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Abstract. In this paper we propose actor-networks as a formal model of
computation in heterogenous networks of computers, humans and their
devices, where these new procedures run; and we introduce Procedure
Derivation Logic (PDL) as a framework for reasoning about security
in actor-networks, as an extension of our previous Protocol Derivation
Logic. Both formalisms are geared towards graphic reasoning. We illus-
trate its workings by analysing a popular form of two-factor authentica-
tion.

1 Introduction

Over the last few years, almost without being aware of it, we have been seeing a
marked change in our view computation and networking is. We are moving be-
yond networks of computers communicating on channels constructed out of wires
and routers to networks of human beings and various types of devices communi-
cating over multiple channels: wired, wireless, cellular, as well as human-usable
channels based on voice and vision.

This change has been particularly relevant to security, and to the development
and analysis of security protocols. Over the past twenty years or so, there has
been extensive, and often influential work on the development of formal methods
for the analysis of security protocols. One of the secrets of the success of this
work is that it has been based on a simple but powerful model, first introduced
in the late thirty years ago by Dolev and Yao [14], in which abstract principals
communicate across a network controlled by a hostile intruder. This model has
made it possible to develop both model checkers for determining whether or not
attacks are possible, and logical systems for determining what a principal can
conclude as a result of participating in a protocol. However, this network model
is harder to apply in a heterogeneous networks using multiple types of channels.

Our goal is to contribute towards a formal framework for for reliable and prac-
tical reasoning about security of computation and communication in network
engineering. Towards this goal, we draw our formal models from the informal
reasoning practices, and attempt to make them mathematically precise, while
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trying to keep them as succinct and intuitive as possible. The main feature of
our formalism is that it provides support for diagrammatically based security
proofs, which we illustrate by examples in this paper. Our approach is intended
to capture what we consider the two most salient concepts for security in this
new paradigm for computing: the coalitions that are formed between humans
and devices in order to enable secure computation and communication in these
emerging networks, which we describe via the use of actor-networks, a concept
borrowed from sociology, and the orchestration of different types of communi-
cation along different types of channels, which we describe by generalizing the
notion of protocol to that of a procedure. These ideas are described in more detail
below.

Actor-Networks. Networks have become an immensely popular model of com-
putation across sciences, from physics and biology, to sociology and computer
science [15,33,31]. Actor-networks [25] are a particularly influential paradigm in
sociology, emphasizing and analyzing the ways in which the interactions between
people and objects, as equal factors, drive social processes, in the sense that most
people cannot fly without an airplane; but that most airplanes also cannot fly
without people. Our goal in the present paper is to formalize and analyze some
security processes in networks of people, computers, and the ever expanding
range of devices and objects used for communication and networking, blurring
many boundaries. The idea that people, computers, and objects are equal ac-
tors in such networks imposed itself on us, through the need for a usable formal
model, even before we had heard of the sociological actor-network theory. After
we heard of it, we took the liberty of adopting the name actor-network for a cru-
cial component of our mathematical model, since it conveniently captures many
relevant ideas. While the originators of actor-network theory never proposed a
formal model, we believe that the tasks, methods and logics that we propose are
not alien to the spirit of their theory. In fact, we contend that computation and
society have pervaded each other to the point where computer science and social
sciences already share their subject.

Procedures. In computer programs, frequently used sequences of operations
are encapsulated into procedures, also called routines. A procedure can be called
from any point in the program, and thus supports reuse of code.

In computer networks, frequently used sequences of operations are specified
and implemented as network protocols, or as cryptographic protocols. So proto-
cols are, in a sense, network procedures. Beyond computer networks, there are
now hybrid networks, where besides computers with their end-to-end links, there
may be diverse devices, with their heterogenous communication channels, cel-
lular, short range etc. Online banking and other services are nowadays usually
secured by two-factor and multi-factor authentication, combining passwords with
smart cards, or cell phones. A vast area of multi-channel and out-of-band pro-
tocols opens up, together with the web service choreographies and orchestrations ;
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and we have only scratched its surface. And then there are of course also so-
cial networks, where people congregate with their phones, their cameras and
their smiling faces, and overlay the wide spectrum of their social channels over
computer networks and hybrid networks. Many sequences of frequently used
operations within these mixed communication structures have evolved. This is
what we call actor-network procedures.

Outline of the Paper. The remainder of the paper is organized as followed. In
Sec. 2, we give an overview of related work, in particular the work that has most
contributed to our own. Sec. 3 introduces the formal model of actor-networks.
Sec 4 explains how actor-networks compute, and introduces the formalisms to
represent that computation, all the way to actor-network procedures. Sec. 5
presents Procedure Derivation Logic (PDL) as a method for reasoning about
actor-network procedures. In Sec. 6 we provide the first case studies using PDL:
we analyze the two-factor authentication in online banking. Sec. 7 contains a
discussion of the results and the future work.

2 Related Work

In social and computational networks, procedures come in many flavors, and have
been studied from many angles. Besides cryptographic protocols, used to secure
end-to-end networks, in hybrid networks we increasingly rely on multi-channel
protocols [44], including device pairing [24]. In web services, standard proce-
dures come in two flavors: choreographies and orchestrations [41]. There are, of
course, also social protocols and social procedures, which were developed and
studied first, although not formally modeled. As social networks are increasingly
supported by electronic networks, and on the Web, social protocols and cryp-
tographic protocols often blend together. Some researchers have suggested that
the notion of protocol should be extended to study such combinations [6,19,23].
On the other side, the advent of ubiquitous computing has led to extensive, care-
ful, but largely informal analyses of the problems, e.g., of device pairing, and
of security interactions of using multiple channel types [44,22,32]. One family of
device pairing proposals has been systematically analyzed in the computational
model in [45,34,26,27].

There is a substantial and extremely successful body of research on the for-
mal specification and verification of security protocols. These can be roughly be
divided into work in the cryptographic model, which directly formalizes cryp-
tographic reasoning, and the symbolic model, which represents data and com-
putations symbolically as terms and operators in a term algebra. The symbolic
approaches, in turn, can be divided into two approaches. The first relies on
model checking, which is used to implement exhaustive search for attacks. This
often comes together with proofs that exploration of a certain finite search space
without finding an attack guarantees security. See [4] for a history and survey of
model checking security protocols. The second builds on logical systems that are
used to derive what a participant in a protocol can conclude after the completion
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of a run. The earliest logical system for cryptographic protocol analysis was the
Burrows-Abadi-Needham logic [7]. A number of successful tools and logics fol-
lowed. More recent work that has concentrated applying logical reconstructions
includes the Cryptographic Protocol Shape Analyzer (CPSA) [13], the Proto-
col Composition Logic (described in more detail below), and our own Protocol
Derivation Logic, which we use as the basis for logical framework developed in
this paper.

It is well understood that model checking, by producing explicit attacks, can
be very useful in aiding understanding of a protocol and where it has gone wrong.
What seems to be less well appreciated is that the use of logical reconstructions
can also give insight, but in a different way, since they give a clearer picture of the
assumptions that are necessary for the security of a protocol, as well as the ways
in which various pieces of the protocol contribute to its security. When combined
with a diagrammatic reasoning, this can give considerable insight into the struc-
ture and applicability of a protocol. This is very important, since protocols are
often reused and redesigned for different environments, with different security
assumptions and types of communication channels. This approach of combining
logical reconstruction with diagrammatic reasoning is the one we take in this
paper.

Our formal model, as well as the basis for its diagrammatic support, is derived
from the strand space model [20]. Among its many salient features, the conve-
nient diagrammatic protocol descriptions of strand spaces has been an important
reason for their wide acceptance and popularity. It is important to note that the
strand space diagrams are not just an intuitive illustration, but that they are
formal objects, corresponding to precisely defined components of the theory,
while on the other hand closely resembling the informal “arrows-and-messages”
protocol depictions, found in almost every research paper and on almost every
white board where a protocol is discussed.

Protocol Composition Logic (PCL) was, at least in its early versions
[18,12,10,17,11], an attempt to enrich the strand model with a variable bind-
ing and scoping mechanism, making it into a process calculus with a formal
handle on data flows, which would thus allow attaching Floyd-Hoare-style anno-
tations to protocol executions, along the lines of [39,40]. This was necessary for
incremental refinement of protocol specifications, and for truly compositional,
and thus scalable protocol analyses, which were the ultimate goal of the project.
However, less attention was paid to the purely diagrammatic contribution of the
strand space model.

Protocol Derivation Logic (PDL) has been an ongoing effort [29,8,36,2,30,37]
towards a scalable, i.e. incremental protocol formalism, allowing composition and
refinement like PCL, but equipped with an intuitive and succinct diagrammatic
notation, like strand spaces. The belief that these two requirements can be rec-
onciled is based on the observation that the reasoning of protocol participants is
concerned mostly with the order of events in protocol executions. It follows that
the protocol executions and their logical annotations both actually describe the
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same structures, which can be viewed as partially ordered multisets [43], and
manipulated within the same diagrammatic language. This has been the guiding
idea of PDL. Several case studies of standard protocols, and the taxonomies of
the corresponding protocol suites, have been presented in [29,8,36,2]. An appli-
cation to a family of distance bounding protocols has been presented in [30]; and
an extension supporting the probabilistic reasoning necessary for another such
family has been proposed in [37]. In the present paper, we propose the broadest
view of PDL so far — which should here be read as Procedure Derivation Logic.
Since cryptographic protocols are usually construed as the tools of computer
security, we use the term procedure here to denote a frequently used pattern
of operations in a modern network, which may include computers and software
agents, but also humans, as well as various kinds of communication devices.
Procedure Derivation Logic is thus our attempt to address the need for formal
reasoning about the pervasive security problems, that arise at the interfaces of
cyber space with physical and social spaces, as discussed in [38].

It should be mentioned that the mosaic of protocol logics, which we are thus
attempting to expand beyond protocols, is, in a certain sense, conterbalanced
by the more homogenous (if not entirely monolithic) world of computational
modeling. Following the seminal work in [1], it has become customary to verify
that every symbolic model, underlying a protocol logic, is sound when interpreted
computationally. Such interpretations have led to many interesting results and
useful tools [5,3,9]. It should be clear, however, that the standard computational
model does not allow modeling many of the physical or social features that we
are trying to capture in procedures. Since our execution model includes network
nodes that represent, e.g., humans, and the visual channels through which these
humans can look at each other, it does not seem reasonable to try to interpret
it computationally. And a model can, of course, only be computationally sound,
or unsound, relative to a specific computational interpretation. Without such an
interpretation, the question of computational soundness cannot be stated.

3 Actor-Network Model

We model network computation in terms of (1) computational agents, some of
them controlled by various parties, others available as resources, and (2) commu-
nication channels between the agents, supporting different types of information
flows.

3.1 Formalizing Actor-Networks

Definition 3.1. An actor-network consists of the following sets: (1) identities,
or principals J = {A,B, . . .}, (2) nodes N = {M,N, . . .}, (3) configurations
P = {P,Q, . . .}, where a configuration can be a finite set of nodes, or a finite
set of configurations; (4) channels C = {f, g, . . .}, and (5) channel types Θ =

{τ, ς, . . .} given with the structure Θ
ϑ←− C

δ

⇒
�
P c©
⇀ J where the partial map
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c© : P ⇀ J tells which principals control which configurations, the pair of maps
δ, � : C → P assign to each channel f an entry δf and an exit �f , and the map
ϑ : C → Θ assigns to each channel a type.

An actor is an element of a configuration.

Notation. We denote by NB a node N controlled by the principal c©N = B. We
write g = (P

τ−→ NB) for a channel g of type ϑg = τ , with the entry δg = P , and
with the exit �g = N controlled by c©N = B. Since there is usually at most one
channel of a given type between two given configurations, we usually omit the
label g, and write just P

τ−→ NB to denote this channel.

3.2 Example: An Actor-Network for Two Factor Authentication

To mitigate phishing attacks, some online banks have rolled out two factor au-
thentication. This means that they do not just verify that the user knows a
password, but also something else — which is the second authentication factor.
This second factor often requires some additional network resources, besides the
internet link between the customer and the bank. This is the first, quite familiar
step beyond simple cyber networks.

Some banks authenticate that the user is in possession of her smart card.
The underlying actor-network is on Fig. 1. The user Alice controls her computer
CA and her smart card SA. She is also given a portable smart card reader R.
She inserts the card in the reader to form the configuration Q. The reader is
available to Alice, but any other reader would do as well. Configured into Q, the
smart card and the reader verify that Alice knows the PIN, and then generates
the login credentials, which Alice copies from R’s screen to her computer CA’s
keyboard, which forwards it to bank Bob’s computer CB . The details of the
authentication procedure will be analyzed later.

In summary, the network thus consists of principals J = {A,B}, N =
{IA, CA, SA, R, CB}; configurations P = N ∪ {Q}, where Q = {SA, R}, and
the following six channels: (1 and 2) cyber channels CA � CB between Alice’s
and Bank’s computers, (3) a visual channel CA → IA from Alice’s computer to
her human IA, (4) a keyboard IA → CA from Alice’s human to her computer,
(5) a visual channel R → IA from the smart card reader to Alice’s human, and
(6) a keyboard IA → R from Alice’s human to the card reader.

IA CA

R

CB

Q

vis

key

A

cyb

cyb

vis

SA

B
key

Fig. 1. A pervasive network: Online banking with a smart card reader
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4 Actor-Network Processes

4.1 Computation and Communication

Computation in a network consists of events, which are localized at nodes or
configurations. An event that is controlled by a principal is an action.

Communication in a network consists of information flows along the channels.
Each flow corresponds to a pair of events: (1) a write event at the entry of the
channel, and (2) a read event at the exit of the channel. There are two kinds of
flows: (1) messages, which consist of a send action at the entry of the channel,
and a receive coaction at the exit, and (2) sources, which consist of an sample
action at the exit, and a emit coaction at the entry.

Besides transferring information from one configuration to another, the flows
also synchronize the events that take place at different localities, because: every
receive coaction must be preceded by a corresponding send action, and every
sample action must be preceded by a corresponding emit coaction.

If a source has not been emitted to anywhere, then there is nothing to sample,
and no sampling of that source can occur. If a message has not been sent, then
the corresponding receive event cannot occur. So when I receive a message, then
I know that it must have been sent previously by someone; and when I sample
a source, then I know that someone must have emited to this source. That is
how I draw conclusions about non-local events from the observations of my own
local actions. This is formalized in Sec. 5.2.

4.2 Formalizing Data as Terms

Each flow carries some data, which contain information. As is standard in the
symbolic protocol model, we represent this as terms in an algebra. Recall that
an algebraic theory is a pair (O,E), where O is a set of finitary operations (given
as symbols with arities), and E a set of well-formed equations (i.e. where each
operation has a correct number of arguments) [21].

Definition 4.1. An algebraic theory T = (O,E) is called a data theory if O
includes a binary pairing (−,−) operation, and the unary operations π1 and π2
such that E contains the equations π1(u, v) = u, π2(u, v) = v, and ((x, y) , z) =
(x, (y, z)). A data algebra is a polynomial extension T [X ] of a T-algebra T .
Function notation. When no confusion seems likely, we elide the function appli-
cations to concatenation, and write f.x instead of f(x).When no confusion is
likely, we even elide the dot from the concatenation and simply write fx instead
of f.x, or f(x).

Random values are represented by indeterminates. A polynomial extension T [X ]
is the free T-algebra generated by adjoining a set of indeterminates X to a T-
algebra T [21, §8]. The elements x, y, z . . . of X are used to represent nonces and
other randomly generated values.

Easy subterms. We assume that every data algebra comes equipped with the
easy subterm relation �. The idea is that that s � t implies that s is a subterm
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of t such that every principal who knows t also knows s. In other words, the
views ΓA are lower closed under �, as explained in [36]. This is in contrast with
hard subterms, which cannot be extracted: e.g., the plaintext m and the key k
are hard subterms of the encryption E.k.m.

4.3 Formalizing Events and Processes

In this section we define processes, the events that processes engage in, and the
ordering of events within a process.

An event or action is generally written in the form a[t] where a is the event
identifier, and t is the term on which the event may depend. When an event does
not depend on data, the term t is taken to be a fixed constant t = �, and we
often abbreviate a[�] to a.

The most important events for our analyses are the action-coaction couples
send-receive, and sample-emit, for which we introduce special notations: send
〈· t ·〉, receive (· t ·), and emit 〈: t :〉, sample (: t :). Generically, we write 〈 t 〉 for a
write action, which can be either 〈· t ·〉 or 〈: t :〉, and ( t ) for a read action, which
can be either (· t ·) or (: t :). Another often used action is ν[x] for the generation of
a random value. It could also be implemented as sampling a source of randomness
represented as a devoted node. In addition, the nodes are capable of performing
various local operations, which are specified in the definition of the procedure.
For actions, such as 〈· t ·〉 and (: t :), the configuration P must be controlled, i.e.
the partial function c© : N ⇀ J must have a definite value c©P .
Definition 4.2. A process F is a partially ordered multiset of localized events,
i.e. a mapping

F = 〈FE,FP〉 : F→ E× P

where (F,�) is a well-founded partial order, representing the structure time, E
is a family of events, and (P ,⊆) the partial order of configurations, and they
satisfy the requirements that

(a) if FEφ is an action, then c©(FPφ) is well defined, and
(b) if φ � ψ in F then FPφ ⊆ FPψ or FPφ ⊇ FPψ in P.

Notation: The points in time are denoted by events. By abuse of notation, we
usually write a[t]P for φ ∈ F where FEφ = a[t] and FP = P .

(a) if an action takes place at a configuration P , then P is controlled, i.e. c©P
must be well defined, and

(b) if a[t]P � b[s]Q then P ⊆ Q or P ⊇ Q.

Definition 4.3. We say that the term t originates at the point φ ∈ F if φ is
the earliest write of a term containing t. Formally, φ thus satisfies FEφ = 〈 s 〉
where t � s, and FEξ = 〈 s 〉 ∧ t � s =⇒ φ � ξ holds for all events ξ.

Notation: Origination. We extend the notational conventions described above by
denoting by

√
〈〈 t 〉〉P the event φ where the term t originates. The configuration

P is the originator of t.
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4.4 Formalizing Flows, Runs and Procedures

We now extend our discussion to the definition of communication between pro-
cesses, and extend our ordering to events occurring within a procedure as well
as individual processes.

We begin by defining a more general version of channel between two configura-
tions, called a flow channel. A flow channel exists between any two configurations
if a channel exists between any two nodes on the configuration trees. It is called
a flow channel because the information passed along the channel flows upwards
to the configuration as a whole. It is defined formally below.

Definition 4.4. For configurations P,Q ∈ P, a flow channel P
τ−→ Q can be

either (1) a channel P
τ−→ Q, (2) a flow channel P

τ−→ Q′, where Q′ ∈ Q, (3) a

flow channel P ′ τ−→ Q, where P ′ ∈ P , or (4) a flow channel P ′ τ−→ Q′, where
P ′ ∈ P and Q′ ∈ Q.

A flow a[t]P
τ−→ b[s]Q is given by a flow channel P

τ−→ Q, and an interaction
pair a[t], b[s], i.e. a pair where either a[t] = 〈· t ·〉 and b[s] = (· s ·), or a[t] = 〈: t :〉,
and if b[s] = (: s :).

A flow a[t]P
τ−→ b[s]Q is complete if s = t.

Definition 4.5. Let F be a process. A run, or execution EF of F is an assign-
ment for each coaction b[s]Q of a unique flow a[t]P

τ−→ b[s]Q, which is required
to be sound, in the sense that b[s]Q �� a[t]P in F .

A run is complete if all of the flows that it assigns are complete: the terms
that are received are just those that were sent, and the inspections find just those
terms that were submitted.

A run is a pomset extending its process. Setting a[t]P � b[s]Q whenever there is

a flow a[t]P
τ−→ b[s]Q of some type τ makes a run EF into an extension of the

ordering of the process E , as a partially ordered multiset. The pomset EF does
not have to satisfy condition (b) of Def. 4.2 any more. Indeed, the whole point
of running a process is to extend in EF the internal synchronizations, given by
the ordering of F , with the additional external synchronizations.

Definition 4.6. A network procedure L is a pair L = 〈FL, EL〉 where FL is a
process, and EL = {EFL

1 , EFL
2 , EFL

3 . . .} is a set of runs of FL. The elements of
EL are called secure runs. All other runs are insecure. A procedure is said to
be secure if every insecure run can be detected by a given logical derivation from
the observations of a specified set of participants.

Graphic presentations of procedures. To specify a procedure L, we draw a picture
of the pomset F = FL, and then each of its extensions E = EFL

i . Because of
condition (b) of Def.4.2, the events comparable within the ordering of a process
F must happen within a maximal configuration. Therefore, if the diagram of
the partially ordered multiset F is drawn together with the underlying network,
then each component of the comparable events can all be depicted under the
corresponding configuration. We can thus draw the network above the process,
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and place the events occurring at each configuration along the imaginary vertical
lines flowing, say, downwards from it, like in Fig. 3. The additional ordering,
imposed when in a run E the messages get sent and the facts get observed,
usually run across, from configuration to configuration. This ordering can thus
be drawn along the imaginary horizontal lines between the events, or parallel
with the channels of the network. Such message flows can also be seen in Fig. 3.
The dashed lines represent the data sharing within a configuration.

4.5 Examples of Procedures

Challenge Response Authentication Protocols. We begin a familiar spe-
cial case of a procedure: a protocol. A large family of challenge-response authen-
tication protocols is subsumed under the template depicted on Fig. 2. Bob wants
to make sure that Alice is online. It is assumed that Alice and Bob share a secret
kAB, which allows them to define functions cAB and rAB such that

– rABx can be computed from cABx using sAB, but
– rABx cannot be computed from cABx alone, without sAB.

So Bob generates a fresh value x, sends the challenge cABx, and if he receives
the response rABx back, he knows that Alice must have been online, because
she must have originated the response. The idea behind this template has been
discussed, e.g., in [29,8,36,37]. The template instantiates the concrete protocol
components by refining the abstract functions cAB and rAB to concrete imple-
mentations, which satisfy the above requirements: e.g., cAB may be the encryp-
tion by Alice’s public key, and rAB may be the encryption by Bob’s public key,
perhaps with Alice’s identity.

Two-Factor Authentication Procedure. Next we describe the first nontriv-
ial procedure, over the actor-network described in Sec. 3.2. It can be viewed as an

A B

cyb ◦◦

cyb

cABx

◦ ◦r

◦
ν[x]

r:=rABx

Fig. 2. Challenge-Response (CR) protocol template
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extension of the simple challenge-response authentication. There, Bob authen-
ticates Alice using her knowledge of a secret sAB, which they both know. Here
Bob authenticates that that knows a secret pA that Bob does not know, and that
she has a security token SA, in this case a smart card. The secret and the smart
card are the “two factors“. This is the idea of the procedure standardized under
the name Chip Authentication Programme (CAP), analyzed in [16]. The desired
run of the challenge-response option of this procedure is depicted on Fig. 3.

We assume that, prior to the displayed run, Alice the customer identified
herself to Bob the bank, and requested to be authenticated. Bob’s computer
CB then extracts a secret sAB that he shares with Alice. This time, though, the
shared secret is too long for Alice’s human IA to memorize, so it is is stored in the
smart card SA. Just like in CR protocol above, Bob issues a challenge, such that
the response can only be formed using the secret. So Bob in fact authenticates
the smart card SA. He entrusts the smart card SA with authenticating Alice’s
human IA. This is done using the secret pA shared by IA and SA. The secret is
stored in both nodes. To form the response to Bob’s challenge, Alice forms the
configuration Q by inserting her card SA into the reader R. The configuration
Q requests that IA enters the secret PIN (Personal Identification Number) pA

before it forms the response for Bob. There is no challenge fromQ to IA, and thus
no freshness guarantees in this authentication: anyone who sees IA’s response
can replay it at any time. Indeed, the human IA cannot be expected to perform
computations to authenticate herself: most of us have trouble even submitting
just the static PIN. The solution is thus to have the card-reader configuration Q
computes the response, which Alice relays it to Bob. The old PIN authentication
is left to just convince Q that Alice’s human IA is there: Q tests pA, sent through
the keybord channel from IA to the reader R, coincides with pA stored in the
card SA, and then generates a keyed hash HsABx using the shared secret sAB

and the challenge x. This hash is displayed for Alice on the card reader R as the
response r, which Alice then sends to her computer CA by the keyboard channel,
and further to CB by the cyber channel.

5 Procedure Derivation Logic

5.1 The Language of PDL

A statement of PDL is in the form A : Φ, where A ∈ J is a principal, and Φ is
a predicate asserted by A. The predicate Φ is formed by applying logical con-
nectives to the atomic predicates, which can be (1) a[t]P — meaning “the event
a[t]P happened”, or (2) a[t]P � b[s]Q — meaning “the event a[t]P happened
before b[s]Q”.

5.2 Communication Axioms

The statements of PDL describe the events that happen in a run of a process,
and their order. The basic PDL statements are its axioms, which we describe
next. They are taken to be valid in all runs of all processes. The other valid
statements are derived from them.
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IA CAR CBQ

viskyb cyb

SA

◦◦◦pA, x

pA, x

sAB

r
r

r := HsABx

vis kyb cyb

pA

pA = pA

xx◦

◦◦

◦

◦

◦

◦ ◦ ◦ ◦r r

◦

◦

ν[x]

r=HsABx

Fig. 3. Chip Authentication Program (CAP) procedure

Origination. The origination axioms say that any message that is received must
have been sent, and that any source that is sampleed must have been emitted
to. This has been explained early in Sec.4. More precisely, any principal that
controls a configuration P where a message is received knows that it must have
been sent by someone, no later than it was received; and similarly for a source
that is sampleed. Formally

c©P : (· t ·)P =⇒ ∃X. 〈· t ·〉X � (· t ·)P (orig.m)

c©P : (: t :)P =⇒ ∃X. 〈: t :〉X � (: t :)P (orig.s)

Freshness. In Sec. 4.2 we explained the idea of modeling random values as the
indeterminates in polynomial algebras of messages. The freshness axiom extends
this idea to processes, by requiring that each indeterminate x must be (1) freshly
generated by an action ν[x] before it is used anywhere, and (2) that it can only
be used elsewhere after it has passed in a message or a source. which formally
becomes

c©P : a[t.x]P =⇒ ∃X. ν[x]X � a[t.x]P (fresh.1)

c©P : ¬ν[x]P ∧ a[t.x]P =⇒ ∃X.
(
ν[x]X � 〈〈· x ·〉〉X � ((· x ·))P � a[t.x]P

)

∨
(
ν[x]X � 〈〈: x :〉〉X � ((: x :))P � a[t.x]P

)
(fresh.2)

where, using the easy subterm order � from Sec. 4.2, 〈〈· x ·〉〉X abbreviates
∃t. x � t ∧ 〈· t ·〉X , ((· x ·))X abbreviates ∃t. x � t ∧ (· t ·)X , etc.
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5.3 Authentication Axioms

In our model, there are two forms of authentication: interactions along authentic
channels, and challenge-response authentication.

Interactions along Authentic Channels. An authentic channel allows at
least one of the participants to observe not only the events on their own end
of the channel, but also on the other end. So there are four types of authentic
channels, supporting the following assertions:

c©P : 〈· t ·〉P � (· t ·)Q (auch.m.1)

c©Q : 〈· t ·〉P � (· t ·)Q (auch.m.2)

c©P : 〈: t :〉P � (: t :)Q (auch.p.1)

c©Q : 〈: t :〉P � (: t :)Q (auch.p.2)

Channels that satisfy auch.m.1 or auch.p.1 are called write-authentic; channels
that satisfy auch.m.2 or auch.p.2 are called read -authentic. Here are some exam-
ples from each family:

– (auch.m.1): A keyboard channel guarantees to the sender that the device at
which she is typing is receiving the message

– (auch.m.2): A visual channel used for sending a message allows the receiver
to see the sender.

– (auch.p.1): When my fingerprints are taken, I observe that they are taken,
and can see who is taking them.

– (auch.p.2): Moreover, the person taking my fingerprints also observes that
they are taking my fingerprints.

Besides these assertions about the order of events, some authentic channels sup-
port other assertions. They are usually application specific, and we impose them
as procedure specific axioms.

Challenge-Response Authentication. The challenge-response axiom is in
the form

c©P : LocalP =⇒ GlobalPQ (cr)

where, using the notation from Sec. 5.2

LocalP = ν[x]P �

〈
· cPQx ·

〉
P

�

(
· rPQx ·

)
P

GlobalPQ = ν[x]P �

〈
· cPQx ·

〉
P

�

((
· cPQx ·

))
Q

�

√
〈〈· rPQx ·〉〉Q �

(
· rPQx ·

)
P

Translated into words, (cr) says that the owner c©P of the configuration P
knows that (1) if he generates a fresh x, sends the challenge cPQx, and receives
the response rPQx, then (2) Q must have received a message containing cPQx
after he sent it, and then she must have sent a message containing rPQx before
he received it.
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P

ν[x]

〈· cPQx ·〉

〈〈· rPQx ·〉〉

((· cPQx ·))

(· rPQx ·)

Q

=⇒

Fig. 4. The graphic view of (cr) axiom

P

ν[x]

〈· x ·〉

〈〈· ςP x ·〉〉

((· x ·))

(·u|V Q.u.x ·)

X = Q

1

2

3

4

Fig. 5. Challenge-response using signatures

Using (cr) and certain observations of the local events at P , the principal c©P
can thus draw the conclusions about certain non-local events at Q, which he
cannot directly observe. Fig. 4 depicts this reasoning diagrammatically.

Remark. The (cr) axiom, and the corresponding protocol template, displayed on
Fig. 5, has been one of the crucial tools of the Protocol Derivation Logic, all the
way since [29,8], through to [37].

6 Examples of Reasoning in PDL

6.1 On the Diagrammatic Method

In its diagrammatic form depicted on Fig. 5, axiom (cr) says that the verifier P ,
observing the local path on the left, can derive the path around the non-local
actions on the right. This pattern of reasoning resembles the categorical prac-
tice of diagram chasing [28,35]. Categorical diagrams are succinct encodings of
lengthy sequences of equations. Just like the two sides of the implication in (cr)
correspond to two paths around Fig. 5, the two sides of an equation are repre-
sented in a categorical diagram as two paths around a face of that diagram. The
components of the terms in the equations correspond to the individual arrows
in the paths. The equations can be formally reconstructed from the diagrams.
Moreover, the diagrams can be formally combined into new proofs. The alge-
braic structures are thus formally transformed into geometric patterns. After
some practice, the geometric intuitions begin to guide algebraic constructions in
the formal language of diagrams. We apply a similar strategy to PDL.

6.2 Cryptographic (Single-Factor) Authentication

Webeginwith a simple example of diagrammatic reasoning, present already in [29].
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Theorem 6.1. The functions cPQx = x and rPQx = ςQx implement (cr), pro-
vided that the abstract signature function ς satisfies the following axioms:

(a) ςQu = ςQv =⇒ u = v, i.e., ςQ is injective,
(b)

√
〈〈 ςQt 〉〉X =⇒ X = Q, i.e., ςQt must originate from Q,

(c) V Q.u.t ⇐⇒ u = ςQt, i.e., the predicate V Q is satisfied just for the pairs
u, t where u = ςQt,

and that these axioms are known to the principal Bob = c©P .

Proof. To prove the claim, we chase the diagram on Fig. 10. The numbered
arrows arise from the following steps:

1. Bob = c©P observes ν[x]P � 〈·x ·〉P �

(
· r|V Qrx ·

)
, i.e. after sending a fresh

value x, he receives a response u which passes the verification V Qrx.
2. Using the axioms (c) and (orig.m), he concludes that there is some X such

that
〈
·V Qx ·

〉
X

�

(
· r|V Qrx ·

)
P
.

3. Using (fresh.2) he further derives that for the same X holds 〈·x ·〉X �

((· x ·))X �

〈
·V Qx ·

〉
X
.

4. Using (a) and (b), Bob concludes that V Qx must have originated from Q.

�

6.3 Pervasive (Two-Factor) Authentication

Next we describe how Bob the bank authenticates Alice the customer in the
CAP procedure.

Theorem 6.2. The procedure on Fig. 3 implements authentication, i.e. satisfies
(cr), provided that the following assumptions are true, and known to Bob:

(a) Hu = Hv =⇒ u = v, i.e., H is injective;
(b)

√
〈〈 sAB 〉〉X =⇒ X = SA ∨ X = CB, i.e., s

AB must originate from SA

or CB ;
(c)

√
〈〈 pA 〉〉X =⇒ X = IA ∨ X = SA, i.e., p

A must originate from IA or
SA;

(d)
〈
·HsABx ·

〉
Q

=⇒
((
· pA, x ·

)
Q

�

〈
·HsABx ·

〉
Q

)
∧ pA = pA , i.e., SA

and R are honest.

Proof. Prior to the displayed execution, Alice is assumed to have sent to Bob
her identity, and a request to be authenticated. Following this request, Bob’s
computer CB has extracted the secret sAB from a store, which he will use to
verify that SA has generated the response.

To prove the claim, we chase the diagram on Fig. 6. The enumerated steps in
the diagram chase correspond to the following steps in Bob’s reasoning:

1. Bob observes ν[x]CB � 〈·x ·〉CB
�

(
·HsABx ·

)
CB

.

2. Using (orig.m) he concludes that there is some X such that 〈·HsAx ·〉X �(
·HsABx ·

)
CB

.
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IA CAR CBQ SA

ν[x]

〈· x ·〉(· x ·)〈· pA,x ·〉(· pA,x ·)

pA

sAB

(HsABx)

(pA=pA)

〈·HsABx ·〉 〈〈· HsABx ·〉〉

((· x ·))

(·HsABx ·)

X

1

2

3

4

5

6 7

8

8

〈:HsABx:〉 (:HsABx :)
9 10

Fig. 6. B’s reasoning in CAP

3. Using (fresh.2) he further derives that for the same X holds 〈·x ·〉CB
�

((· x ·))X �

〈
·HsABx ·

〉
X
.

4. By (a) and (b), from the observation that he did not use sAB, Bob concludes
that HsABx must have originated in a configuration Q containing SA.

5. By (c),
〈〈
· pA ·

〉〉
IA

�

((
· pA ·

))
Q

�

(
pA = pA

)
�

(
HsABx

)
, where the last

action abbreviates
(
r := HsABx

)
, and we write out r as HsABx in the rest

of the diagram.
6. Since Q had to also receive x before computing the response in

(
· pA, x ·

)
R

�(
HsABx

)
follows by (d). So

((
· pA ·

))
Q

from 5 is
(
· pA, x ·

)
R
.

7. By (orig-m), there is Y with
〈
· pA, x ·

〉
Y

�

(
· pA, x ·

)
R
. By (e),

〈〈
· pA ·

〉〉
IA

from 5 must be
〈
· pA, x ·

〉
IA
.

8. The fresh value x has thus been sent to Q by IA. It follows that in 2 and 3
above must be X = IA.

9. Since A controls SA and IA, and SA ∈ Q generated the response HsABx,
only IA could have sampled HsABx along the visual channel.

10. Since A controls IA and CA, only IA could have sent HsABx to CA along
the keyboard channel.

These logical steps suffice to assure Bob that if he observes the local flow on the
right in Fig. 6, then the non-local flow along the external boundary, all the way
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to the left side of the diagram and back must have taken place. Comparing this
diagrammatic conclusion with the pattern of (cr) on Fig. 5, we see that Bob has
proven an instance of authentication. �

We have provided a security proof of the CAP protocol discussed in [16]. How-
ever, the discussion in that paper is devoted to pointing out the security risks
inherent in relying upon that very protocol. How can this happen? As it turns
out, we can reproduce the situations that the authors in [16] warn against by
relaxing the assumptions that our proof relies upon. This is one advantage of
combining logical reconstruction with explicit specifications of the configurations
and channels involved.

Relaxing the assumption that Alice is honest: In this case
√
〈〈 pA 〉〉X fails to

hold, because if Alice is not honest she could turn PIN over to a third party. This
is discussed in [16] in terms of the card being stolen and Alice being intimidated
into revealing her PIN.

Relaxing the assumption that R is honest: in this case
√
〈〈 pA 〉〉X fails to hold

again, because SA or R could reveal the PIN to a third party. This is discussed in
[16] in two places. First, the reader could inadvertently reveal the PIN because
the keys used to enter it become visibly worn. Secondly, for practical reasons
users are often required to use untrusted readers provided by third parties, which
could steal the PIN.

Relaxing the assumption that Alice controls CA: if CA has been infiltrated by
malware then Alice no longer controls it. As the reader can verify, this has
absolutely no effect on the proof of security of the CAP and PIN protocol in
isolation. Indeed, CA could be replaced by a cyber channel where ever it is
used without affecting the protocol’s security. The problem is when the hash
computed by the smart card is used to authenticate a bank transaction. The
most straightforward way of doing this is for the hash to be passed to CA, which
computes, for example, a Message Authentication Code on the transaction. If
CA is not controlled by Alice, it could substitute a different transaction.

7 Conclusion

We have presented a logical framework for reasoning about security of protocols
that make use of a heterogeneous mixture of humans, devices, and channels.
We have shown how different properties of channels and configurations can be
expressed and reasoned about within this framework. A key feature of this frame-
work is that it supports explicit reasoning about both the structure of a protocol
and the contributions made by its various components, using a combination of
diagrammatic and logical methods. Because of this, we believe that our approach
can be particularly useful in giving a more rigorous foundation for white-board
discussions, in which protocols are usually displayed graphically. By annotating
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the diagram with the proof using the methods described in this paper, formal
reasoning could be brought to bear at the very earliest stages of the design
process.

Acknowledgement. The first author would like to thank Wolter Pieters [42]
for introducing him to Bruno Latour’s ideas about actor-networks.
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