
Conformance Checking of RBAC Policies in

Process-Aware Information Systems

Anne Baumgrass1, Thomas Baier2, Jan Mendling2, and Mark Strembeck1

1 Institute of Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), Vienna, Austria

{firstname.lastname}@wu.ac.at
2 Institute of Information Systems

Humboldt-Universität zu Berlin, Germany
{firstname.lastname}@wiwi.hu-berlin.de

Abstract. A process-aware information system (PAIS) is a software
system that supports the definition, execution, and analysis of business
processes. The execution of process instances is typically recorded in so
called event logs. In this paper, we present an approach to automatically
generate LTL (Linear Temporal Logic) statements from process-related
RBAC (Role-based Access Control) models. These LTL statements are
used to check if process executions that are recorded via event logs con-
form to the access control policies defined via a corresponding RBAC
model. To demonstrate our approach, we implemented a RBAC-to-LTL
component, and used the ProM tool to test the resulting LTL statements
with event logs created from process simulations in CPN tools.

Keywords: Process-Aware Information Systems, Conformance Check-
ing, LTL, Security, Role-Based Access Control

1 Introduction

Process-aware information systems (PAIS) support the execution of business
processes [6]. In this context, access control policies define which users are allowed
to perform certain tasks (see, e.g., [14,16]). In recent years, role-based access
control (RBAC) [8,13] has developed into a de facto standard for access control
in both, research and industry. In RBAC, roles model different work profiles.
They are equipped with the exact number of permissions that is needed to
perform their tasks. These roles are then assigned to human users according to
their respective work profile (see [15]). To check if the process instances that
are executed via a PAIS adhere to the access control policies which are defined
in the corresponding RBAC model, one can use the event logs that have been
recorded by the information system during process execution (see, e.g., [7]).
The analysis of event data has been intensively studied in the area of process
mining [1,19]. Often, Linear Temporal Logic (LTL) is used as formal language
to check conformance of models and logs (see, e.g., [2]). However, most existing
conformance checking approaches focuses on the control flow perspective (see,
e.g., [11,12]), and do not provide operators to check access control policies.

2 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

In this paper, we present an approach to check if the data recorded in the
event logs of a PAIS conforms to the corresponding process-related RBAC model
including binding and mutual exclusion constraints. In particular, we automati-
cally transform process-related RBAC models to corresponding LTL rules. These
LTL rules are then used to check the event logs for violations of the policies that
are defined via the RBAC model. The results of this conformance check can serve
as basis for security and domain experts to detect violations that could result
from misconfigurations or implementation errors and thereby help to increase
the security of the respective PAIS. The LTL rules that are generated by our
approach can be used in any kind of log analysis tool that is based on LTL.
To demonstrate our approach we implemented a RBAC-to-LTL component that
transforms the XML representation of process-related RBAC models to corre-
sponding LTL rules. Subsequently, we use tools such as ProM [18,21] to check
these LTL rules.

The remainder of this paper is structured as follows. Section 2 gives an
overview of RBAC and LTL. Next, Section 3 describes our approach of trans-
forming process-related RBAC models to LTL. In Section 4, we demonstrate our
approach using event logs created from process simulations in CPN tools. After
discussing related work in Section 5, Section 6 concludes the paper.

2 Background

2.1 Process-related RBAC Models

In order to transform RBAC policies to LTL rules, we need a corresponding
metamodel which defines the semantics of process-related RBAC models. In
our approach, we use the formal metamodel for process-related RBAC models
defined in [16]. However, due to the page restrictions, we cannot repeat the
corresponding definitions in this paper. Therefore, we use the BusinessActivities
UML extension defined in [16] to introduce the corresponding concepts via a
small example model.

The BusinessActivities extension enables the definition of process-related
RBAC models via extended UML activity models. In addition to roles and role-
hierarchies, it allows for the specification of static and dynamic mutual exclusion
constraints, as well as binding constraints on the tasks of a business process.
Figure 1a depicts an example of a BusinessActivity that models a simple credit
application process. This process includes five actions, three of which are so-
called Business Actions (“Negotiate contract”, “Approve contract”, and “Check
credit worthiness”) which include binding or mutual exclusion constraints.

Figure 1b shows the roles for the credit application process. In this example,
we have a role BankManager and a corresponding junior-role BankClerk. The
role-to-role assignment relation is modeled via a dashed arrow. The arrowhead
is a triangle including a “J” to indicate the end of the relation that points to the
junior-role. Such a role-hierarchy is defined as a mapping rh. The mapping rh∗

defines the inheritance in the role-hierarchy. It includes all direct and transitive
junior-roles that the senior-role inherits from (for details see [16]).

Conformance Checking of RBAC Policies in PAIS 3

Check credit

worthiness

Credit

application [else]

Credit application process

Credit

application

Check

application form

[Check passed]

[else]

Reject

application

Contract

Contract

Negotiate contract

Approve contract

[approved]

BA

DME: Approve contract

SBind: Check credit

 worthiness
DME: Negotiate contract

B B
B

[Form Ok]

[else]

SBind: Negotiate

 contract

Task: Check credit worthiness,
 Negotiate contract,
 Approve contract

RBankClerk
«rrAssign»

J

RBankManager

Task: Define credit policy

a)

b)

Fig. 1. A credit application process modeled as a BusinessActivity [16].

The task-to-role assignment tra defines which task types are assigned to a
particular role. In a role-hierarchy the senior-role inherits the permissions from
its (direct and transitive) junior-roles. Thus, in our example the BankManager
inherits the permission to execute the tasks “Check credit worthiness”, “Negoti-
ate contract”, and the “Approve contract” from the BankClerk role (see Figure
1b). The task-to-role assignment implies a mapping task ownership (town) which
allows to determine all tasks that are assigned to a particular role. In turn, the
mapping town−1 returns all roles a task is assigned to. The role-to-subject as-
signment rsa defines which roles are assigned to a particular subject. Similar
to the task-to-role assignment relation, rsa implies a mapping role-ownership
rown, which allows to determine all roles that are assigned to a particular sub-
ject. Again, a mapping rown−1 exists which returns all subjects assigned to a
role (for details see [16]).

Mutual exclusive tasks result from the division of powerful rights or respon-
sibilities to prevent fraud and abuse. Mutual exclusion constraints can be sub-
divided in static and dynamic mutual exclusion. In essence, a static mutual
exclusion (SME) constraint defines that two mutual exclusive tasks must never
be assigned to the same subject. In turn, a dynamic mutual exclusion constraint
defines that two mutual exclusive tasks must never be performed by the same
subject in the same process instance. Figure 1a depicts a DME constraint be-
tween the Business Actions “Negotiate contract” and “Approve contract”. In the
graphical representation, this DME constraint is indicated via the “DME” prefix
in the corresponding BusinessAction elements. In contrast to mutual exclusion
constraints, binding constraints define that bound tasks must be executed by
the same subject (or role). In particular, a subject-binding (SB) constraint de-
fines that two bound tasks must be performed by the same individual. In turn,
a role-binding (RB) constraint defines that bound tasks must be performed by
members of the same role, but not necessarily by the same individual. The ex-
ample from Figure 1a shows a subject binding constraint between the “Check

4 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

credit worthiness” and the “Negotiate contract” tasks. This subject-binding con-
straint is indicated via the “SBind” prefix in the corresponding BusinessAction
elements (for details see [16]).

2.2 Checking Process Conformance with Linear Temporal Logic

In the area of process mining, Linear Temporal Logic (LTL) is used as a language
to check the conformance of process models with executed business processes.
For instance, van der Aalst et al. propose an approach to verify certain prop-
erties in event logs using LTL [2]. LTL is a modal temporal logic developed by
Pnueli which introduces modalities referring to time that can be used to verify
different properties in a linear path [10]. The language includes the basic logical
operators (∧,∨,⇒,⇔, ∃, ∀) and additionally the following operators to express
time-related properties:

Nexttime (©A) specifies that a property A holds in the next state of the path.
Eventually (♦A) specifies that a property A evaluates to true at least at one

point in the path.
Always (�A) specifies that a property A has to hold in every state of the path.
Until (A ∪ B) specifies that a property A has to hold until property B holds.

Van der Aalst et al. [2] extended the language to exploit the structure of event
logs. In particular, they introduce operands to access the different properties
contained in an event log, such as attributes of the process instance and the
audit trail entries. Furthermore, they provide tool support by introducing the
LTL Checker in the ProM framework [4]. The LTL Checker provides a set of
predefined formulas that can be used out of the box and can be easily extended.
In our approach, we rely on LTL since it has proven to be a valuable means to
check conformance of event logs. Further, LTL gives us the flexibility to extend
our approach to enable the checking of a process’s control flow with respect to
the corresponding process-related RBAC model.

3 Transformation of RBAC Models to LTL Statements

In this section, we present our approach to check if business process executions
comply with a corresponding process-related RBAC model. Figure 2 depicts the
main concepts of our approach and their interrelations.

At first, we transform a particular process-related RBAC model that is mod-
eled via the BusinessActivities extension (see Section 2.1) to corresponding LTL
statements (see Section 2.2). Below, we describe this automated transformation
in detail. The resulting LTL statements then represent the properties of the
RBAC model that need to hold for each process execution. Subsequently, we use
the automatically derived LTL rules to assess event logs using the LTL checker
plug-in of the process mining workbench ProM (see also [2]). In this way, we
check if a process instance conforms to the RBAC model and reveal violations

Conformance Checking of RBAC Policies in PAIS 5

Process-aware information system

based on

based on

Model (instance) level

Modeling language

Log Analysis Software

based on

derived

from

find

based on

Event log

Specific LTL

formula

Generic

LTL templates

Linear Temporal Logics

language

LTL checker

component

RBAC model

inconsistencies
Business process

execution

Process-related

RBAC model

(metamodel instance)

Process-related RBAC

metamodel

based on

import

import

Fig. 2. Conformance checking for process-related RBAC models

in case a particular process execution (resp. the corresponding event log) is not
consistent with the respective RBAC model.

In order to support the automated transformation of process-related RBAC
models (modeled via the BusinessActivities extension), we developed a corre-
sponding RBAC-to-LTL component. Figure 3 shows the conceptual structure of
this component. In particular, we first generate the XML representation of a
particular process-related RBAC model. Subsequently, we parse this XML rep-
resentation to create a corresponding in-memory object model. This in-memory
object model is then used to derive specific LTL rules. To generate the LTL rules
we use special purpose LTL templates. In essence, these LTL templates define
patterns for the different properties of a RBAC model, including static and dy-
namic mutual exclusion, subject-binding and role-binding, as well as task-to-role
assignment relations (see also Section 2.1).

RBAC model

in XML

RBAC-to-LTL Transformer

LTL

templates

RBAC java

object model

LTL

formula

based on

generate

generate

import

based on

LTL

generator

RBAC

mapper

import import

Fig. 3. Transformation of RBAC models in XML representation to LTL formulas

6 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

<node id="BA01" xsi:type="BusinessAction"

 name="Check credit worthiness">

 <subjectBinding resource="BA02"/>

</node>

<node id="BA02" xsi:type="BusinessAction"

 name="Negotiate contract">

...

Subject-bound tasks "Check credit worthiness"
and "Negotiate contract" in XML Representation

Task t2 = new Task("Negotiate contract");

Task t1 = new Task("Check credit worthiness");

t1.addConstraint(Constraint.SB, t2);

...

Subject-bound tasks "Check credit worthiness"
and "Negotiate contract" as java objects

!(exists[P1: subject |

 exists[P2: subject |

 (<>((task == %A% /\

 (subject == P1 /\ subject != P2)))

 /\

 <>((task == %B% /\

 (subject == P2 /\ subject != P1))))

]]);

LTL template for subject-bound tasks

function createLTL4SB(ltlFile)

 tasks = RBACmodel.getTasks();

 for all task in tasks do

 sbTasks = task.getSubjectBoundTasks()

 for all sbTask in sbTasks do

 newFormula = readLTL("./lib/LTLFormulaTemplate_SB.ltl")

 newFormula.replace("%A%", task.getName())

 newFormula.replace("%B%", sbTask.getName())

 ltlFile.addFormula(newFormula)

 end for

 end for

end function

!(exists[P1: subject |

 exists[P2: subject |

 (<>((task == "Check credit worthiness" /\ (subject == P1 /\ subject != P2)))

 /\

 <>((task == "Negotiate contract" /\ (subject == P2 /\ subject != P1))))

]]);

LTL statement for subject-bound tasks

"Check credit worthiness" and "Negotiate contract"

Simplified code for the transformation of a

subject-binding constraint to LTL

Fig. 4. Example transformation of a subject-binding in XML representation to LTL

Figure 4 shows an actual example for the transformation of a subject-binding
constraint to a corresponding LTL statement. In particular, the upper right cor-
ner shows an excerpt from the XML representation of the respective RBAC
model. The source code excerpt beneath shows the creation of corresponding
Java objects from XML representation. The subsequent generation of the corre-
sponding LTL statement via a respective LTL template is shown in the source
code excerpt on the left-hand side. The LTL template for checking subject-
binding constraints between two tasks is also shown in Listing 1.1. In particular,
we check that in a certain process instance two subject-bound tasks are executed
by the same individual. In LTL we achieve this by testing if no two persons P1
and P2 exist who executed task A and task B respectively (see Listing 1.1).

1 !(exists[P1: subject |

2 exists[P2: subject |

3 (<>((task == %A% /\ (subject == P1 /\ subject != P2)))

4 /\

5 <>((task == %B% /\ (subject == P2 /\ subject != P1))))

6]

7]);

Listing 1.1. LTL formula to check subject-binding for two tasks

Listing 1.2 shows the LTL template for checking dynamic mutual exclusion
constraints. The DME constraint defined in LTL checks that no person exists
who executes two DME tasks A and B. While DME is checked within single
process instances, SME requires two tasks to be mutual exclusive over all process
instances (PI) (see [16]). However, using the LTL checker we can only assess
constraints within individual process instances. In order to check SME with the
LTL formula shown in Listing 1.2, we can, for example, combine all process
instances of a certain event log into a single PI.

Conformance Checking of RBAC Policies in PAIS 7

1 !(exists[P: subject |

2 (<>((subject == P /\ task == %A%))

3 /\

4 <>((subject == P /\ task == %B%)))

5]);

Listing 1.2. LTL formula to check mutual exclusion for two tasks

1 (

2 <>((task == %A% /\

3 (subject == P1 \/ (... \/ (subject == P_N-1 \/ subject == P_N ...)))))

4 \/ !(<>(task == %A%))

5);

Listing 1.3. LTL formula to check task-to-role assignment (excerpt)

From the perspective of event logs, constraints involving roles – such as role-
binding (RB) and task-to-role assignment – are more complex. This is due to
the fact that normally role information is not included in event logs. Therefore,
we indirectly check if a certain rule for task-to-role assignments holds in the
event log by checking the subjects who perform the corresponding task. At first,
we retrieve the roles a task is assigned to (town−1, see also Section 2.1). Next,
we check if one of the subjects assigned to theses roles (rown−1) performed the
respective task instance. Listing 1.3 shows the form of a corresponding check
in LTL. In particular, we check if for a role R that owns a task A one of the
subjects assigned to R (or to one of R’s senior-roles) actually executed task A.

Checking a role-binding constraint in LTL is similar to checking task-to-role
assignments. Because typically role information is not included in the event logs,
we have to use the executing subjects in order to check if two role-bound tasks
have been executed by the same role. Thus, we build subformulas for each role
R and check if two role-bound tasks A and B have been executed by a subject
assigned to this role R. Algorithm 1 shows how such a LTL formula is build. An
excerpt of a LTL formula created with this algorithm is shown in Listing 1.4.
It checks if two tasks A and B (assigned to role R1 and R2) were executed by
subjects either owning role R1 or R2. We use placeholders and replacements in
order to dynamically derive the correct structure of brackets in the LTL formula3.

4 Consistency Checking of an Example Process

We test our approach using an event log created with CPN Tools (see [5]). In
particular, we modeled the credit application process from Figure 1 in the CPN
Tools environment and generated corresponding event logs in MXML format
[20]. We use the CPN Tools event log simulation to determine the structure
and content of the event log for our conformance check. This also allows us
to integrate all kinds of violations of the access control policies in a controlled

3 Constructs in LTL have to be structured similar to binary trees. Thus, we cannot
write (A ∨ B ∨ C), but must use (A ∨ (B ∨ C)) or ((A ∨ B) ∨ C).

8 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

1 (

2 ((<>((task == %A%) /\ (subject == S1_R1 \/ (subject == S2_R1 \/ ...)))

3 /\

4 <>((task == %B%) /\ (subject == S1_R1 \/ (subject == S2_R1 \/ ...))))

5 \/

6 (<>((task == %A%) /\ (subject == S1_R2 \/ (subject == S2_R2 \/ ...)))

7 /\

8 <>((task == %B%) /\ (subject == S1_R2 \/ (subject == S2_R2 \/ ...)))))

9 \/ !((<>(task == %A%) /\ <>(task == %B%)))

10);

Listing 1.4. LTL formula to check role-binding of two tasks (excerpt)

Algorithm 1 Generation of role-binding formulas

1: function getLTL4RBind(task1, task2, roles)
2: formula = ’%RF%’
3: for all role ∈ roles do
4: formulaR = ’(%TF% ∨ !((♦(task == ”task1.getName()”)
5: ∧ ♦(task == ”task2.getName()”)))’
6: formulaT1 = ’♦((task == ”task1.getName()” ∧ %SF%))’
7: formulaT1 = ’♦((task == ”task2.getName()” ∧ %SF%))’
8: subFormula = ”
9: subjects = role.getSubjects()

10: for all subject ∈ subjects do
11: subFormula = ’subject == ”subject.getName()”’
12: if !isLastSubject() then
13: subFormula = ’(subFormula ∨ %SF%)’
14: end if
15: formulaT1 = formulaT1.replace(’%SF%’, subFormula)
16: formulaT2 = formulaT2.replace(’%SF%’, subFormula)
17: end for
18: formulaR = formulaR.replace(’%TF%’, ’(formulaT1 ∧ formulaT2)’)
19: if !isLastRole() then
20: formulaR = ’(formulaR ∨ %RF%)’
21: end if
22: formula = formula.replace(’%RF%’, formulaR)
23: return formula

24: end for
25: end function

manner. For example, we can manipulate the event log and include tasks and
performers that do not conform to the corresponding RBAC model. In this way,
we can check event logs that include all kinds of inconsistencies. In Listing 1.5
we show an excerpt of an event log created with CPN Tools.

Manually checking an event log for inconsistencies is error-prone and time-
consuming. Therefore, our approach supports the automated definition of LTL
statements from the XML representation of process-related RBAC models (see

Conformance Checking of RBAC Policies in PAIS 9

1 ...

2 <AuditTrailEntry>

3 <WorkflowModelElement>Check credit worthiness</WorkflowModelElement>

4 <Originator>Bob</Originator>

5 ...

6 </AuditTrailEntry>

7 <AuditTrailEntry>

8 <WorkflowModelElement>Negotiate contract</WorkflowModelElement>

9 <Originator>Bob</Originator>

10 ...

11 </AuditTrailEntry>

Listing 1.5. Excerpt of a simulated event log for a credit application process

1 ...

2 <node id="BA01" xsi:type="BusinessAction" name="Check credit worthiness">

3 <subjectBinding resource="BA02"/>

4 </node>

5 <node id="BA02" xsi:type="BusinessAction" name="Negotiate contract">

6 <dynamicExclusion resource="BA03"/>

7 <subjectBinding resource="BA01"/>

8 </node>

9 ...

Listing 1.6. Excerpt of the process-related RBAC model instance in XML represen-
tation

Section 3). For this purpose, we converted the graphical model from Figure 1
into its corresponding XML representation. Listing 1.6 shows an excerpt of a
corresponding XML document including the two subject-bound tasks “Check
credit worthiness” and “Negotiate contract”.

Now we use our RBAC-to-LTL component (see Section 3) to parse the XML
document and derive LTL statements for all properties defined in the RBAC
model. Listing 1.7 shows the generated LTL construct for subject-binding of the
tasks “Check credit worthiness” and “Negotiate contract”.

Subsequently, the automatically generated LTL statements can be imported
in a software such as ProM to analyze the corresponding event logs and to
reveal violations of the policies defined via the respective process-related RBAC
model. Figure 5 shows the result of a corresponding analysis in ProM for our
event log of the credit application process. In general, we have two different views

1 formula SB_task_check_credit_worthiness_and_negotiate_contract () :=

2 {

3 <p>Task "Check credit worthiness" and task "Negotiate contract"

4 must be executed by the same person.</p>

5 }

6 SB_task_A_and_B("Check credit worthiness", "Negotiate contract");

Listing 1.7. LTL formula to check the subject-bound tasks “Check credit worthiness”
and “Negotiate contract”

10 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

in ProM: the rule perspective and the instance perspective. Both perspectives
are composed similarly. As shown in Figure 5, the rule perspective has a tab
for satisfied rules and a tab for unsatisfied rules. For each of the unsatisfied
rules it shows which process instances (cases) in the event log satisfy this rule
and which do not. To directly see the respective violation we can select the
case and inspect its event log entries. For example, Figure 5 shows a violated
subject-binding constraint in case 15 for the subject-bound tasks “Check credit
worthiness and “Negotiate contract”. In the rightmost view from Figure 5 we can
see the event logs entries for this process instance. Furthermore, we see which
two subjects executed these subject-bound tasks as well as the date and time
of this execution event. In this case, two users named Lea and Bob have been
executing these subject-bound tasks.

Fig. 5. LTL Checker results for the simulated credit application process

5 Related Work

In [9], Hansen and Oleshchuk introduce an approach to check the implementa-
tion of RBAC constraints using the Spin4 model checker. They formally express
the given RBAC properties via LTL. To check the conformance in Spin, Hansen
and Oleshchuk use the RBAC implementation in PROMELA, the internal spec-
ification language of Spin. In contrast to our approach, however, they do not
assess the compliance of actual process executions with a corresponding RBAC
model. A similar approach was presented by Ahmed and Tripathi [3], who spec-
ify and statically verify security requirements for CSCW (Computer Supported
Cooperative Work) systems with Spin.

4 http://spinroot.com/

Conformance Checking of RBAC Policies in PAIS 11

Moreover, the work on business process compliance checking from the area
of process mining is directly related to the work presented in this paper. Van der
Aalst et al. [2] presented a general approach to verify different properties in event
logs. Furthermore, in [17] van der Aalst and de Medeiros apply process mining
to address security issues. They analyze event logs to discover security violations
in process execution. In particular, they check if new events in a certain process
execution comply with a process model that defines acceptable behavior. In
addition, they introduce an approach to check whether new audit trails conform
to the predefined ordering relation of tasks. Another approach in this area has
been introduced by Rozinat and van der Aalst [12], where the stream of events
is replayed from a log in order to reveal inconsistencies. However, the focus
of these approaches is on analyzing the process flow perspective. Thereby, our
work supplements these approaches with a perspective on process-related RBAC
models.

6 Conclusion and Outlook

In this paper, we presented an approach to automatically generate LTL state-
ments from process-related RBAC models (see Sections 2.1 and 3). The LTL
statements generated by our RBAC-to-LTL software component can be applied
to check the event logs of business process instances for violations of the corre-
sponding RBAC policies. For example, these checks help to find misconfigura-
tions or implementation errors in PAIS. Thus, the results of such an event log
analysis can give a first insight into the modifications of the corresponding PAIS
or its configuration which are necessary to comply with a tailored RBAC model.
To test our approach, we used the ProM tool to import the LTL statements that
are generated by our RBAC-to-LTL component and checked the event logs of
a credit application process. In our future work, we plan to integrate our work
with related approaches for analyzing the control flow.

References

1. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda.
Computers in Industry 53 (April 2004)

2. van der Aalst, W., de Beer, H., van Dongen, B.: Process Mining and Verification of
Properties: An Approach based on Temporal Logic. In: On the Move to Meaningful
Internet Systems 2005: CoopIS, DOA, and ODBASE, Lecture Notes in Computer
Science (LNCS), Vol. 3760, Springer Verlag. pp. 130–147 (2005)

3. Ahmed, T., Tripathi, A.R.: Static verification of security requirements in role based
CSCW systems. In: Proceedings of the 8th ACM Symposium on Access Control
Models and Technologies (SACMAT) (2003)

4. de Beer, H.: The LTL Checker Plugins: A Reference Manual. Eindhoven University
of Technology, Eindhoven (2004)

5. de Medeiros, A., Günther, C.W.: Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In: Proceedings of the Sixth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools. pp. 177–190 (2005)

12 A. Baumgrass, T. Baier, J. Mendling, M. Strembeck

6. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-Aware Information Sys-
tems. John Wiley & Sons, Inc. (2005)

7. El Kharbili, M., Alves de Medeiros, A., Stein, S., van der Aalst, W.: Business
Process Compliance Checking: Current State and Future Challenges. In: MobIS.
pp. 107–113 (2008)

8. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role-Based Access Control, Second
Edition. Artech House (2007)

9. Hansen, F., Oleshchuk, V.: Conformance Checking of RBAC Policy and its Im-
plementation. In: Information Security Practice and Experience, Lecture Notes in
Computer Science (LNCS), Vol. 3439, Springer Verlag (2005)

10. Pnueli, A.: The Temporal Logic of Programs. In: Foundations of Computer Science.
pp. 46–57 (1977)

11. Rozinat, A., van der Aalst, W.: Conformance Testing: Measuring the Fit and Ap-
propriateness of Event Logs and Process Models. In: Bussler, C., Haller, A. (eds.)
Business Process Management Workshops, Lecture Notes in Computer Science
(LNCS), Vol. 3812, Springer Verlag (2006)

12. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64 – 95 (2008)

13. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control
Models. IEEE Computer 29(2) (February 1996)

14. Sandhu, R., Samarati, P.: Access Control: Principles and Practice. IEEE Commu-
nications 32(9) (September 1994)

15. Strembeck, M.: Scenario-Driven Role Engineering. IEEE Security & Privacy 8(1)
(January/February 2010)

16. Strembeck, M., Mendling, J.: Modeling process-related RBAC models with ex-
tended UML activity models. Information and Software Technology 53(5), 456 –
483 (2011)

17. van der Aalst, W., de Medeiros, A.: Process Mining and Security: Detecting
Anomalous Process Executions and Checking Process Conformance. Electronic
Notes in Theoretical Computer Science 121, 3 – 21 (2005)

18. van der Aalst, W., van Dongen, B., C. Günther, A.R., Verbeek, H.M.W., Weijters,
A.J.M.M.: ProM: The Process Mining Toolkit. In: Proceedings of the BPM 2009
Demonstration Track. vol. 489. CEUR-WS.org (September 2009)

19. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: A survey of issues and approaches. Data & Knowledge
Engineering 47(2) (2003)

20. van Dongen, B., van der Aalst, W.: A Meta Model for Process Mining Data. In:
Proceedings of the Open Interop Workshop on Enterprise Modelling and Ontologies
for Interoperability (2005)

21. Verbeek, H.M.W., Buijs, J., van Dongen, B., van der Aalst, W.: ProM 6: The
Process Mining Toolkit. In: Proceedings of BPM 2010 Demonstration Track. vol.
615, pp. 34–39. CEUR-WS.org (September 2010)

	Conformance Checking of RBAC Policies in Process-Aware Information Systems

