This is achieved by interpeting the problem as a case of group testing in the complex model. The problems stem from the reconstruction of chemical mixtures by observable reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations. IEEE Trans. on Info. Theory 54, 4813–4820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candés, E.J., Wakin, M.B.: An Introduction to Compressive Sampling. IEEE Signal Proc. Magazine, 21–30 (March 2008)

    Google Scholar 

  3. Chen, T., Hwang, F.K.: A Competitive Algorithm in Searching for Many Edges in a Hypergraph. Discr. Appl. Math. 155, 566–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damaschke, P.: Parameterized Enumeration, Transversals, and Imperfect Phylogeny Reconstruction. Theor. Comput. Sci. 351, 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Damaschke, P., Molokov, L.: The Union of Minimal Hitting Sets: Parameterized Combinatorial Bounds and Counting. J. Discr. Algor. 7, 391–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D.L., Tanner, J.: Sparse Nonnegative Solution of Underdetermined Linear Equations by Linear Programming. Proc. Nat. Acad. of Sciences 102, 9446–9451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dost, B., Bandeira, N., Li, X., Shen, Z., Briggs, S., Bafna, V.: Shared Peptides in Mass Spectrometry Based Protein Quantification. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 356–371. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Fernau, H.: Parameterized Algorithms for d-Hitting Set: The Weighted Case. Theor. Comput. Sci. 411, 1698–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernau, H.: A Top-Down Approach to Search-Trees: Improved Algorithmics for 3-Hitting Set. Algorithmica 57, 97–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  11. Johann, P.: A Group Testing Problem for Graphs with Several Defective Edges. Discr. Appl. Math. 117, 99–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lacroix, V., Sammeth, M., Guigo, R., Bergeron, A.: Exact Transcriptome Reconstruction from Short Sequence Reads. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 50–63. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Lai, M.J.: On Sparse Solutions of Underdetermined Linear Systems. J. Concr. Applic. Math. 8, 296–327 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Natarajan, B.K.: Sparse Approximate Solutions to Linear Systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nesvizhskii, A.I., Aebersold, R.: Interpretation of Shotgun Proteomic Data: The Protein Inference Problem. Mol. Cellular Proteomics 4, 1419–1440 (2005)

    Article  Google Scholar 

  16. Triesch, E.: A Group Testing Problem for Hypergraphs of Bounded Rank. Discr. Appl. Math. 66, 185–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, M., Xu, W., Tang, A.: A Unique “Nonnegative” Solution to an Underdetermined System: From Vectors to Matrices. arXiv:1003.4778v1 (2010) (manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damaschke, P. (2012). Sparse Solutions of Sparse Linear Systems: Fixed-Parameter Tractability and an Application of Complex Group Testing. In: Marx, D., Rossmanith, P. (eds) Parameterized and Exact Computation. IPEC 2011. Lecture Notes in Computer Science, vol 7112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28050-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28050-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28049-8

  • Online ISBN: 978-3-642-28050-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics