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Abstract. The QR algorithm computes the Schur form of a matrix
and is by far the most popular approach for solving dense nonsymmet-
ric eigenvalue problems. Multishift and aggressive early deflation (AED)
techniques have led to significantly more efficient sequential implemen-
tations of the QR algorithm during the last decade. More recently, these
techniques have been incorporated in a novel parallel QR algorithm on
hybrid distributed memory HPC systems. While leading to significant
performance improvements, it has turned out that AED may become a
computational bottleneck as the number of processors increases. In this
paper, we discuss a two-level approach for performing AED in a parallel
environment, where the lower level consists of a novel combination of
AED with the pipelined QR algorithm implemented in the ScaLAPACK
routine PDLAHQR. Numerical experiments demonstrate that this new im-
plementation further improves the performance of the parallel QR algo-
rithm.

1 Introduction

The solution of matrix eigenvalue problems is a classical topic in numerical
linear algebra, with applications in various areas of science and engineering. The
QR algorithm developed by Francis and Kublanovskaya, see [9,19] for recent
historic accounts, has become the de facto standard for solving nonsymmetric
and dense eigenvalue problems. Parallelizing the QR algorithm has turned out to
be highly nontrivial matter [13]. To our knowledge, the ScaLAPACK [5] routine
PDLAHQR implemented nearly 10 years ago based on work by Henry, Watkins,
and Dongarra [14], is the only publicly available parallel implementation of the
QR algorithm. Recently, a novel parallel QR algorithm [10] has been developed,
which turns out to be more than a magnitude faster compared to PDLAHQR for
sufficiently large problems. These improvements are attained by parallelizing
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the multishift and aggressive early deflation (AED) techniques developed by
Braman, Byers, and Mathias [6, 7] for the sequential QR algorithm.

Performed after each QR iteration, AED requires the computation of the
Schur form for a trailing principle submatrix (the so called AED window) that is
relatively small compared to the size of the whole matrix. In [10], a slightly mod-
ified version of the ScaLAPACK routine PDLAHQR is used for this purpose. Due
to the small size of the AED window, the execution time spent on AED remains
negligible for one or only a few processors but quickly becomes a dominating
factor as the number of processors increases. In fact, for a 100 000 x 100 000 ma-
trix and 1024 processor cores, it was observed in [10] that 80% of the execution
time of the QR algorithm was spent on AED. This provides a strong motivation
to reconsider the way AED is performed in parallel. In this work, we propose to
perform AED by a modification of the ScaLAPACK routine PDLAHQR, which also
incorporates AED at this lower level, resulting in a two-level recursive approach
for performing AED. The numerical experiments in Section 4 reveal that our
new approach reduces the overall execution time of the parallel QR algorithm
from [10] by up to 40%.

2 Overview of the QR algorithm with AED

In the following, we assume some familiarity with modern variants of the QR
algorithm and refer to [15, 18] for introductions. It is assumed that the matrix
under consideration has already been reduced to (upper) Hessenberg form by,
e.g., calling the ScaLAPACK routine PDGEHRD. Algorithm 1 provides a high-level
description of the sequential and parallel QR algorithm for Hessenberg matrices,
using multiple shifts and AED. Since this paper is mainly concerned with AED,
we will only mention that the way the shifts are incorporated in the multishift
QR sweep (Step 7) plays a crucial role in attaining good performance, see [6, 10,
17] for details.

Algorithm 1 Multishift Hessenberg QR Algorithm with AED
1. WHILE not converged
2. Perform AED on the nyi, X nwin trailing principle submatrix.
3. Apply the accumulated orthogonal transformation to the
corresponding off-diagonal blocks.

4. IF enough eigenvalues have been deflated in step 2
5. GOTO step 2.

6. END IF

7.

Perform a multishift QR sweep with undeflatable
eigenvalues from Step 2 as shifts.

8. Check for negligible subdiagonal elements.

9. END WHILE




In the following, we summarize the AED technique proposed by Braman,
Byers, and Mathias [7]. Given an n x n upper Hessenberg matrix H, we partition
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where nyi, denotes the size of the AED window. Then a (real) Schur decom-
position Hzs = VTV is performed, where V is orthogonal and 7' in upper
quasi-triangular form. Setting

we obtain
Hyy Hyp Hi3V
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where s € R™ is the so called spike, created from the subdiagonal entry con-
tained in Hss. The eigenvalues of T are checked subsequently for convergence
and possibly deflated. The eigenvalue (or 2 x 2 block) in the bottom right corner
of T can be deflated if the magnitude of the last component (or the last two
components) of the spike is negligibly small. Undeflatable eigenvalue are moved
to the top left corner of T' by a swapping algorithm [4, 11]. After this transforma-
tion is completed, the next eigenvalue in the bottom right corner of T is treated
in the same way. The orthogonal transformations for swapping eigenvalues are
accumulated in an orthogonal matrix V € R™in*mwin  After all eigenvalues of T'
have been processed, the entire matrix is reduced back to Hessenberg form and
the off-diagonal blocks Hy3 and Hsz are multiplied with the product of all in-
volved orthogonal transformations. It is recommended to choose nyi, somewhat
larger, e.g., by 50%, than the number of shifts in the multishift QR iterations [6].

Dramatic performance gains from AED have been observed both for sequen-
tial and parallel variants of the QR algorithm. These gains can be achieved
essentially no matter how the rest of the QR algorithm is implemented, in par-
ticular how many shifts are used in the multishift QR sweep [7]. In effect, any
implementation of the QR algorithm may benefit from AED; a fact that we will
use below to improve the ScaLAPACK routine PDLAHQR. A convergence analysis,
partially explaining the success of AED, can be found in [16].

3 Parallel implementation of AED

Since the main aim of this paper is to improve the parallel QR algorithm and
implementation described in [10], we first recall the structure of the main rou-
tines from this implementation, see Figure 1. The entry routine is PDHSEQR,



Fig. 1. Partial software structure for the parallel QR algorithm from [10].
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which branches into PDLAQR1 for small to medium-sized matrices and PDLAQRO
for larger ones. The cut-off point for what is considered medium-sized will be
explained in the numerical experiments, see Section 4. The main purpose of
PDLAQRO is to call PDLAQR3 for performing AED and PDLAQR5 for performing
multishift QR iterations. The former routine invokes PDLAQR1 for performing
the Schur decomposition of the AED window. In [10], PDLAQR1 amounts to the
ScalLAPACK routine PDLAHQR with minor modifications concerning the process-
ing of 2 x 2 blocks in the real Schur form and the multithreaded application of
small Householder reflectors. In the following, we will reconsider this choice for
PDLAQRL.

3.1 Choice of algorithm for performing AED

A number of alternative choices are available for performing the Schur decom-
position of the relatively small AED window:

— A recursive call to PDHSEQR or PDLAQRO, implementing the parallel QR algo-
rithm with multishifts and AED.

— A call to PDLAQR1, a minor modification of ScaLAPACK’s PDLAHQR.

— Assembling the AED window in local memory and a call to the sequential
LAPACK [2] routine DLAHQR (or DLAQR4).

According to the numerical experiments in [10], a recursive call of PDLAQRO may
not be the optimal choice, mainly because of the fact that the way multishift QR
iterations are implemented in PDLAQRO suffers from poor scalability for relatively
small matrices. ScaLAPACK’s PDLAHQR achieves better scalability but does not
incorporate modern developments, such as AED, and therefore suffers from poor
performance. The third alternative, calling a sequential algorithm, should be
used for submatrices that are too small to justify the overhead incurred by
parallelization. In our experimental setup this was the case for submatrices of
size 384 or smaller.

In this work, we propose to modify PDLAQR1 further and add AED to the
parallel pipelined QR algorithm implemented in ScaLAPACK’s PDLAHQR. Since
the main purpose of PDLAQR1 is to handle small to medium-sized submatrices, a



parallel implementation of AED, as in [10], will not be efficient on this level, since
the size of the AED window is even smaller and does not allow for reasonable
parallel performance in the Schur decomposition or the swapping of diagonal
blocks. We have therefore chosen the third alternative for performing AED on
the lowest level and invoke the sequential LAPACK routine DLAQR3 [8]. The
accumulated orthogonal transformations returned by DLAQR3 are applied to the
off-diagonal blocks in parallel. Therefore, O(,/p) processors are used for updating
the off-diagonal blocks. A high-level description of the resulting procedure is
given in Algorithm 2.

Algorithm 2 Parallel pipelined QR algorithm with AED (new PDLAQR1)
1. WHILE not converged

2. Copy the (nwin + 1) X (nwin + 1) trailing submatrix to local memory
and perform sequential AED on an nyi, X nyin window.
3. Apply the accumulated orthogonal transformations to the

corresponding off-diagonal blocks in parallel.
IF enough eigenvalues have been deflated
GOTO step 2.

END IF
Compute the eigenvalues of a trailing submatrix.
Perform a pipelined QR sweep with the eigenvalues computed
in step 7 as shifts.

9. Check for negligible subdiagonal elements.
10. END WHILE

O NS

3.2 Implementation details

In the following we discuss some implementation issues of Algorithm 2. The basis
for our modification is PDLAQR1 from [10], referred to as the old PDLAQR1 in the
following discussion. Following the notation established in the (Sca)LAPACK
implementations of the QR algorithm, we let NH=IHI-ILO+1 denote the dimen-
sion of the active NH x NH diagonal block and NS the number of shifts in the
multishift QR sweep.

— In the special case when the active diagonal block is small enough, say NH <
384, we copy this block to local memory and call DLAHQR/DLAQR4 directly.
The off-diagonal blocks are updated in parallel. This reduces communication
while the required extra memory is negligible. We have observed that this
modification has a non-negligible positive impact on the total execution time,
especially during the final stages of the QR algorithm.

— The size of the deflation window, nin, is determined by the return value of
the LAPACK routine IPARMQ, see [8] for more details. In PDLAHQR/PDLAQR1,
NS is mainly determined by the process grid and does not exceed 32. This is
usually smaller than the number of shifts suggested by IPARMQ. Also, typical



values of ny;, returned by IPARMQ are 96, 192 and 384, which is much larger
than if we chose NS*3/2. Based on the observation that the optimal AED
window size does not depend strongly on the number of shifts used in the
QR sweeps, we prefer to stick to large nyi, rather than using NS*3/2. This
increases the time spent on AED, but the overhead is compensated by fewer
pipelined QR sweeps.

— The criterion for restarting another AED process rightaway, without an in-
termediate QR iteration, is the same as in LAPACK [8]:

1. The number of undeflatable eigenvalues is smaller than NS; or

2. the number of deflated eigenvalues is larger than nyi, x 14%.

Note that we choose the criterion in accordance with the window size sug-
gested by IPARMQ.

— In contrast to Algorithm 1, undeflatable eigenvalues are not used as shifts in
subsequent multishift QR sweep. This choice is based on numerical experi-
ments with the following three shift strategies:

1. Use undeflatable eigenvalues obtained from AED as shifts.
2. Compute and use the eigenvalues of the NS x NS trailing submatrix after
AED as shifts (by calling DLAHQR/DLAQR4).
3. Compute and use some of the eigenvalues of the (nwin + 1) X (nwin + 1)
trailing submatrix after AED as shifts (by calling DLAHQR/DLAQR4).
An illustration of these strategies is given in Figure 2. Based on the exper-
iments, we prefer the third strategy despite the fact that it is the compu-
tationally most expensive one. However, it provides shifts of better quality,
mainly because of the larger window size, which was found to reduce the
number of pipelined QR sweeps and to outweigh the increased cost for shift
computation.

Fig. 2. Three shift strategies (nwin = 6, NS=4)
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— When performing AED within the new PDLAQR1, each processor receives a
local copy of the trailing submatrix and calls DLAQR3 to execute the same



computations concurrently. This implies redundant work performed in paral-
lel but it reduces communication since the orthogonal transformation matrix,
to be applied in parallel in subsequent updates, is readily available on each
processor. A similar approach is suggested in the parallel QZ algorithm by
Adlerborn et al. [1]. If the trailing submatrix is not laid out across a border
of the processor mesh, we call DGEMM to perform the updates. If the trailing
submatrix is located on a 2 x 2 processor mesh, we organize the computation
and communication manually for the update. Otherwise, PDGEMM is used for
updating the off-diagonal blocks.

4 Numerical Experiments

All the experiments in this section were run on the 64-bit low power Intel
Xeon Linux cluster akka hosted by the High Performance Computing Cen-
ter North (HPC2N). Akka consists of 672 dual socket quadcore L5420 2.5GHz
nodes, with 16GB RAM per node, connected in a Cisco Infiniband network.
The code is compiled by the PathScale compiler version 3.2 with the flags -02
-fPIC -TENV:frame pointer=0N -0PT:01imit=0. The software libraries Open-
MPI 1.4.2, BLACS 1.1 patch3, ScaLAPACK /PBLAS 1.8.0, LAPACK 3.2.1 and
GOTOBLAS?2 1.13 [12] are linked with the code. No multithreaded features, in
particular no mixture of OpenMP and MPI, were used. We chose NB = 50 as the
block size in the block cyclic distribution of ScaLAPACK. The test matrices are
dense square matrices with entries randomly generated from a uniform distribu-
tion in [0,1]. The ScaLAPACK routine PDGEHRD is used to reduce these matrices
initially to Hessenberg form. We only measure the time for the Hessenberg QR
algorithm, i.e., the reduction from Hessenberg to real Schur form.

4.1 Improvement for PDLAQR1

We first consider the isolated performance of the new PDLAQR1 compared to
the old PDLAQR1 from [10]. The sizes of the test matrices were chosen to fit the
typical sizes of the AED windows suggested in [10]. Table 1 displays the measured
execution time on various processor meshes. For determining the cross-over point
for switching from PDLAQRO to PDLAQR1 in the main routine PDGSEQR, we also
measured the execution time of PDLAQRO.

The new implementation of PDLAQR1 turns out to require much less time than
the old one, with a few, practically nearly irrelevant exceptions. Also, the new
PDLAQRI1 scales slightly better than PDLAQRO, especially when the size of matrix
is not large. It is worth emphasizing that the scaling of all implementations
eventually deteriorates as the number of processor increases, simply because
the involved matrices are not sufficiently large to create enough potential for
parallelization.

Quite naturally, PDLAQRO becomes faster than the new PDLAQR1 as the matrix
size increases. The dashed line in Table 1 indicates the crossover point between
both implementations. A rough model of this crossover point results is given by



Table 1. Execution time in seconds for old PDLAQR1 (1st line for each n), new PDLAQR1
(2nd line) and PDLAQRO (3rd line). The dashed line is the crossover point between the
new PDLAQR1 and PDLAQRO.

Matrix size Processor mesh
(n) 1x1 2x2 3x3 4x4 6x6 8x8 10x10
96 0.01 0.05 0.11 0.18 0.15 0.25 0.27

0.08 0.08 0.02 0.05 0.03 0.08 0.07
0.14 040 096 1.11 252 3.16 2.95
192 0.09 017 018 0.22 032 047 0.64
0.09 0.07 0.07 0.13 0.16 0.12 0.26
0.15 030 061 1.05 373 434 3.64
384 0.60 073 061 0.63 078 1.09 1.24
0.27 029 028 0.36 040 048 0.48
047 055 0.72 0.89 208 323 3.76
768 738~ 353 253, 235 261 280 3.52
3.77 224 1731 157 173 217 2.25
1.83 151 161! 1.68 270 3.03 3.31
1536 133.31  20.68 13.23 11.12; 9.79 10.48  13.05
35.94 927 6.54 5521 5.11 5.31 6.33
1234 6.61 563 486 6.26 6.76 6.84
3072 |2313.61 139.05 96.73 66.06 50.64 41.82 = ~63.22]
522.81 45.72 33.13 22.60 19.08 18.12 22.23
80.71 30.67 21.34 15.82 15.56 15.09 14.98
6144 1049.56 623.63 351.44 231.70 199.75  227.45
144.96 167.71 103.15 78.75 66.90 70.48
198.54 129.58 87.07 55.40 47.61 44.07




n = 220,/p, which fits the observations reasonably well and has been incorpo-
rated in our implementation.

4.2 Overall Improvement

As the main motivation for the development of the new PDLAQR1 is its application
to AED within the parallel QR algorithm, we have also measured the resulting
reduction of the overall execution time of PDHSEQR. From the results presented in
Table 2, it is clear that PDHSEQR with the new PDLAQR1 is almost always better
than the old implementation. The improvement varies between 5% and 40%.
Among the measured configurations, there is one notable exception: n = 32000
on a 6 x 6 processor grid. This is actually the only case for which PDLAQRO is
called within the AED phase, which seems to indicate that the choice of the
crossover point requires some additional fine tuning.

Note that the largest AED window in all these experiments is of size 1536.
According to Table 1, we expect even more significant improvements for larger
matrices, which have larger AED windows.

Table 2. Execution time in seconds for old PDHSEQR (1st line for each n),
new PDHSEQR (2nd line). The third lines show the relative improvement.

Processor mesh Matrix size (n)
4000 8000 16000 32000
162.43
1x1 161.28
0.71%
71.34  501.83
2x2 68.02  452.70

4.65%  9.79%
39.18  170.75  1232.40
4 x4 30.68 158.66 1037.93
22.69%  7.08%  15.78%
35.96  123.46 617.97  3442.08
6 x6 24.62 96.23 509.38  3584.74
31.54% 22.06% 17.57%  -4.14%
33.09 97.20 435.52  2639.32
8 x 8 20.59 67.42 366.31  2016.93
37.78% 31.64% 15.89%  24.58%
36.05 101.75 355.38  2053.16
10 x 10 21.39 62.29 291.06  1646.30
41.67% 39.58%  18.10%  19.82%




5 Summary

We have reconsidered the way AED is performed in the parallel QR algo-
rithm [10]. A recursive approach is suggested, in which the ScalLAPACK routine
PDLAHQR is combined with AED to address medium-sized problems. The focus
of this work has been on minimizing the total execution time instead of how to
take utility of all the processors or how well the algorithm scales. Computational
experiments demonstrate the efficiency of our approach, but also reveal potential
for further improvements by a more careful fine tuning of the crossover point for
switching between different implementations of the parallel QR algorithm.
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