Skip to main content

Free Energy Monte Carlo Simulations on a Distributed Network

  • Conference paper
  • 1827 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7134))

Abstract

While the use of enhanced sampling techniques and parallel computing to determine potentials of mean force is in widespread use in modern Molecular Dynamics and Monte Carlo simulation studies, there have been few methods that efficiently combine heterogeneous computer resources of varying quality and speeds in realizing a single simulation result on a distributed network. Here, we apply an algorithm based on the Monte Carlo method of Wang and Landau within a client-server framework, in which individual computing nodes report a histogram of regions of phase space visited and corresponding updates to a centralized server at regular intervals entirely asynchronously. The server combines the data and reports the sum to all nodes so that the overall free energy determination scales linearly with the total amount of resources allocated. We discuss our development of this technique and present results for molecular simulations of DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloomfield, V.A.: DNA condensation by multivalent cations. Biopolymers 44(3), 269–282 (1997)

    Article  Google Scholar 

  2. Calvo, F.: Sampling along reaction coordinates with the Wang-Landau method. Molecular Physics 100, 3421–3427 (2002)

    Article  Google Scholar 

  3. Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA elasticity. Journal of Chemical Physics 118, 7127–7140 (2003)

    Article  Google Scholar 

  4. Czapla, L., Swigon, D., Olson, W.K.: Sequence-dependent effects in the cyclization of short DNA. Journal of Chemical Theory and Computation 2(3), 685–695 (2006)

    Article  Google Scholar 

  5. Czapla, L., Swigon, D., Olson, W.K.: Effects of the nucleoid protein HU on the structure, flexibility, and ring-closure properties of DNA deduced from Monte Carlo simulations. J. Mol. Biol. 382(2), 353–370 (2008)

    Article  Google Scholar 

  6. Ferrenberg, A.M., Swendsen, R.H.: Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63(12), 1195–1198 (1989)

    Article  Google Scholar 

  7. Henin, J., Fiorin, G., Chipot, C., Klein, M.L.: Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. Journal of Chemical Theory and Computation 6, 35–47 (2010)

    Article  Google Scholar 

  8. Khan, M.O., Chan, D.Y.C.: Effect of chain stiffness on polyelectrolyte condensation. Macromolecules 38(7), 3017–3025 (2005)

    Article  Google Scholar 

  9. Khan, M.O., Kennedy, G., Chan, D.Y.C.: A scalable parallel Monte Carlo method for free energy simulations of molecular systems. J. Comput. Chem. 26(1), 72–77 (2005)

    Article  Google Scholar 

  10. Laio, A., Gervasio, F.L.: Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics 71(12), 126601 (2008)

    Article  Google Scholar 

  11. Lee, H.K., Okabe, Y., Landau, D.P.: Convergence and refinement of the Wang-Landau algorithm. Technical Report cond-mat/0506555 (2005)

    Google Scholar 

  12. Manning, G.S.: Counterion binding in polyelectrolyte theory. Accounts of Chemical Research 12(12), 443–449 (1979)

    Article  Google Scholar 

  13. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  14. Morozov, A.N., Lin, S.H.: Accuracy and convergence of the Wang-Landau sampling algorithm. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 76(2 pt. 2), 026701 (2007)

    Article  Google Scholar 

  15. Olmsted, M.C., Bond, J.P., Anderson, C.F., Record Jr., M.T.: Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Biophys J. 68(2), 634–647 (1995)

    Article  Google Scholar 

  16. Schulz, B.J., Binder, K., Muller, M., Landau, D.P.: Avoiding boundary effects in Wang-Landau sampling. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 67(6 pt. 2), 067102 (2003)

    Article  Google Scholar 

  17. van Noort, J., Verbrugge, S., Goosen, N., Dekker, C., Dame, R.T.: Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. U S A 101(18), 6969–6974 (2004)

    Article  Google Scholar 

  18. Voter, A.F.: Parallel replica method for dynamics of infrequent events. Physical Review B 57, 13985–13988 (1998)

    Article  Google Scholar 

  19. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czapla, L., Siretskiy, A., Grime, J., Khan, M.O. (2012). Free Energy Monte Carlo Simulations on a Distributed Network. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28145-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28144-0

  • Online ISBN: 978-3-642-28145-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics