Skip to main content

Limits to Nonlinear Inversion

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7133))

Abstract

For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our ability to produce efficient search algorithms. Such algorithms may be completely problem-independent (which is the case for the so-called ’meta-heuristics’ or ’blind-search’ algorithms), or they may be designed with the structure of the concrete problem in mind.

We show that pure meta-heuristics are inefficient for large-scale, non-linear inverse problems, and that the ’no-free-lunch’ theorem holds. We discuss typical objections to the relevance of this theorem.

A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nolet, G., van Trier, J., Huisman, R.: A formalism for nonlinear inversion of seismic surface waves. Geoph. Res. Lett. 13, 26–29 (1986)

    Article  Google Scholar 

  2. Nolet, G.: Partitioned wave-form inversion and 2D structure under the NARS array. J. Geophys. Res. 95, 8499–8512 (1990)

    Article  Google Scholar 

  3. Snieder, R.: The role of nonlinearity in inverse problems. Inverse Problems 14, 387–404 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sambridge, M.: Exploring multi-dimensional landscapes without a map. Inverse Problems 14(3), 427–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirkpatrick, S.C., Gelatt, D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Boston (1989)

    MATH  Google Scholar 

  8. Glover, F.: Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. & Ops. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sambridge, M.: Geophysical inversion with a Neighbourhood algorithm -I. Searching a parameter space. Geoph. Jour. Int. 138, 479–494 (1999a)

    Article  Google Scholar 

  10. Sambridge, M.: Geophysical inversion with a Neighbourhood algorithm -II. Appraising the ensemble. Geoph. Jour. Int. 138, 727–746 (1999b)

    Article  Google Scholar 

  11. Cauchy, A.L.: First Turin Memoir (1831)

    Google Scholar 

  12. Mosegaard, K., Tarantola, A.: Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100(B7), 12,431–12,447 (1995)

    Google Scholar 

  13. Khachiyan, L.G.: The problem of computing the volume of polytopes is np-hard. Uspekhi Mat. Nauk. 44, 199–200 (1989)

    MATH  Google Scholar 

  14. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  15. Brown, A.L.: Uniform approximation by radial basis functions. In: Light, W.A. (ed.) Advances in Numerical Analysis, vol. 2, pp. 203–206. Oxford University Press, Oxford (1992)

    Google Scholar 

  16. Papadimitriou, C.H., Steiglitz: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, Inc., Mineola (1998)

    Google Scholar 

  17. Hastings, W.K.: Monte Carlo sampling methods using Markov Chain and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mosegaard, K. (2012). Limits to Nonlinear Inversion. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28151-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28151-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28150-1

  • Online ISBN: 978-3-642-28151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics