Skip to main content

Farthest Voronoi Diagrams under Travel Time Metrics

(Extended Abstract)

  • Conference paper
Book cover WALCOM: Algorithms and Computation (WALCOM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7157))

Included in the following conference series:

Abstract

Given a set of roads in the plane with assigned speed, a traveler is assumed to move at the specified speed along each road, and at unit speed out of the roads. We are interested in the minimum travel time when we travel from one point in the plane to another, which defines a travel time metric. We study the farthest Voronoi diagram under this travel time metric, providing first nontrivial bounds on its combinatorial and computational complexity. Our approach is based on structural observations and recently known algorithmic technique. In particular, we show that if we are given a set of m isothetic roads with equal speed, then the diagram of n sites on the L 1 plane has Θ(nm) complexity and can be computed in O(nmlog3(n + m)) time in the worst case.

Work by S.W.Bae was supported by National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0005512).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Proximity problems for time metrics induced by the L 1 metric and isothetic networks. IX Encuetros en Geometria Computacional (2001)

    Google Scholar 

  2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Voronoi diagram for services neighboring a highway. Information Processing Letters 86, 283–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. Discrete Comput. Geom. 31(1), 17–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, S.W., Chwa, K.Y.: Shortest Paths and Voronoi Diagrams with Transportation Networks Under General Distances. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1007–1018. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bae, S.W., Chwa, K.Y.: Voronoi diagrams for a transportation network on the Euclidean plane. Internat. J. Comp. Geom. Appl. 16(2-3), 117–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bae, S.W., Chwa, K.Y.: The geodesic farthest-site Voronoi diagram in a polygonal domain with holes. In: Proc. 25th ACM Annu. Sympos. Comput. Geom. (SoCG), pp. 198–207 (2009)

    Google Scholar 

  7. Bae, S.W., Kim, J.H., Chwa, K.Y.: Optimal construction of the city Voronoi diagram. International Journal of Computational Geometry and Applications 19(2), 95–117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: Farthest neighbors and center points in the presence of rectangular obstacles. In: Symposium on Computational Geometry, pp. 164–171 (2001)

    Google Scholar 

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computationsl Geometry: Alogorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  10. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.S.: Farthest-polygon Voronoi diagrams. Comput. Geom.: Theory and Appl. 44(4), 234–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  13. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Internat. J. Comput. Geom. Appl. 11(6), 583–616 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier (2000)

    Google Scholar 

  17. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moet, E., van Kreveld, M.J., van der Stappen, A.F.: On realistic terrains. In: Symposium on Computational Geometry, pp. 177–186 (2006)

    Google Scholar 

  19. Mulmuley, K.: A fast planar partition algorithm. J. Symbolic Comput. 10, 253–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Palop, B.: Algorithmic problems on proximity and location under metric constraints. Ph.D. thesis, U. Politécnica de Catalunya (2003)

    Google Scholar 

  21. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, S.W., Chwa, KY. (2012). Farthest Voronoi Diagrams under Travel Time Metrics. In: Rahman, M.S., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2012. Lecture Notes in Computer Science, vol 7157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28076-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28076-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28075-7

  • Online ISBN: 978-3-642-28076-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics