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Abstract. In this paper, we show how an attacker can launch malware
onto a large number of smartphone users by plagiarizing Android appli-
cations and by using elements of social engineering to increase infection
rate. Our analysis of a dataset of 158,000 smartphone applications meta-
information indicates that 29.4% of the applications are more likely to
be plagiarized. We propose three detection schemes that rely on syntac-
tic fingerprinting to detect plagiarized applications under different levels
of obfuscation used by the attacker. Our analysis of 7,600 smartphone
application binaries shows that our schemes detect all instances of plagia-
rism from a set of real-world malware incidents with 0.5% false positives
and scale to millions of applications using only commodity servers.

1 Introduction

Smartphone applications repositories have been growing at a high rate with sup-
port from hundreds of thousands of developers. AppStore [1] contains more than
half-a-million applications, and Android Market [2] has just crossed the two hun-
dred thousand mark. The two repositories use different procedures for accepting
an application. Apple’s AppStore accepts only applications that have been tested
for potential vulnerabilities by Apple’s test engineers. Android Market accepts
applications without subjecting them to any code review or inspection.

The approach of being open allows the Android Market to make applications
immediately available to users. However, this also makes it an easy target for
attacks where plagiarized applications are used by an attacker as means to launch
malware or gain personal profits. First, an attacker can easily reverse engineer
applications using existing tools. Second, an attacker can easily manipulate any
arbitrary application from the market and re-pack it under his name. Third, the
attacker can leverage the centralized nature of the market, dashboard features
that make applications immediately available to users, and social engineering
(e.g., using catchy titles) to push malicious applications to a large number of
victims. Thus, an attacker can easily download a popular application, insert
malicious code into the application, and resubmit the malicious version back
into the market without being detected. We refer to this class of actions as
plagiarism and to the modified application as a plagiarized application.

While several plagiarizing incidents [3, 4] targeting applications from the An-
droid Market have been reported, there are currently no fool-proof preventative
mechanisms in place to detect plagiarism in open markets. Signature-based mal-
ware detection tools such as Lookout Security [5], Norton Mobile Security [6]
and BitDefender Mobile Security [7] detect applications that contain malware.



However, they do not detect plagiarized applications that use legitimate per-
missions, users will still be infected before an attack signature is learned, and
the number of infected users can be large due to the centralized nature of mar-
kets. Information leakage detection techniques based on taint analysis [8], access
control policies [9], and kernel modifications [10] protect against stealing crit-
ical user information. However, such schemes require significant user input in
order to achieve high accuracy. In addition, most of these techniques work on
the client-side and often demand heavy resources that lead to battery drain.
Contributions: In this paper we propose a solution that detects plagiarized
applications and prevents their acceptance into the market. As a result, our
approach raises the bar for the attackers, forcing them to create original ap-
plications to host their malware. Our solution is designed to be applied on the
market side and is complementary to client-side defense techniques such as mal-
ware detection and information leakage prevention. Our contributions are:
– We analyze the meta-information of 158,000 applications from the Android
Market and find that 29.4% of the applications are more likely to be plagiarized
because of the permission rights they provide to an attacker. We also found that
an attacker can use category, total number of downloads, and published weekday
to increase the first-day number of downloads for the plagiarized application.

– We propose three schemes Symbol-Coverage, AST-Distance, andAST-Coverage
that rely on symbol tables and method-level Abstract Syntactic Tree (AST) fin-
gerprints to detect plagiarized applications under different levels of obfuscation
used by the attacker. Our analysis of 7,600 smartphone application binaries
shows that our schemes can detect all instances of plagiarism from a set of real-
world malware incidents while having only a 0.5% false positive rate.

– We show that our detection schemes scale to millions of applications using
commodity servers, i.e. it takes 2-8 seconds to reverse-engineer and fingerprint an
application and 0.8-1.4 seconds to retrieve plagiarized versions of an application.

The rest of the paper is organized as follows. Section 2 describes our system
and threat model. Section 3 presents more details about how an attacker can
plagiarize applications. Section 4 gives an overview of our defense solution, and
Section 5 presents its evaluation. Section 6 discusses related work and Section 7
concludes our paper.

2 System and Threat Model

In this section we first give more details about the application submission pro-
cess in the Android Market. Then, we describe the resources and mechanisms
available to an attacker to plagiarize applications.

2.1 Android Development Process.

Android [11] is an open source software stack for mobile devices that includes
an operating system, an application framework, and core applications. The op-
erating system relies on a kernel derived from the Linux kernel. The application
framework consists of the Dalvik Virtual Machine [12] that runs .dex files. Ap-
plications are written in Java using the Android SDK [13], compiled into .dex



(Dalvik Executable), and packaged into .apk (Android package) archives for in-
stallation.

To submit an application, a developer must have a publisher account obtained
by paying a nominal one-time fee of $25.00 USD and by having a valid Gmail ac-
count. He can then upload the application, optionally setting the price for a paid
application. Each binary is accompanied by meta-information which includes:
name, rating, date updated, version, category, number of installs, size, price, etc.
The Android Market requires that all applications are digitally signed, with the
public key made available as a digital certificate. As an optional step, developers
can obfuscate their binaries through a tool called ProGuard [14] which removes
any debugging information and renames the identifiers (e.g., class, method, vari-
able names) while maintaining the same functionality.

2.2 Threat Model

The attacker collects sensitive information stored on smartphone devices or ob-
tains monetary profit by exploiting users. Examples of sensitive information
include usage information, IMEI numbers, and GPS location. Ways to obtain
monetary profit include redirecting ad-revenue or forcing smartphones to call
a toll number that is owned by the attacker. We assume that the attacker can
obtain a developer account for the Android Market without being traced by the
market administrators.

We consider attacks that exploit the popularity and permissions already avail-
able in existing applications. Thus, an attacker chooses an existing application
that already has permissions that can be exploited, modifies it according to his
needs, and uploads the modified version to an open market. The modified version
not only has the same functionality as the original application but also includes
malicious code to collect sensitive information or obtain monetary profit.

Android Market requires developers to use digital certificates to attest their
identity. However, it does not require a trusted certificate authority (CA) to
sign the certificates. Thus, digital certificates will not prevent an attacker from
plagiarizing an application. Establishing trust of developers through CAs would
hinder the openness of the markets. If CAs were to enforce high requirements to
deter malicious developers then many legitimate developers will also be excluded
from being trusted by the CA.

2.3 Obfuscation Model

We assume that an attacker can apply the following obfuscation techniques:

– Level-1: Symbol table is obfuscated such that methods, classes, variables, and
other identifiers are all changed. The tool ProGuard provided by Google allows
only Level-1 obfuscation. To the best of our knowledge, this is the only kind of
obfuscation that is being applied in the real-world for mobile applications.

– Level-2: α random methods with no functionality are added. This level of
obfuscation has not been seen yet in real smartphone application repositories,
we nonetheless consider it as attackers can leverage it without substantial efforts.

While more advanced obfuscations have been proposed in the research com-
munity [15, 16], their applicability to mobile applications remains unknown due
to the specific byte-code format and the tight resource and energy constraints.



3 Plagiarizing Applications

The goal of an attacker plagiarizing an application is to take advantage of its
popularity and collect sensitive information or obtain monetary profit. We first
describe the attack payloads that the attacker can embed inside the plagiarized
version of the application and then describe strategies that an attacker can
leverage to increase the overall infection count.

3.1 Plagiarism Mechanisms and Payload

An attacker resorting to plagiarism first downloads an application and obtains
the .dex files of the application. The attacker then uses one of the two approaches:
(1) direct byte-code insertion, (2) assisted byte-code insertion. In direct byte-code
insertion, the attacker writes his own bytecode into the application byte-code
and re-packages it into an APK package. This approach usually requires heavy
expertise in writing Dalvik specific byte-code but has the advantage that it
can evade detection of certain static analysis tools that rely on application-level
source code heuristics. In assisted byte-code insertion, the attacker first writes his
malicious code as part of a stub application and compiles it using the Android
SDK. The attacker reverse engineers his own APK to obtain the .dex files and
extracts relevant portions of the byte-code for insertion into the original appli-
cation and then re-packages it into a separate APK package. Possible payloads
for the plagiarized application include:

– Privacy exploitation: If the original application requests for permissions
to obtain the GPS coordinates of the user (ACCESS FINE LOCATION) or to
read the user’s contact data (READ CONTACTS), the attacker can insert a
code snippet that obtains this information and sends it to back to the attacker.

– Monetary exploitation: If the original application requests for permissions
to send SMS messages (SEND SMS) or to allow the application to initiate a
phone call without going through the Dialer user interface that forces users to
confirm the call being placed (CALL PHONE).

Permission Permission # of App. Possible Attack Payload

INTERNET ACCESS COARSE LOCATION 28,759 retrieve location through WiFi
INTERNET ACCESS FINE LOCATION 27,258 retrieve location through GPS
INTERNET READ CONTACTS 11,870 retrieve user’s contacts
INTERNET CAMERA 6,936 record/retrieve images from camera

ANY SEND SMS 7,652 send SMS messages
ANY CALL PHONE 8,074 place phone calls
ANY BRICK 11 permanently disable the device
ANY INSTALL PACKAGES 430 install arbitrary packages

Table 1. Attack payload collected from a dataset of 158,000 applications. A
29.4% of the applications are susceptible to at least one payload listed in the table.

To gain insights into how many applications are vulnerable to attacks we
examined the meta-information (descriptive information about an application)
of 158,000 applications that we collected from the Android Market. We count
the number of applications from our dataset that request permissions that can
be exploited for various types of attacks. The results presented in Table 1 show
that many applications require permissions that can be leveraged by attackers.
For instance, an attacker interested in sending SMS from legitimate phones can



choose applications to plagiarize out of a set of 7,652. We estimate that 29.4%
of the applications from our dataset are susceptible to at least one attack pay-
load listed in Table 1. Our findings are consistent with results in [17] which
showed that many Android applications violate the principle of least privilege
and request more permissions than needed.

3.2 Improving Infection Count

An attacker can increase the infection count of a plagiarized application by
carefully choosing what applications to plagiarize and what day of the week to
perform the attack. A good strategy for an attacker is to target applications that
can rapidly become popular the first day. The optimal strategy we found from
our dataset of applications is to plagiarize an Arcade & Action game that has
more than 250,000 downloads and release this plagiarized application on Sunday.

We extract from our dataset: (i) the category of the application, (ii) the
number of downloads the first day the application was submitted, (iii) the current
download count, and (iv) the day of the week published. From our dataset of
158,000 applications, a subset of 36,000 applications have sufficient information
to extract these four pieces of information. We cannot obtain exact download
counts each day due to the way Android Market reports download counts in
ranges, so we simply assume the average of the upper and lower bound to be the
number of downloads (100-500 downloads is interpreted as 300 downloads).

We divide the 36 categories on the Android Market into 4 groups: {Personal,
Games, Media, Leisure}. Figure 1(a) shows a TreeMap [18] where each category
is represented by a rectangle with a size corresponding to number of applica-
tions and color corresponding to number of first day downloads. Clearly, some
categories have a much higher number of initial first day downloads compared
to other categories, e.g., the category Arcade & Actions achieves nearly double
the downloads of the next highest category, Casual Gaming. Also, Games has
high first day download counts compared to the other groups. An attacker can
choose specific categories to achieve higher initial downloads since the category
choice affects initial download count.

We found that applications which have a high download count went viral on
their first day. Figure 1(b) plots the average download count on the first day
for each download range listed currently in the market. The applications that
have reached greater than 250,000 downloads are the most popular applications,
receiving four times the initial download count as opposed to the next highest
bracket of 50,000-250,000 downloads.

An attacker can also try to choose the day of the week to load the application
to increase the probability that the plagiarized application will become viral on
its first day. Figure 1(c) shows the average download count on the first day of an
application given the day of the week it was uploaded to the market. We have
between 3,996 and 5,750 samples for each day of the week, so we can confidently
conclude that an attacker can expect higher first day download counts by roughly
20% by selecting an appropriate day to execute the attack (e.g., weekends).



Fig. 1. Choosing an application based on: (a) category: the area of each rectangle
maps to the number of applications and the color corresponds to first day download
counts, (b) total downloads: number of applications is on top of each bar, (c) ap-

plication publish weekday: number of applications is on top of each bar.

4 Detecting Plagiarized Applications

We first describe the extraction of symbol tables and application fingerprints
from binary code. We then describe how we use the extracted information to de-
tect potentially obfuscated plagiarized applications with three schemes Symbol-
Coverage, AST-Distance, and AST-Coverage. See Appendix for more detailed
descriptions of the algorithms presented in this section.

Fig. 2. Reverse Engineering and Fingerprinting Procedure

4.1 Reverse Engineering and Fingerprinting Android Applications

Figure 2 shows how we obtain application fingerprints by starting with an ap-
plication binary. We first reverse engineer it to obtain an Abstract Representa-
tion (AR) of the corresponding source code. Then we use the AR to construct
method-level ASTs and extract feature vectors that represent the fingerprints.

Reverse engineering. Android has a built-in open source disassembler
called dexdump. Given a .dex file, dexdump creates a dump file (IR code) of all
the classes and methods. We modified five functions: dumpClass, dumpMethod,
dumpCode, dumpSField and dumpIField 1 to capture relevant method-related
information. Code Transformation is then used to obtain an AR based on pre-
defined rules for each statement type. A rule is a regular expression that captures
the various parts of the statement (such as method name, variable names, num-
ber of arguments etc.). Once this information is captured, all variables are named
alike (e.g. x,y,z are all replaced with ARG). The advantage of using AR is that
even if the code is obfuscated through means such as variable re-naming, the
syntactic structure is preserved and any fingerprint generated out of this trans-
formed code will be the same for both obfuscated and non-obfuscated code.

1
While our tool is home-brewed and not ready for a production usage yet, we do acknowledge the
presence of several other promising tools [19, 20] that came out recently.



Consider an excerpt from the IR representation of a larger method shown in
Figure 3(a). The example shows a method invocation that starts by defining the
type of invocation (virtual, static, direct, super or interface), then the registers
that are to be checked for the arguments, and finally the signature of the method
that is being invoked. We fingerprint the two most common types of invocations:
invoke-direct, which is used to invoke an instance method that is by nature
non-overridable (either a private method or a constructor) and invoke-virtual,
which is used to invoke a normal virtual method (a method that is not static
or final, and is not a constructor). For instance, the first invocation is made to
the init method of the super class android/app/Activity and the second to the
findViewById method of the Fuzzer class from our sample application. The Code
Transformation module rewrites this set of statements as seen in Figure 3(b).
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Abstract Representation

.method public foo(ARG)

        invoke-direct {LOCAL}

        invoke-virtual {LOCAL, PARAM}

.end method

.method public foo(I)V

        invoke-direct {v2}, Landroid/app/Activity;.<init>:()V

        invoke-virtual {v1, v0}, Lcom/Fuzzer;.findViewById:(I)V;

.end method

(a) (b)

(c) (d)

Intermediate Representation

Fig. 3. Example of Fingerprinting an Applications

Extracting fingerprints. Once we have an abstract representation of the IR
code, we perform AST Construction which generates a special type of Abstract
Syntax Tree called the method-level Abstract Syntax Tree, for each method in the
byte-code. A method-level AST captures the following information: (i) Number
of arguments that the current method accepts, (ii) Other methods invoked by
the current method with the invocation type, direct or virtual. Other syntactic
artifacts inside a method, such as assignment and conditional statements, are
precluded. For instance, consider the AST given in Figure 3(c). The root node is
always the METHOD label and subsequent nodes ARGUMENT, DIRECT, and
VIRTUAL denote the method has an argument and two function invocations,
one with the direct type and the other the virtual type. The children of the
second-level nodes then, are the registers that these methods are utilizing.

We then use the ASTs to extract a feature vector that represents the ap-
plication fingerprint. We adapt the structural feature extraction method in [21]
to work with the method-level ASTs that we constructed. For a given AST, we
record two types of patterns of structural information: (l,m)-leaf and n-path. A
(l,m)-leaf is a pair of leaf nodes having a common parent and is used to capture



the horizontal paths in an AST. In Figure 3(d), {LOCAL-PARAMETER} is one
such horizontal path in the AST. Note that an AST does not need to have any
(l,m)-leaf pairs. This can happen when the method does not have any argu-
ments or does not contain other methods that have arguments. An n-path is a
directed path of n nodes, i.e., a sequence of n nodes in which any two consecu-
tive nodes are connected by a directed edge in the tree. DIRECT-LOCAL is one
such vertical path in the AST. Other vertical paths are: {METHOD, METHOD-
ARGUMENT, ... }. A special case is 1-path which contains only one node.

The feature vector in our case is the occurrence count of all the horizontal
and vertical paths extracted from the AST. To derive this for a given AST, we
first allocate a vector filled with 0’s and compute all (l,m)-leaf paths and n-
paths. For each individual path, we get the path’s identifier from a global lookup
table that holds all possible paths. This identifier is used to determine which of
the dimensions in the vector needs to be incremented. A feature vector for an
entire application can be generated in the same way by calculating the feature
vector over a graph that is a forest where each tree represents a method of the
application. Figure 3 shows an example of this procedure.

In terms of performance, feature extraction is at most quadratic with respect
to the total number of nodes, n. For vertical feature extraction, the paths of
an AST are limited to a constant length, three, so the number of total paths to
traverse is O(n). For horizontal feature extraction, the number of pairs to iterate
over and count in the worst case, a single DIRECT or VIRTUAL node has O(n)
children (this case is highly unlikely), corresponds to O(n2) pairs.

4.2 Detection Techniques

We design three defense schemes: Symbol-Coverage for non-obfuscated applica-
tions, AST-Distance for applications with Level-1 obfuscation(observed in the
real-world), and AST-Coverage for applications with Level-2 obfuscation (not
observed in real-world to the best of our knowledge but possible).

Symbol-Coverage If an attacker does not obfuscate, the symbol table in-
formation is available from the application byte-code. We consider the coverage
of symbol table information for every application A1, A2, ..., An by an uploaded
application A. If some application Ai is covered highly by A, then we consider
A a plagiarized version of Ai. The coverage of an application Ai by A is com-
puted as the number of classes and methods in Ai that also exist in A divided
by the total number of classes and methods in Ai. We only consider methods
as matching if they belong to classes that match. The application Ai with the
highest coverage is reported if the coverage exceeds some threshold.

AST-Distance If an attacker obfuscates symbol table information (Level-
1), we use a defense based on feature vectors derived from method-level ASTs
(see Section 4.1). We use Euclidean distance due to its high accuracy in prelimi-
nary results where we tested various distance metrics. Let Ai be the application
with a feature vector that has the smallest distance to the feature vector of the
application A, then, Ai is reported if this distance is smaller than some threshold.

AST-Coverage In our final algorithm, we aim to accurately detect plagia-
rism where applications were obfuscated with Level-2 obfuscation. We combine



the AST based feature vectors with the coverage approach. Specifically, once the
ASTs of each method of the applications in the market A1, A2, ..., An and the
uploaded application A are transformed into feature vectors, feature vectors of
each method of A1, A2, ..., An that are close to a feature vector of A are marked
as covered. The maximally covered application Ai is reported if the coverage is
greater than some threshold value.

5 Defense Evaluation

We evaluate the detection accuracy of our schemes using a dataset of 7,600
application binaries that we refer to as the Pseudo-Market.

5.1 Real-World Plagiarism Detection

We analyzed 13 instances2 of the HongTouTou [22] malware which plagiarized
highly-popular legitimate applications and relied on social engineering. The mal-
ware sends the device’s IMEI and IMSI numbers to a remote host [22] and re-
ceives a set of search engine URLs and keywords that are then used to emulate
keyword searches and clicks committing various types of click-fraud.

Application Characteristics AST-Coverage

Legitimate Title Malware Title Price Downloads + -

yxPlayer Flash Player Free ≥250,000 1.000 0.100
Steamy Window Screen Mist Free ≥250,000 1.000 0.118

Hello Kitty LWP Lite HelloKitty Livewallpaper Free ≥250,000 1.000 0.053
Wave Live Wallpaper Wave Livewallpaper Free 50,000-250,000 1.000 0.077

AndroMax Multi-Keyboard Shortcuts Free 50,000-250,000 1.000 0.100
Shamrock Live Wallpaper Clover Wallpapers Free 50,000-250,000 1.000 0.053

City at Night NightCity $0.99 50,000-250,000 1.000 0.077
Hi-Hiker Pro Hiker Free 50,000-250,000 1.000 0.100

Dandelion Livewallpaper TAT-LWP-Mod-Dandelion Free 10,000-50,000 1.000 0.006
Robo Defense Robo Defense $1.88 1,000-5,000 1.000 0.105

Sense Live Wallpaper Pro Beautiful Live Wallpaper $1.88 1,000-5,000 1.000 0.333
Yo Handcar: Off the Rails yohandcar Free 1,000-5,000 0.992 0.182

Roller Rev 99 Crazy Roller Coaster $2.99 100-500 1.000 0.182
Stickers Off Miniv Free 100-500 1.000 0.100

Snow Flurry Live Wallpaper LiveWinter $0.99 100-500 1.000 0.043

Table 2. Real-World Plagiarisms: List of plagiarized instances of legitimate ap-
plications that have occurred in the Android Market. We show the coverage of AST-
Coverage with (+) and without (-) the legitimate application in the market.

Table 2 presents results for the AST-Coverage algorithm for HongTouTou in-
stances of plagiarism when compared with applications from our Pseudo-Market.
We found that all but one application resulted in full AST-Coverage. A full cov-
erage means that all the methods in an original application are covered by the
given plagiarized version. The only exception was “yohandcar” (malware) which
covered 99.2% of the methods of “Yo Handcar: Off the Rails” (goodware). We
manually verified the reverse-engineered code of both applications to confirm
that the malware was indeed mimicking the functionality of the legitimate ap-
plication. We also found that this malicious instance of HongTouTou not only
adds new methods to the original version, but also changes some existing meth-
ods in the original version, leading to the slight mismatch.

2
We thank Tim Strazzere of Lookout Security for sharing the malware samples with us.



To show that our detection does not wrongly accuse applications of plagia-
rism, we removed the legitimate versions of the malware samples from our Pseudo
Market and re-ran the AST-Coverage detection. As seen in Table 2, it correctly
reported a low coverage of the malware samples with the other applications.

5.2 Accuracy

We perform 500 benign and 500 plagiarized uploads. For a benign upload, we
select a random application, remove it from the Pseudo-Market, and then upload
it back. For a plagiarized upload, we select a random application, insert mali-
cious code into it, and upload the application back to the Pseudo-Market. Both
the original and the plagiarized versions are in the Pseudo-Market. We model
insertion of malicious code by selecting a random method from all the methods
of all applications, and inserting it into the application. By not inserting specific
malicious code, but using random code, the results approximate the performance
in the presence of arbitrary types of malicious code.
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Fig. 4. (a) CDF of largest coverage of Symbol-Coverage; (b) CDF of smallest distance
of AST-Distance; (c) CDF of largest coverage of AST-Coverage; (d) ROC of the accu-
racy for all schemes; Symbol-Coverage changes from no obfuscation (case w/o asterisk)
to Level-1 obfuscation (case with asterisk); (e) ROC of accuracy AST-Distance; (f)
ROC of accuracy AST-Coverage.

We show CDFs of the coverage value for Symbol-Coverage in Figure 4(a),
the plagiarized uploads are not obfuscated. Symbol-Coverage distinguishes all
plagiarized applications from correct applications since all malicious uploads
have 1.0 coverage and no benign uploads had 1.0 coverage. Thus, there are no
false positives in this case.

Figures 4(b) and 4(c) show the CDF distance and coverage for the AST-
Distance and AST-Coverage, when the plagiarized uploads are not obfuscated.
The two schemes cannot perfectly distinguish benign uploads from plagiarized
uploads based on a single threshold value. In both cases, there is some fraction
of benign uploads that overlaps with plagiarized uploads. For AST-Distance,



the plagiarized upload distance to the original application is quite small (note
the log-scale of the x-axis) in relation to the closest distance of some benign
uploads, but there is a portion of benign applications that are close to some other
benign application in terms of AST-Distance. For AST-Coverage, the plagiarized
uploads have methods where the AST fingerprint is identical to many methods
of various applications due to shared libraries, and the methods are not always
matched to the methods of the original application that was plagiarized.

Each of our detection techniques can distinguish, with high accuracy, a mali-
cious versus benign upload given the coverage or distance of the uploaded appli-
cation to the next closest application in the market. The exact accuracy for each
is shown in the ROC curve of Figure 4(d) which is created by plotting TPR and
FPR for each possible threshold value of Figures 4(a), 4(b), and 4(c). Although
AST-Distance and AST-Coverage have lower accuracy when no obfuscation is
used, these two schemes are more resilient to obfuscated uploads.

5.3 Obfuscation resilience
We now evaluate the robustness of our schemes to Level-1 (replace method and
class names with random names) and Level-2 (add α random methods) obfus-
cation. While more advanced obfuscations have been proposed in the research
community [15, 16], their applicability to mobile applications remains unknown
due to the specific byte-code format and the very tight resource constraints.

Figure 4(d) shows results for no obfuscation and Level-1 obfuscation. Symbol-
Coverage’s performance degrades substantially when Level-1 obfuscation is used,
with an accuracy equivalent to guessing instead of a perfect accuracy. This is be-
cause the algorithm relies completely on values inside the symbol table which are
obfuscated under Level-1 obfuscation. The accuracy of AST-Distance and AST-
Coverage remain the same since they do not use any symbol table information.
AST-Distance is the most effective under Level-1 obfuscation.

Figures 4(e) and 4(f) show the results of AST-Distance and AST-Coverage
under Level-2 obfuscation. We increase α to show that the accuracy of AST-
Distance degrades significantly while the accuracy of AST-Coverage does not
change significantly. No threshold exists for AST-Distance that can distinguish
between the distance of randommethods added and the distance between a legiti-
mate application and all other applications in the Pseudo-Market. AST-Coverage
is robust to this problem because it relies on coverage of each application in the
Pseudo-Market instead of distance to each application, so a larger size does not
affect coverage of other applications as much.

5.4 Computational Feasibility
We evaluate the execution time of our schemes on a Quad-Core AMD Opteron(tm)
Processor 2380 machine of 2.50 GHz with 16 GB of RAM that represents a
typical commodity server used in data centers such as Amazon EC2. We use
synthetic datasets with sizes of 250K, 500K, 750K, 1000K, 1250K and 1500K
applications, created by randomly selected applications from our dataset of the
real 7,600 binaries. For the Symbol-Coverage algorithm we store symbols in a
B+ tree of a MySQL database. For AST-Distance and AST-Coverage we uti-
lize BDD-trees [23] which is a data structure for performing k-nearest neighbor



searches on high-dimensional vectors. Figure 5 shows that our schemes scales to
millions of applications. The AST-Distance and AST-Coverage differ in perfor-
mance because the AST-Coverage must search over many more vectors.
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Fig.5. (a) Preparation time
for inserting and indexing
the symbols inside the
MySQL database, (b) Query
time to fetch all symbols
from the database. Notice
that after indexing, the
query time is less than 0.3
seconds per symbol(a) (b)

6 Related Work

Our work builds upon work on clone detection [24, 25] that determines the
existence of duplicated code fragments in large enterprise source code bases.
Deckard [24], a state-of-the-art tree-based approach, extracts characteristics vec-
tors from parse trees by counting q-level binary subtree patterns. Nguyen et
al. [21] improve upon this approach by efficiently capturing more structural
characteristics. Compared to these techniques, ours handles Dalvik byte-code.
Our feature extraction method is also different.

Our work is also related to algorithms comparing program versions, such as
a program and its obfuscated version [26–30]. These algorithms perform pro-
gram differencing at various levels: control flow graph level [26, 28], procedure
level [27], and statement level [29, 30]. These approaches require source-code,
whereas our approach works on byte-code. They are far more computationally
demanding than our AST based algorithms that are effectively accurate.

From a client-side defense perspective, there has been significant work in the
area of program analysis and access control to protect users against malicious
applications. Enck et al. [8] describe a framework to detect potentially malicious
applications based on permissions requested by Android applications. Nauman et
al. [9] propose Apex, a policy enforcement framework for Android that allows a
user to selectively grant permissions to applications as well as impose constraints
on the usage of resources. These solutions must run on the resource-constrained
mobile devices, and they rely on appropriate configuration by the user.

7 Conclusion

In this paper we focused on attacks that plagiarize popular smartphone appli-
cations to collect sensitive information or obtain monetary profit. We analyze
the meta-information of 158,000 applications from the Android Market and find
that 29.4% of the applications are more likely to be plagiarized. We proposed
three schemes that rely on method-level AST fingerprints to detect plagiarized
applications under different levels of obfuscation used by the attacker. Our anal-
ysis of 7,600 smartphone application binaries shows that our schemes detect all
instances of plagiarism from a set of real-world malware incidents with 0.5% false
positives and scale to millions of applications using only commodity servers.
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Appendix: Feature Extraction & Detection Techniques

Algorithm 1 shows our feature extraction alogorithm which is performed on a
forest of abstract syntax trees (as shown in Figure 3c). The pairs of children of
VIRTUAL and DIRECT nodes are used to update the horizontal features, and
a depth first traversal is used to find all paths to update vertical features.

Algorithms 2, 3, and 4 show the details of our detection techniques. Symbol
Coverage, Algorithm 2, compares the coverage by the submitted application with
each application existing in the repository. AST Distance, Algorithm 3, compares
the feature vector distance of a submitted application with every application in
the repository. AST Coverage, Algorithm 4, compares the coverage of methods by
the submitted application with each application in the repository, and methods
are compared by the distance between their feature vectors. In each algorithm,
the closest matched algorithm in the repository is compared with a threshold to
determine whether the new application is a plagiarized version.

Algorithm 1 Feature Extraction
1: let G be a forest of the method ASTs
2: for each each node v in G do

3: traverse(v, {v})
4: for each VIRTUAL or DIRECT node v in

G do

5: for each each child pairs (u,w) of node
v do

6: update horizontal feature({u,w})
7:
8: procedure traverse(v, p) do

9: update vertical feature(p)
10: for each child u of node v do

11: traverse(u, p + {u})
12: end procedure

Algorithm 2 Symbol-Coverage:
1: Initialize numbers c1, c2, ..., cn, t1, t2, ..., tn

to zero
2: for all i ∈ {1, 2, ..., n} do

3: shared classes = Classes[A] ∩
Classes[Ai ]

4: ti := len(Classes[Ai ])
5: ci := len(shared classes)
6: if len(shared classes) > 0 then

7: for all x ∈ shared classes do

8: shared methods =
Methods[A][x] ∩ Methods[Ai][x]

9: ti := ti + len(Methods[Ai][x])
10: ci := ci + len(shared methods)
11: j := argmax(

ci
ti

)

12: p :=
cj

tj

13: if p > Threshold then

14: Alarm(Aj)

Algorithm 3 AST-Distance
1: x := Extract AST Feature Vector(A)
2: for all i ∈ {1, 2, ..., n} do

3: y := Extract AST Feature Vector(Ai)
4: di := ||x− y||
5: j := argmin(di)
6: d := dj

7: if d < Threshold then

8: Alarm(Aj)

Algorithm 4 AST-Coverage
1: Initialize set Z to be empty
2: for all i ∈ 1, 2, ...., n do

3: for all y ∈ Extract Methods(Ai) do

4: y := Extract AST Feature Vector(y)
5: Z := Z ∪ y

6: for all x ∈ Extract Methods(A) do

7: x := Extract AST Feature Vector(x)
8: Y := Nearest Neighbors(k, Z,x)
9: for all y ∈ Y do

10: Ai := Get Application(y)
11: Update Coverage Information(Ai,y)
12: for all i ∈ 1, 2, ..., n do

13: ci := Count Covered Methods(Ai)
14: ti := Number Of Methods(Ai)
15: j := argmax(

ci
ti

)

16: p :=
cj

tj

17: if p > Threshold then

18: Alarm(Aj)


