
ar
X

iv
:1

10
8.

54
22

v1
 [

cs
.D

S]
 2

7
A

ug
 2

01
1

Linear Time Inference of Strings from Cover

Arrays using a Binary Alphabet

Tanaeem M. Moosa⋆, Sumaiya Nazeen, M. Sohel Rahman, and Rezwana Reaz

AℓEDA Group

Department of CSE, BUET

Dhaka-1000, Bangladesh

{tanaeem,nazeen,msrahman,rimpi}@cse.buet.ac.bd

Abstract. Covers being one of the most popular form of regularities in

strings, have drawn much attention over time. In this paper, we focus

on the problem of linear time inference of strings from cover arrays us-

ing the least sized alphabet possible. We present an algorithm that can

reconstruct a string x over a two-letter alphabet whenever a valid cover

array C is given as an input. This algorithm uses several interesting com-

binatorial properties of cover arrays and an interesting relation between

border array and cover array to achieve this. Our algorithm runs in linear

time.

1 Introduction

A substring w of string x is called a cover of x if x can be constructed by

concatenation and/or superposition of w. Though x is always a cover of itself,

we do not consider so, in this paper. We limit our focus on the so-called aligned

covers where the cover w needs to be a proper substring and also a border (i.e.,

a prefix and a suffix) of x. For example, the string x = abcababcabcabcab is

constructed by the concatenation (at position 6) and superposition (at positions

9 and 12) of w = abcab. Thus x has a proper cover, w which is also a border. A

string that has a proper cover is called coverable or quasiperiodic, otherwise it

is superprimitive [1]. The array C is called the minimal-cover (resp. maximal-

cover) array of the string x of length n, if for each i, 1 ≤ i ≤ n, C[i] stores either

the length of the shortest (resp. longest) cover of x[1 . . i], when such a cover

exists, or zero otherwise. The array B[1 . . n] is the border array of the string x

if B[i] stores the length of the longest border of x[1 . . i], 1 ≤ i ≤ n.

⋆ Currently working at Google Inc., USA.

http://arxiv.org/abs/1108.5422v1

Repetitions in strings like periods, borders, covers etc. have always been a

subject of great interest for the computer scientists because of its diverse appli-

cations in fields like molecular biology, probability theory, coding theory, data

compression and formal language theory. In fact, in the last two decades string

periodicity has drawn a lot of attention from different disciplines of science. The

famous KMP [2] pattern matching algorithm depends on the failure function

which is nothing but the border array. Another well-known pattern matching

algorithm namely the Boyer-Moore algorithm [3] makes use of similar kind of

repetitions in strings. Such repetitions in strings are often encoded in data struc-

tures like graphs and integer arrays [4]. Thus, researchers have shown interest

not only in finding repetitions in strings but also in reconstructing strings from

those repetitive information. Apostolico et al. [5] gave an online linear runtime

algorithm computing the minimal-cover array of a string. Smyth et al. [6] pro-

vided an online linear runtime algorithm for computing the maximal cover array

which describes all the covers of a string. The problem of reverse engineering

a string was first introduced by Franěk et al. [7]. They proposed a method to

check if an integer array is a border array for some string. Border arrays are

better known as failure functions [8]. They showed an online linear time algo-

rithm to verify if a given integer array is a border array for some string w on

an unbounded alphabet. Duval et al. [9] gave an online linear time algorithm for

bounded alphabet to solve this problem. Bannai et al. [4] solved the problem of

inferring a string from a given suffix array on minimal sized alphabet by propos-

ing a linear time algorithm. Smyth et al. discussed a possible solution of string

inference problem from prefix arrays in [10].

Crochemore et al. [11] presented a constructive algorithm checking if an in-

teger array is the minimal-cover or maximal-cover array of some string. When

the array is valid, their algorithm produces a string over an unbounded alphabet

whose cover array is the input array. All these algorithms run in linear time.

Very recently, Tomohiro et al. [12] proposed a way to verify whether a given

integer array is a valid parameterized border array (p-border array) for a binary

alphabet. They further extended their work in [13] by giving an O(n1.5)-time

O(n)-space algorithm to verify if a given integer array of length n is a valid

p-border array for an unbounded alphabet.

In this paper, we address the open problem stated in [11]. We present a

linear time algorithm for reconstruction of a string from cover array using least

sized alphabet. Our algorithm is closely analogous to the MinArrayToString

2

algorithm in [11]. We achieve the least possible size of alphabet by incorporating

an interesting relation between border array and cover array of a string presented

in [6]. In fact, our algorithm is able to reconstruct strings from valid cover arrays

using an alphabet consisting of no more than two characters.

The rest of this paper is organized as follows. Section 2 gives an account of

definitions and notations used throughout the paper. Section 3 presents the ad-

dressed problem formally and lists important properties and lemmas used later.

In Section 4 we describe our algorithm and main findings. Section 5 provides

some experimental analysis of our algorithm. Finally, Section 6 gives the conclu-

sions.

2 Preliminaries

A string x is a finite sequence of symbols drawn from an alphabet Σ, where Σ[i]

denotes the i-th symbol of Σ. The set of all strings over Σ is denoted by Σ∗.

The length of a string is denoted by |x|. The empty string, the string of length

zero, is denoted by ǫ.

A string w is a factor of string x if x = uwv for two strings u and v. It

is a prefix of x if u is empty and suffix of x if v is empty. It is a proper prefix

of x = wv when v is nonempty and a proper suffix of x = uw when u is

nonempty. For example, w = abc is a factor of x = pqabcmn, a proper prefix

of x = pqabc and a proper suffix of x = abcmn, where u = pq, v = mn and

w, u, v, x ∈ Σ∗.

A string u is a period of x if x is a prefix of uk for some positive integer k, or

equivalently if x is a prefix of ux. The period of x is the shortest period of x. For

example, if x = abcabcab, then abc, abcabc and the string x itself are periods of

x, while abc is the period of x.

A string u is a border of x if u is a prefix and a suffix of x and u 6= x. A

border u of x[1 . . i] with i > 0 has one of the two following forms:

– u = ǫ

– u = x[1 . . j]x[j+1] with j+1 < i and where x[1 . . j] is a border of x[1 . . i−1]

and x[i] = x[j + 1]

Thus, a border u of a regular string x = x[1 . . n] is a proper prefix of x that is

also a suffix of x; thus u = x[1 . . b] = x[n− b+ 1 . . n] for some b ∈ 0 . . n− 1.

3

The border array of a regular string x = x[1 . . n] is an integer array B =

B[1 . . n] such that, for every i ∈ 1 . . n, B[i] is the length of the longest border

of x[1 . . i].

A string w of length m is a cover of string x[1 . . n] if both m < n and there

exists a set of positions P ⊆ {1, . . . , n −m+ 1} satisfying x[i . . i +m− 1] = w

for all i ∈ P and
⋃

i∈P {i, . . . , i+m− 1} = {1, . . . , n}. Therefore, if substring w

of string x is a cover of x, then x can be constructed by concatenation and/or

superposition of w. Though x is always a cover of itself, we do not consider so,

in this paper. We limit our focus on the so-called aligned covers where the cover

w needs to be a proper substring and also a border (i.e., a prefix and a suffix)

of x. For example, the string x = abcababcabcabcab has proper cover w = abcab

which is also a border. A string that has a proper cover is called coverable or

quasiperiodic, otherwise it is superprimitive.

The minimal-cover array C of x is the array of integers C[1 . . n] for which

C[i], 1 ≤ i ≤ n, stores the length of the shortest cover of the prefix x[1 . . i], if such

a cover exists, or zero otherwise. The maximal-cover array CM stores longest

cover at each position instead. An example is given below. In what follows, we

mean by cover array C, the minimal cover array unless otherwise specified. An

example of minimal and maximal cover array is given in Figure 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x[i] a b a a b a b a a b a a b a b a a b a b a b a
C[i] 0 0 0 0 0 3 0 3 0 5 3 0 5 3 0 3 0 5 3 0 3 0 3

CM [i] 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 3

Fig. 1. Illustration of minimal and maximal cover array.

Adopting the graphical approach described in [11], we define the cover graph

as follows:

Definition 1 A cover graph G = (V,E) is an undirected graph where V =

{1 . . . , n} and each vertex i, 1 ≤ i ≤ n corresponds to index i of string x[1..n].

The edge set E is defined as follows based on the equivalence relation of indices

of x:

E =
⋃

i=1,...,n

⋃

j=1,...,γ[i]

(j, i− γ[i] + j),

where γ is any valid cover array.

4

Figure 2 shows a Cover Graph constructed from given cover array C.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C[i] 0 0 0 0 0 3 0 3 0 5 3 0 5 3

(a)

(b)

Fig. 2. Illustration of a Cover Graph. (a) Input cover array C, and (b) Corre-
sponding Cover Graph.

3 Problem Definition & Important Properties

We start with a formal definition of the problem handled in this paper.

Problem 1 Linear time inference of strings using the least sized alphabet from

cover arrays.

Input: A valid cover array C, of length n.

Output: A string x of length n on a minimum sized alphabet.

Before presenting our algorithm, we mention some important properties related

to the cover array and border array which will be used later.

Property 1 (Transitivity property of a cover [11]) If each of u and v cov-

ers x and |u| < |v|, then u covers v.

5

Property 2 (Totally covered position in cover array [11]) A position j 6=

0 of a cover array C is called totally covered, if there is a position i > j for which

C[i] 6= 0 and i− C[i] + 1 ≤ j − C[j] + 1 < j.

Property 3 (Pruned minimal cover array [11]) Let CP be obtained from

C by setting C[i] = 0 for all totally covered indices i on C. We call CP the pruned

minimal cover array of x . Figure 3 shows an example of pruned minimal cover

array.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
x[i] a b a a b a b a a b a b a a b a a b a b a a b a
C[i] 0 0 0 0 0 3 0 3 0 5 3 7 3 9 5 3 0 5 3 0 3 9 5 3

CP [i] 0 0 0 0 0 3 0 0 0 0 0 0 0 9 5 0 0 0 0 0 0 9 5 3

Fig. 3. Illustration of minimal and pruned minimal cover array.

Property 4 (Border constraint on cover array [11]) The nonzero values

in C induce an equivalence relation on the positions of every string that has the

minimal-cover array C. More precisely, if we find the value l 6= 0 in position i

of C, then this imposes the constraints

x[k] = x[i − l + k]

for k = 1, . . . , l. The positions k and i− l + k are bidirectionally linked.

Property 5 ([11]) Let i and j be positions such that j < i, j − C[j] ≥ i −

C[i], C[i] 6= 0 and C[j] 6= 0. Furthermore, let r = j − (i−C[i] + 1). If i−C[i] =

j − C[j], then C[r] = 0, otherwise if i− C[i] < j − C[j], then C[r] = C[j].

Property 6 ([11]) Let i and j be positions such that j < i and j − C[j] <

i− C[i]. Then (i− C[i])− (j − C[j]) > C[j]/2.

Property 7 ([11]) The sum of the elements of CP does not exceed 2n.

Property 8 ([6]) For every integer i ∈ 1 . . n − 1, if B[i] ≤ B[i − 1], then

C[i] = 0

6

4 Our Algorithm

In this section, we present an efficient algorithm, which reconstructs a string

x from a cover array C[1 . . n] on a binary alphabet in linear time. We call this

algorithm, Algorithm SIMA (String Inference usingMinimum-sized Alphabet).

We assume that a valid cover array will be given as input. The validity of a cover

array can be easily checked by Property 2 [11] and Property 6 [11] using the same

approach used in [11] without changing the running time of our algorithm.

The algorithm uses the following arrays:

– C[1 . . n]: valid cover array.

– B[1 . . n]: border array keeping track of the lengths of longest borders.

– x[1 . . n]: string constructed by the algorithm.

We solve the stated problem in three steps.

– Step 1 (Array Transformation): Adopting the same strategy used in [11],

convert the input cover array to a minimal cover array C using procedure

MaxToMin [11] in case a maximal cover array is given as input.

– Step 2 (Pruning): Covert the (minimal) cover array C to a pruned (minimal)

cover array CP by applying procedure Prune [11].

– Step 3 (String Inference):

i) Construct a cover graph G(V,E) from CP . This graph G has the same

connected components as the graph directly constructed from C [11].

ii) Compute connected components of G. Decide which character to assign

to the first position of each component as follows : Let, i be the first

position of any component. If x[B[i− 1] + 1] = a, then assign b to x[i].

Otherwise, assign a to x[i].

For each position j in string x, the algorithm also computes B[j] online,

according to the well-known “Failure Function Algorithm” described in [8].

The procedure MaxToMin described in [11], works as follows:

Given, a cover array C[1 . . n], it checks each value C[i], 1 ≤ i ≤ n as follows.

- if C[i] = 0, then leaves it unchanged.

- if C[i] 6= 0, then substitutes C[i] with C[C[i]], provided C[C[i]] is nonzero.

Otherwise, C[i] is kept unchanged.

The procedure Prune described in [11], works as follows:

Given, a cover array C[1 . . n], it finds each totally covered position i and

substitutes C[i] by 0.

7

- The procedure scans C[1 . . n] from large to small indices.

- Keeps a variable l, initially made 0. If at any instant l is larger than C[i],

then i is a totally covered position. So, C[i] is made 0.

- At each iteration, next value of l is computed.

For ease of understanding the procedures MaxToMin and Prune are given

in Figure 5 and Figure 6. The algorithm SIMA is given in Figure 4. And its

execution steps for a given cover array is illustrated in Figure 7.

Now, we state and prove the main findings.

Theorem 1 Let CP be a pruned cover array of input cover array C, which

resulted from Step 2 of the Algorithm SIMA. Let x be the word which is a

result of the Algorithm SIMA. Let Cx is the (minimal) cover array for x. Then

C = Cx.

Proof. We just need to show that each assignment of a character to position i

of the string x does not violate any constraints set by the values of CP [i].

Here we first construct the cover graph G from CP . Then the nonzero values

in CP state that, the letters at positions i and j of x need to be equal, if i and

j are connected in G. Since pruning does not reduce vertex connectivity [11],

the cover graph induced by CP has the same connected components as the one

induced by C. The number of edges in the graph induced by CP is bounded by

2n according to Property 7 [11].

After constructing the graph, we compute the connected components of the

constructed graph and at the same time assigns characters to the output string

x. It also computes the value of longest border B[i] for string x[1 . . i] for each i as

the iterations advances. Computation of connected component is done to assign

same character to those positions in the string which correspond to member

vertices of a connected component.

We take decision only to assign a character to the first member (from left) of

a component, and assign the same character to the remaining members of that

component. That is, we can consider the following two cases:

1. When CP [i] = k, 0 < k < i. This means, i has an edge with k, hence both i

and k belong to the same component. So, whenever a character is assigned

to x[k] it is also assigned to x[i]. Thus we do not need to take a decision

about which character to assign to x[i] when CP [i] is nonzero.

2. When CP [i] = 0. If position i corresponds to the first member of a com-

ponent, we check the value of B[i − 1]. Let, B[i − 1] = k. We can satisfy

8

SIMA(C, n)
1 C ←MaxToMin(C, n);
2 C ← Prune(C, n);
3 ⊲ Produce Edges
4 for i← 1 to n
5 do
6 E[i]← empty list;
7 for i← 1 to n
8 do for j ← 1 to C[i]
9 do E[i− C[i] + 1 + j].add(j);
10 E[j].add(i − C[i] + 1 + j);
11 ⊲ Compute connected components by DFS and assign characters to output string
12 S ← empty stack;
13 ch← ‘a’ ;
14 for i← 1 to n
15 do
16 if x[i] = nil

17 then S.push(i);
18 if i > 1 and C[i] = 0
19 then if x[B[i− 1] + 1] = ‘a’
20 then ch← ‘b’ ;
21 else ch← ‘a’ ;
22 while not S.empty()
23 do p← S.pop();
24 x[p]← ch;
25 for each element j of E[p]
26 do
27 if x[j] = nil

28 then S.push(j);
29 if i > 1
30 then l← B[i− 1] + 1;
31 while l 6= 0
32 do
33 if x[i] = x[l]
34 then B[i]← l;
35 Break;
36 else l← B[l − 1] + 1;
37 if l = 0
38 then if x[i] = x[1]
39 then B[i]← 1;
40 else B[i]← 0;
41
42 return x;

Fig. 4. Algorithm SIMA.

9

MaxToMin(C, n)
1 for i← 1 to n
2 do
3 if C[i] 6= 0 and C[C[i]] 6= 0
4 then C[i]← C[C[i]]

Fig. 5. Procedure MaxToMin.

Prune(C, n)
1 l ← 0
2 for i← n to 0
3 do
4 if l ≥ C[i]
5 then C[i]← 0
6 l←Max(0,Max(l, C[i])− 1)
7 return C

Fig. 6. Procedure Prune.

CP [i] = 0, if we can ensure B[i] ≤ B[i − 1], as stated in Property 8 [6].

Thus we assign x[i] a character different from x[k + 1] so that no border of

length greater than k is possible for x[1 . . i]. This obviously keeps CP [i] = 0.

Again, if i does not correspond to the first member of a component, then it

is already assigned a valid character according to the component condition

(i.e., all other members of a component receive the same character as the

first one).

Thus the resultant string x[1 . . n] satisfies the pruned cover array CP at every

position.

Theorem 2 Any string constructed by the algorithm SIMA uses an alphabet

comprising no more than two characters.

Proof. We prove this claim by induction on the length of cover array.

Without loss of generality, let, C[1 . . n] be a valid (minimal) cover array of

string x of length n. Let, the two characters to be assigned to infer the output

string x be in {a, b}.

Basis: When n = 1, for a valid cover array C[1] = 0. In this case, x consti-

tutes of a single character ‘a’ and B[1] = 0.

When n = 2, two values of C[2] are possible for a valid cover array C. One is

C[2] = 1. In this case, x[2] must be ‘a’ to obtain x = aa . Otherwise, C[2] = 0.

10

i 1 2 3 4 5 6 7 8 9 10 11 12 13
C[i] 0 1 0 0 0 0 0 0 0 0 0 6 0
CP [i] 0 1 0 0 0 0 0 0 0 0 0 6 0

(a)

Components: {1, 2, 7, 8} {3, 9} {4, 10} {5, 11} {6, 12} {13}

(b)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 Comment
x[i] a a a a x[1]← a and x[2], x[7], x[8]
B[i] 0 are assigned x[1]

x[i] a a a a
B[i] 0 1

x[i] a a b a a b x[B[2] + 1] is a. So x[3]← b.
B[i] 0 1 0 x[9]← x[3]

x[i] a a b b a a b b x[B[3] + 1] is a. So x[4]← b.
B[i] 0 1 0 0 x[10]← x[4]

x[i] a a b b b a a b b b x[B[4] + 1] is a. So x[5]← b.
B[i] 0 1 0 0 0 x[11]← x[5]

x[i] a a b b b b a a b b b b x[B[5] + 1] is a. So x[6]← b.
B[i] 0 1 0 0 0 0 x[12]← x[6]

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1 2

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1 2 3

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1 2 3 4

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1 2 3 4 5

x[i] a a b b b b a a b b b b
B[i] 0 1 0 0 0 0 1 2 3 4 5 6

x[i] a a b b b b a a b b b b b x[B[12] + 1] is a. So x[13]← b.
B[i] 0 1 0 0 0 0 1 2 3 4 5 6 0

(c)

Fig. 7. An example run of Algorithm SIMA. (a) Input cover array C before and
after pruning, (b) Connected components of corresponding cover graph, and (c)
String Inference by Algorithm SIMA.

11

In this case, x[2] must be ‘b’ to obtain x = ab . In both case, value of B[2] is

computed.

Induction: Let n > 2. We assume that up to length n− 1, B[1 . . n− 1] and

x[1 . . n− 1] have been computed and x[1 . . n− 1] needs an alphabet consisting

of two characters. We consider the assignment of character to x[n].

Case 1: C[n] = 0

According to Property 8, for every integer 1 ≤ i ≤ n− 1, if B[i+ 1] <= B[i]

then C[i + 1] = 0.

Let, B[n − 1] = k. Now, if x[k + 1] = ‘a’ then we assign ‘b’ to x[n] so that

B[i + 1] cannot become greater than k. Or, if x[k + 1] = ‘b’ then we assign ‘a’

to x[n] for the same reason. This maintains the constraint C[n] = 0. So x[1..n]

uses a two-character alphabet.

Case 2: C[n] = k, 1 ≤ k < n

Position n has an edge with position k. Our algorithm assigns into x[n] the

same character that it assigns into x[k]. Since k < n, so x[k] is either ‘a’ or ‘b’.

Thus, we do not need to introduce any new character for x[n] here.

Thus algorithm SIMA produces a string x[1 . . n] which uses an alphabet of

no more than two characters.

Theorem 3 Algorithm SIMA runs in linear time.

Proof. The each of the two procedures MaxToMin [11] and Prune [11] runs in

linear time [11]. The step of producing edges E of graph G induced by CP is also

linear because the number of edges is bounded by 2n according to Property 5 [11].

The third for loop computes the connected components in the graph by

depth first search and assigns letters to the output string. This computation is

linear in the number of edges which is bounded by 2n. Also the overall on-line

computation of the border array B runs in linear time [2]. Hence our algorithm

runs in linear time.

5 Experimental Results

We have investigated the practical performance of Algorithm SIMA on various

datasets. The experiments were performed on a computer with 4 GB of main

memory and 3.1 GHz Intel Pentium 4 processor, running the Windows XP Ser-

vice Pack 3 operating system. All programs were compiled with Visual Studio

6.0.

12

The investigated data includes, all valid cover arrays for length 8 to 14 and

cover arrays generated from Fibonacci words of different sizes. The experimental

results are summarized below.

– We have been able to verify the linear runtime of our algorithm experimen-

tally. Figure 8 shows the timing diagram of our algorithm for fibonacci word

dataset. For hardware limitations we restricted our test from fibonacci word

size 4 to 34.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1e+06 2e+06 3e+06 4e+06 5e+06

T
im

e
pe

r
ca

ll
in

 s
ec

on
ds

--
>

InputSize(n)-->

SIMA
MinArrayToString

Fig. 8. Verification of Linear runtime of Algorithm SIMA.

– We have also compared our algorithm with the implementation of MinAr-

rayToString available at [14]. In every case, our algorithm was able to

infer valid strings with no more than two letters which is a sure improve-

ment overMinArrayToString. The comparative results for all valid cover

arrays of length 8 is shown in Table 1. Table 2 shows the comparison of the

two algorithms for several genome sequences available at [15].

13

Input Cover Array String Inferred By String Inferred By
SIMA MinArrayToString

0 0 0 0 0 0 0 0 a b b b b b b b a b c d e f g h
0 0 0 0 0 0 0 4 a b b b a b b b a b c d a b c d
0 0 0 0 0 3 0 0 a b b a b b b b a b c a b c d e
0 0 0 0 0 3 0 3 a b a a b a b a a b a a b a b a
0 0 0 0 0 3 4 0 a b b a b b a a a b c a b c a d
0 0 0 0 0 3 4 5 a b b a b b a b a b c a b c a b
0 0 0 2 0 0 0 0 a b a b b b b b a b a b c d e f
0 0 0 2 3 0 0 0 a b a b a a a a a b a b a c d e
0 0 0 2 3 0 0 3 a b a b a a b a a b a b a a b a
0 0 0 2 3 2 0 0 a b a b a b b b a b a b a b c d
0 0 0 2 3 2 3 0 a b a b a b a a a b a b a b a c
0 0 0 2 3 2 3 2 a b a b a b a b a b a b a b a b
0 1 0 0 0 0 0 0 a a b b b b b b a a b c d e f g
0 1 0 0 0 0 0 4 a a b b a a b b a a b c a a b c
0 1 0 0 0 3 0 0 a a b a a b b b a a b a a b c d
0 1 0 0 0 3 4 0 a a b a a b a b a a b a a b a c
0 1 0 0 0 3 4 5 a a b a a b a a a a b a a b a a
0 1 1 0 0 0 0 0 a a a b b b b b a a a b c d e f
0 1 1 0 0 0 0 4 a a a b a a a b a a a b a a a b
0 1 1 1 0 0 0 0 a a a a b b b b a a a a b c d e
0 1 1 1 1 0 0 0 a a a a a b b b a a a a a b c d
0 1 1 1 1 1 0 0 a a a a a a b b a a a a a a b c
0 1 1 1 1 1 1 0 a a a a a a a b a a a a a a a b
0 1 1 1 1 1 1 1 a a a a a a a a a a a a a a a a

Table 1. Comparison on Inferred String between algorithms SIMA and Mi-

nArrayToString.

Genome Sequence SIMA MinArrayToString

Acidovorax citrulli AAC00-1 2 5352783
Buchnera aphidicola 5A 2 642133

Ca. Blochmannia floridanus 2 705649
Dickeya dadantii 3937 2 4922813

Edwardsiella ictarluri 93-146 2 3812326
Klebsiella pneumonia 342 2 5920281

Table 2. Comparison on Alphabet Size between algorithms SIMA and MinAr-

rayToString.

14

– Finally we have observed an interesting fact that the set of distinct valid

cover arrays is generated from m-alphabet string for a certain length, where

m ≥ 2. We generated all possible strings for length of 8 with alphabet sizes

2, 3, 4, 5, 6, 7 and 8, and computed cover arrays for all of them. For each

alphabet size we got same set of distinct cover arrays.

6 Conclusion

In this paper, we have presented a linear time algorithm to solve the problem

of inference of strings using the least sized alphabet (i.e., binary alphabet) from

valid cover arrays. We achieved the least possible bound on alphabet size by

incorporating an interesting relation between cover array and border array of

a string. The main finding of this paper is that, from any valid cover array of

length n, it is possible to infer a string over an alphabet that consists only two

distinct characters unless the cover array is of the form 01k−1, 1 ≤ k ≤ n. In

that particular case, our algorithm infers a string over an alphabet consisting

only of a single character.

References

1. A. Apostolico and A. Ehrenfeucht, “Efficient detection of quasiperiodicities in

strings,” Theor. Comput. Sci., vol. 119, no. 2, pp. 247–265, 1993.

2. D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in strings,”

SIAM J. Comput., vol. 6, no. 2, pp. 323–350, 1977.

3. R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun.

ACM, vol. 20, no. 10, pp. 762–772, 1977.

4. H. Bannai, S. Inenaga, A. Shinohara, and M. Takeda, “Inferring strings from

graphs and arrays,” in MFCS, pp. 208–217, 2003.

5. A. Apostolico and D. Breslauer, “Of periods, quasiperiods, repetitions and

covers,” in Structures in Logic and Computer Science, pp. 236–248, 1997.

6. Y. Li and W. F. Smyth, “Computing the cover array in linear time,”

Algorithmica, vol. 32, no. 1, pp. 95–106, 2002.

7. F. Franěk, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang, “Verifying a

border array in linear time,” Journal on Combinatorial Mathematics and

Combinatorial Computing, vol. 42, pp. 223–236, 2002.

8. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

15

9. J.-P. Duval, T. Lecroq, and A. Lefebvre, “Border array on bounded alphabet,”

Journal of Automata, Languages and Combinatorics, vol. 10, no. 1, pp. 51–60,

2005.

10. W. F. Smyth and S. Wang, “New perspectives on the prefix array,” in SPIRE,

pp. 133–143, 2008.

11. M. Crochemore, C. S. Iliopoulos, S. P. Pissis, and G. Tischler, “Cover array

string reconstruction,” in CPM, pp. 251–259, 2010.

12. T. I, S. Inenaga, H. Bannai, and M. Takeda, “Counting parameterized border

arrays for a binary alphabet,” in LATA, pp. 422–433, 2009.

13. T. I, S. Inenaga, H. Bannai, and M. Takeda, “Verifying a parameterized border

array in O(n1.5) time,” in CPM, pp. 238–250, 2010.

14. http://www.kcl.ac.uk/staff/tischler/src/recovering-0.0.0.tar.bz2 (Last

accessed on December 12, 2010).

15. https://asap.ahabs.wisc.edu/asap/download_Source.php?LocationID=

&SequenceVersionID=&GenomeID= (Last accessed on December 18, 2010).

16

