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Abstract. Provenance of scientific data is a key piece of the metadata record for 
the data's ongoing discovery and reuse. Provenance collection systems capture 
provenance on the fly, however, the protocol between application and 
provenance tool may not be reliable. Consequently, the provenance record can 
be partial, partitioned, and simply inaccurate. We use a workflow emulator that 
models faults to construct a large 10GB database of provenance that we know is 
noisy (that is, has errors). We discuss the process of generating the provenance 
database, and show early results on the kinds of provenance analysis enabled by 
the large provenance.  
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1   Introduction 

Data provenance provides the lineage or history of how data is generated.  
Provenance information is valuable in scientific datasets because it may be the only 
source of comprehensive information about how an e-Science data product was 
arrived at. Because the scientific workflow development process involves scientists 
refining their workflows repeatedly over time, provenance can also help scientists 
track their decisions and enhance the process of finding the optimum workflow. 
Moreover, provenance supports experiment reproducibility and reuse of scientific 
data and can contribute to assessments of the quality of a data set [19]. With the 
increase in awareness of the importance of preserving society’s investment in data 
driven research, the need for useful data provenance has become increasingly critical.  

Research on provenance in scientific workflows has focused on provenance 
capture and management, resulting in systems such as Karma [18] and provenance 
support in workflow tools such as Kepler [11] and Pegasus [7]. In order to capture 
provenance, workflow engines must be instrumented or logs mined. Provenance 
traces are stored and managed using an internal provenance data model, often with 
interoperability support using the Open Provenance Model (OPM) [13].  

Provenance is often not complete. The protocol between application and the 
provenance storage can be unreliable [4]. Additionally, the entire category of semi-
structured workflows assumes there are gaps in the provenance record. Semi-
structured workflows in e-Science encompass automated and non-automate 



 

components where the specification is not known in advance.   
In order to study scalable analysis techniques that are resilient to errors in 

provenance data, we built a 10GB database of provenance data with known failure 
patterns. In this paper, we define the methodology behind the database’s construction. 
The database is populated from a workload of workflows that are modeled based on 
real workflows. The workflows making up the workload originate in a number of 
scientific domains. We emulate different workflow execution scenarios by controlled 
injection of failures and message drops during workflow execution. We examine the 
resulting distribution and include performance evaluations for the generation process 
of the database. As the larger research goal guiding this effort is analysis techniques 
for provenance use that run at scale and are resilient to failures, we discuss early work 
on two analysis approaches, one a graph analysis approach to detecting inferior 
workflow runs, and one that uses reasoning techniques to repair provenance graphs. 

The remainder of this paper is organized as follows. Section 2 discusses related 
work and Section 3 identifies requirements for generating the gigabyte provenance 
database. Section 4 discusses the system components used to generate the database; 
Section 5 details the workflow workload. In Section 6, we discuss our methodology. 
Section 7 evaluates the performance, and Section 8 discusses provenance analysis 
enabled by the research. Section 9 concludes the paper and discusses future work.  

2   Related Work 

Provenance research falls primarily into main categories: 1.) business provenance, 2.) 
provenance capture that is tightly coupled to a workflow system, 3.) database 
provenance, and 4.) provenance capture in semi-structured e-Science environments. 
Over the years, multiple surveys [4, 20] have been conducted and have mapped out 
provenance systems in these categories. An example of business provenance involves 
lineage tracing in data warehousing systems [3]. For the other three categories in 
provenance research, a few example systems are Kepler [11] and Pegasus [7] 
(Category 2), Trio [22] (Category 3), and ES3 [5] (Category 4). Systems such as 
Karma [18] involve provenance research in two categories (Category 2 and 4). These 
systems provide a source for realistic provenance data; however, these systems do not 
provide a controlled provenance generation environment and do not necessarily 
contain provenance with failures. This is the missing gap that this paper addresses. 

Many synthetic workloads have been developed and used over the years, several in 
the area of distributed systems [2, 12, 21]. Similarly, a number of workloads [1, 14] 
have been generated and used in networks research. These workloads were developed 
for performance evaluations, and for benchmarking purposes in their respective areas. 
However, none of these workloads attempt to model failures. To the best of our 
knowledge, no workloads have been developed specifically for the purpose of 
provenance research. With the creation of a noisy 10GB provenance database that 
models failures of provenance notifications, we present a synthetic database that 
reflects the needs of provenance research. 



 

3   Provenance Database Requirements 

For a provenance database to be useful for study, several requirements must be met: 
Large scale. The database should consist of a significant number of provenance 

records to allow research to be done at scale. 
Diversity. The provenance in the database should be drawn from workflows that 

are varied, such as those originating from different scientific domains and which have 
different characteristics in terms of size, breadth, and length. 

Realism. The composition of workflows used to generate the provenance should 
have different availability and failure characteristics that are reflective of workflows 
that occur in the real world.  

Using the WORKEM [16] workflow emulator to generate provenance, the six 
major workflows developed as part of the emulator, and the failure model built into 
WORKEM, we have achieved scale, diversity, and realism in the 10GB provenance 
database. 

4   System Components 
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Fig. 1. Workload Gigabyte Provenance Database generation framework. 

The two components used in the creation of the provenance database are WORKEM 
and Karma version 3.0. Figure 1 gives an overview of the system framework used to 
populate the workload gigabyte provenance database. 

WORKEM is an emulation framework that emulates workflow execution [16]. It 
consists of an application service emulation layer that is built on top of a workflow 
engine, Apache ODE, and a task state model. Workflows are coded as BPEL 
workflow scripts and workflow notifications are generated through a generic service 



 

that models task execution as a finite state machine. An availability and failure model 
is built into WORKEM enabling the modeling of different workflow scenarios. This 
model allows the user to configure the probability of dropping messages or failure for 
any node in WORKEMs task state model. 

The current implementation of WORKEM is deployed with a suite of workflows 
based on a workflows survey [15]. The workflows are modeled using Xbaya [17]. We 
use the existing suite of workflows in the population of the database. These 
workflows will be further described in Section 5. 

In Figure 1, workflow scripts are loaded into the Apache ODE workflow engine. 
The workflow is orchestrated by ODE, which instead of calling out to a real task, calls 
an emulated task that has been configured to have the black-box behavior of a real 
workflow node. Prior to the workflows execution, it passes through a failure model to 
see if the node should be “executed” at all, or if it should send erroneous information. 
The workflow task sends provenance notifications to Karma through Axis 2. Upon 
receipt the provenance notifications are integrated into the database. 

Karma version 3.0 [18] is a provenance collection and management system. In this 
study, it is used to consolidate and store notifications generated by WORKEM. 
Karma is a versatile provenance system in that it accepts provenance in a number of 
ways. Karma is able to listen on a message bus or receive messages directly through a 
web service interface. Asynchronous threads process provenance notifications to 
extract provenance information and store the information to a relational Karma 
database that is OPM compatible. We have instrumented WORKEM with an Axis 2.0 
handler to facilitate a direct transfer of notifications from WORKEM to Karma. 

For each state in the WORKEM task state model, a message containing activity 
information is passed to Karma and translated into Karma’s information model. 
Karma in turn populates the workload gigabyte provenance database using translated 
raw workflow notifications. Messages are represented using service invocations, data 
transfers, response status messages and computational messages.  

The access layer shown in Figure 1, is an access interface to the provenance store. 
Currently, Karma supports a number of query API calls to ease the retrieval of 
provenance information. However, multiple access layers may be implemented to 
serve different purposes.  

5   Workflow Workload 

The provenance database is generated from the following six workflows, namely: 
i. LEAD North American Mesoscale (NAM) initialized forecast workflow 
ii. SCOOP ADCIRC Workflow 
iii. NCFS Workflow 
iv. Gene2Life Workflow 
v. Animation Workflow 
vi. MotifNetwork Workflow 

These workflows are pseudo-realistic, in the sense that they are modeled after real 
life workflows [15] using WORKEMs task state model. The LEAD NAM, SCOOP 
and NCFS are weather and ocean modeling workflows, Gene2Life and MOTIF are 



 

bioinformatics and biomedical workflows, and the Animation workflow carries out 
computer animation rendering. Some of the workflows are small, having few nodes 
and edges, while others like Motif have a few hundred nodes and edges. The 
characteristics are summarized in Table 1. 

Table 1. Overview of Workflow Structure  

Workflow Name Number of Nodes (Tasks) Number of Edges Maximum Width 

LEAD NAM 6 11 3 
NCFS 7 19 2 

SCOOP 6 10 5 
Gene2Life 8 15 2 
Animation 22 42 20 

Motif 138 275 135 

6   Methodology 

We model failures in two specific ways a) task failures where a node in a workflow 
does not complete successfully b) a task completes but the notification is not 
successfully transmitted. These failure rates are modeled using uniform distributions 
in the emulator to determine if a particular invocation must fail or drop a notification. 
To generate the database, each of the six workflow types is run 2000 times per failure 
mode, with the failure modes as follows: 

i. No failures and dropped notifications (success case) 
ii. 1% failure rate 
iii. 1% dropped notification rate 
iv. 1% failure rate and 1% dropped notification rate 

Specifically, WORKEM generates notifications based on a task state model using 
workflows coded as BPEL workflow scripts. A total of 9 states are present within the 
task state model. These states represent different workflow execution states and can 
be categorized into status notifications; computation notifications and data transfer 
notifications. The failure and dropped notification rates were configured for all states 
in WORKEMs task state model. These 4 population cases were determined based on 
preliminary testing, which displayed a good number of workflows with different 
characteristics. Using these configurations, we were able to achieve a wide variety of 
workflow execution traces by using the above configurations.  

For each population case, we configured WORKEM to generate workflows using 
10 threads in parallel, with each thread responsible for generating 200 workflows for 
a total of 2000 workflows. This process was repeated across a total of 6 workflow 
types with a goal of generating a total of 48,000 workflows.  

WORKEM generated roughly 48,000 workflows with various failures and dropped 
messages. The total number of workflows differs slightly from the intended number 
for a few reasons. For the SCOOP workflow, we encountered a single failure in 
Apache ODE during generation through WORKEM. For the Animation workflows, 



 

50 workflows were removed from the database due to an error during configuration. 
The causes of the 36 missing Motif workflows remain unknown. 

As shown in Figure 2, the distribution is surprisingly dissimilar. Even though the 
generation settings for WORKEM were identical across workflows, we observe that 
WORKEMs failure model does not result in the same uniform distribution across 
different workflows since the configuration for failure rates are per task in the 
workflow. This is evident through the Animation and Motif workflows. As seen in the 
success category of Figure 2, only 2000 Motif workflows result without any failures. 
All of these workflows originate from the workflow run that was configured without 
any failures. Comparatively, for the failed case, we observe a total of 2430 
workflows. Similarly, Animation workflows only have 2197 workflows without 
failures, whereas it has 2907 workflows with dropped and failed characteristics. Both 
Animation and Motif workflows that do not have failures or dropped messages are 
approximately half of what the smaller workflows exhibit, that confirms that the 
larger a workflow, the higher the failure rate and dropped messages rate. 
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Fig. 2. Distribution of workflows by population cases. 

The smaller workflows appear to have the same distribution amongst each other. 
As seen in Figure 3, about 55-60% of these workflows have no failures and dropped 
messages, while workflows with dropped messages are approximately 20% and 
workflows with failures or dropped messages accounting for the remaining 20-25%. 
The larger Motif and Animation workflows have a different distribution. 
Approximately 50% of these workflows generated appear to be failed workflows, 
while the other half is split between workflows that have dropped messages and 
successful workflows. 

7   Performance Evaluation 

We examined performance of the provenance database generation process to better 
understand the complexities involved in generation. We use as our testbed a Dell 
PowerEdge 6950, quad dual-core AMD Opteron 2.4GHz with 16GB of RAM running 



 

Red Hat Enterprise Linux version 2.6.9-89.29.1.ELsmp. Both WORKEM and Karma 
were run on this machine. MySQL server v5.0.41 is the database system and it uses 
the machine’s local disk. As populating the database took considerable time, it was 
carried out while other work was going on the server. 

 

 

 
Fig. 3. Distribution of workflows by workflow types. 

Analysis. The average population time per workflow for the different population 
cases discussed in Section 6 is presented in Table 2. We note a number of interesting 
observations. For all workflows, the average population time per workflow is the 
largest for the population case with dropped notifications. The LEAD NAM workflow 
is the sole workflow that does not exhibit this, but even then the average population 
time per workflow is fairly close to that of the case without failures or dropped 
messages. We also observe that the population case without failures or dropped 
notifications is significantly faster when compared to the population case with 
dropped notifications. 

The larger the workflows, the longer the average population time per workflow for 
all population cases. This is evident in larger workflows such as Motif and Animation. 



 

In these workflows, population cases that involve failures have the lowest average 
population time, indicating that most of these failures occur earlier in the workflow. 
This is especially evident in the Motif workflows. For Gene2Life and NCFS 
workflows, we observe that the population case with no failures or dropped 
notifications has a substantially lower average time than the population cases with 
failure rates or dropped notification rates. 

Table 2. Average population time per workflow organized based on population cases. 

Workflow 
Runs 

Workflow 
Types 

Success case 
(sec.) 

1% failure 
rate (sec.) 

1% dropped 
notification rate 

(sec.) 

1% failure rate 
& 1% dropped 
notification rate 

(sec.) 
Animation 28.2 17.3 35.3 21.3 
Gene2Life 7.4 21.8 26.9 20.8 

LEAD NAM 8.6 6.5 8.5 6.3 
Motif 198.9 29.8 216.4 41.4 
NCFS 7.2 21.7 23.1 16.8 

SCOOP 19.1 21.4 24.0 23.2 

Workflow Population Characteristics. We further examine characteristics of 
population time for the various workloads. We plot population times of each 
workflow run (y-axis) based on the start time for each workflow (x-axis). Figure 4 
shows the database being populated with workflow provenance in a well-behaved 
manner. A couple of the workflows (NCFS and Gene2Life) showed a sudden 
decrease in population time by 75% around half way through the population cycle. 
We do not show this graph as it is likely due to background activity on the machine. 
The largest workflow, Motif, shows a partitioning in population time for the failure 
cases that reflects completion times shown in Table 2 for Motif (Figure 5). The 1% 
dropped notification rate averages 216 seconds while the 1% failure rate combined 
with the failure+dropped case (rightmost column of Table 2), averages 35 seconds. 
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Fig. 4. Plot of workflows with uniform  Fig. 5. Partitioning in population timings for 
distributions in population timings.  Motif workflows that involve failures. 

Size of Database. The total size of the workload gigabyte provenance database dump 
using Karma version 3.0 is 10.64 Gigabytes. This is a sizable database that takes 
approximately an hour and 5 minutes on average to import into MySQL on our 
experimental quad dual-core server. 



 

8   Towards Large-Scale Provenance Analysis  

The 10GB provenance database was developed to serve as a test platform for research 
into analysis algorithms that run at scale and are resilient to failures. Here we discuss 
two ongoing efforts. 
Provenance Quality Assessment. Provenance, as we have already pointed out, can 
be messy. Provenance messages may be dropped, messages can be incomplete, which 
could occur when the application scope at a point of notification generation is more 
restricted than anticipated, or execution of the application (or workflow) can simply 
fail. We are examining fast statistical approaches that operate over large volumes of 
data to zero in on suspicious provenance records. Provenance goodness is determined 
by constructing the best possible provenance graph for an execution based on the 
captured provenance record, then assessing the goodness of the resulting graph by 
looking at the partitions in a provenance graph. A provenance graph can be modeled 
as PG = {V, E}, where V is a collection of vertices that are linked by one or more 
directed edges, E. 

The approach we use is to construct a provenance graph from nothing (no guiding 
workflow template) based only on the captured provenance. A current assumption of 
the approach is that all notifications contain the correct ID for the workflow execution 
instance to which they belong. WORKEM supports this assumption. While 
simplifying the problem, this approach still may yield disconnected components. The 
query of a graph using a workflow ID searches over the database tables for entities 
(processes) that have matching IDs. If there are dropped messages, the queried graph 
may have missing edges or missing vertices. The only guarantee for the retrieved 
graphs is that the components of the graph are linked through that workflow ID.  
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Fig. 6. Plot of edge counts for LEAD NAM workflow instances with different statuses. 

In early results, we ran the algorithm against the 10GB provenance database and 
show the results in Figure 6 for the LEAD NAM workflow preliminary, observing the 



 

number of edge counts for each workflow instance. The plot points are classified 
based on the statuses of each workflow. As one would expect, the perfect workflows 
have the complete 35 edges. We observe that workflows with dropped messages 
cluster towards the upper end of Figure 6. This implies that dropped messages for 
successful workflows are few. In comparison, workflows that involve failures 
typically result in more missing notifications, resulting in lesser number of edges in 
their provenance graphs. We also note that approximately 30% of imperfect 
workflows possess the full 35 edges. This is due to Karma not taking into account 
some of WORKEM’s notifications, such as computation start and stop notifications 
and response status notifications. Though these workflows experience missing 
notifications when generated through WORKEM, the provenance graphs extracted 
from Karma, which construct graphs based on the objects and edges defined in the 
Open Provenance Model, appear to be perfect. 
Automatic Provenance Repair. We are investigating the use of artificial intelligence 
methods to repair faults in provenance traces. We have developed a system, Phala [8] 
that uses case-based reasoning [10] from similar known workflows and additional 
methods to predict the missing steps in a partial workflow. Case-based reasoning 
systems reason from specific prior examples, solving new problems by retrieving 
records of prior problem-solving and adapting their solutions to fit new 
circumstances. Given an incomplete provenance trace, Phala retrieves prior traces 
involving similar steps, and predicts the missing steps by analogy to the provenance 
information in the prior traces. Phala’s approach is strongly data-driven, relying on 
the database of previously-observed provenance rather than on knowledge-intensive 
analysis. As the pool of relevant prior provenance traces grows through provenance 
capture, so does the system’s ability to suggest suitable repairs. Even incomplete 
stored provenance traces may be useful if they are, locally, more complete than the 
target trace. Note that the provenance database Phala uses need not be restricted to a 
single domain; its retrieval/similarity assessment criteria select relevant cases.   

For large databases of cases, controlling retrieval/similarity assessment cost is a 
key issue. This is particularly important for structured cases such as workflows, in 
which similarity calculations must take into account structural similarity of the 
workflow graphs. To avoid the expense of full graph matching over the stored data, 
Phala uses a two-step retrieval process. The first phase uses coarse-grained criteria to 
retrieve a set of initial candidates from the full database, restricting structural 
considerations to small independent sub-structures over which cases are indexed; the 
second phase considers the complete structure of each case retrieved from the first 
phase and re-ranks cases accordingly. To improve accuracy and robustness to noise, 
Phala uses multiple reasoning techniques to generate predictions and reconciles 
divergent predictions through a confidence-weighted voting scheme [9]. 

Phala’s approach has been tested for aiding users at incrementally extending a 
workflow during initial workflow construction (see [8] for results of an evaluation of 
accuracy and scalability). Provenance repair is a natural application for the system, 
but the size of provenance databases far exceeds that of datasets to which case-based 
reasoning has previously been applied. The 10GB provenance database provides a 
challenging testbed for future study and refinement of Phala’s methods for handling 
large-scale provenance sources. 



 

9   Conclusions and Future Work 

In this paper, we present our methodology behind building a 10GB noisy provenance 
database, and the reasons why its existence is important. This sizable database 
consists of a varied distribution of realistic workflows. We provide details of our 
methodology for populating the database and provide evaluations of this workload 
database in terms of its distribution and performance. We plan to release this 
provenance database in the near future. It will be made available at: 
http://pti.iu.edu/d2i/provenance_gigabyte_database. 

We are now using the provenance database to study provenance quality 
assessment. Our current graph analysis algorithm for this task makes simplifying 
assumptions about the existence of a workflow ID that ties together all notifications 
belonging to a provenance record. We plan to explore loosening this restriction. In 
addition, in order to determine how close a provenance record comes to a perfect 
record, one needs some sense of what is expected. This can be done by requiring a 
workflow template, which is realistic in some provenance capture settings but not 
others, or will require learning algorithms that can build a sense over time of a good 
provenance record. Finally, we are exploring using the graph structure to propagate 
node and edge quality metrics through the provenance graph. 
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