
Challenges in Implementing an End-to-End
Secure Protocol for Java ME-Based Mobile Data

Collection in Low-Budget Settings

Samson Gejibo2, Federico Mancini1,
, Khalid A. Mughal1, Remi B. Valvik1, and Jørn Klungsøyr2

1 Department of Informatics, University of Bergen, Norway
{federico,khalid}@ii.uib.no,remi@valvik.org

2 Centre for International Health, University of Bergen Norway
{samson.gejibo,mihjk}@cih.uib.no

Abstract. Mobile devices are having a profound impact on how services
can be delivered and how information can be shared. Sensitive informa-
tion collected in remote communities can be relayed to local health care
centers and from there to the decision makers who are thus empowered
to make timely decisions. However, many of these systems do not system-
atically address very important security issues which are critical when
dealing with such sensitive and private information.
In this paper we analyze implementation challenges of a proposed secu-
rity protocol based on the Java ME platform. The protocol presents a
flexible secure solution that encapsulates data for storage and transmis-
sion without requiring significant changes in the existing mobile client
application. The secure solution offers a cost-effective way for ensuring
data confidentiality, both when stored on the mobile device and when
transmitted to the server. In addition, it offers data integrity, off-line and
on-line authentication, account and data recovery mechanisms, multi-
user management and flexible secure configuration. A prototype of our
secure solution has been integrated with openXdata.

Keywords: Mobile Data Collection Systems, Mobile Security, secure commu-
nication protocols, secure mobile data storage, secure mobile data transmission,
Java ME, openXdata, HTTPS, JAD.

1 Introduction

There are already a number of systems that allow data collection in the health
sector using mobile phones and provide a server component to manage the col-
lected data. However, none of these systems has a complete security solution
to guarantee data confidentiality, integrity, availability and privacy both on the
client and on the server side. In this paper, we present the challenges in imple-
menting the openXSecureAPI (which from now on we will refer to as simply
API), based on the secure protocol proposed in [5], which can be used to add a
security layer in existing Mobile Data Collection Systems (MDCS).



Here, we focus on the mobile side of the API, which is developed for Java
Mobile Edition(Java ME)[7] based applications and assumes that the main use of
the application is the collection of data by an authorized user through predefined
forms. In other words, we do not consider systems where data is gathered by
automated sensing systems. The API is designed by considering several security
challenges in mobile data collection where low-end mobile phones are deployed
and the projects run on very constrained budgets. The details can be found in
[5].

For this work we collaborated with openXdata [6], a MDCS that is primar-
ily designed for data collection using low-end Java-enabled phones in low-budget
settings. The openXdata community shared with us their field experience regard-
ing the deployment of their mobile data collection tools and various technical
details of their client and server applications.

The challenges and solutions are covered in Section 2, where, in order to make
this article self-contained, we also mention how the different parts of the API
reflect the underlying protocol, and which security and usability requirements are
addressed. Finally, we present some experimental results we obtained by testing
a basic data collection client that uses our API on various mobile devices. In
this paper we assume that the reader is familiar with Java ME technology and
terminology.

2 Implementation Challenges and Solutions

Most of the challenges we faced during the implementation required finding the
right balance between flexibility, efficiency and usability, while not compromising
security. In general, we decided to give more emphasis to flexibility, in order to
create an API that is easy to use and integrate with different clients, at the cost
of some efficiency. In the following sections, we discuss some of issues we consider
to be highly relevant.

2.1 Cryptography API Providers

Early versions of Java ME did not support a cryptography API. However, since
the introduction of MIDP 2.0, the Security and Trust Services API (SATSA) has
been developed and added to the Java ME platform as an optional package that
provides some basic cryptographic primitives. Besides, since it is implemented
as part of the phone libraries, its use does not affect the memory footprint of the
application. Unfortunately, very few low-end mobile phones actually support
it. On the other hand, Bouncy Castle (BC)[4] provides a flexible lightweight
cryptography API which is extensively used in Java ME applications. Since it
is an external API, it allows us to develop device independent solutions, but its
libraries can add a significant memory overhead.

In order to allow for future compatibility, we opted for an hybrid solution. Our
API provides an interface that defines the required cryptographic operations, but
leave the actual implementation open, with BC as default provider. However, if



the phone supports the SATSA package, our API can automatically switch to
that implementation. So, even though memory footprint is not reduced (BC is
always loaded anyway), one can gain in performance by using the phone built-in
libraries. Using two different implementations, means also that we are forced to
use only algorithms supported by both libraries. In particular: RSA for public key
encryption, AES in padded CBC mode with initializing vector (IV) for symmetric
cryptography, SHA1 digest, Hash-based Message Authentication Code (HMAC)
based on SHA1 digest. Only BC provides an adequate Pseudo Random Number
Generator (PNRG) and Password Based Encryption based on PKCS#5.

2.2 Key Generation

A critical issue when using cryptography on a mobile phone is the generation of
good random keys, since mobile phones do not have good sources of entropy [1],
and even if they have, J2ME might lack the necessary libraries to access them.
In the proposed solution, we generate a strong seed on the server and send it
securely to the client whenever possible, so that strong cryptographic keys can
be generated. Every user will have their personal set of seeds stored encrypted
in their key store, so that the PNRG can be seeded also at boot time, and in a
different way for each user. This solution avoids putting the burden of generating
the seed on the user by pressing random keys or playing a game, or turning on
the camera or the microphone to collect entropy, as it has been suggested in the
literature.

2.3 Secure Data Upload and Download

The API is designed to be flexible and support both HTTPS and the pro-
tocol proposed in [5]. We offer a SecureHttpConnection class that can be
wrapped around a HttpConnection. If the connection is HTTPS, the Secure-

HttpConnection will behave in the same way as a normal HttpsConnection
object would. If however it is not HTTPS, any request headers or data written
to the connections output stream will be encrypted prior to being sent to the
server by using the protocol presented in [5]. The API is designed so that the
client developer would use the SecureHttpConnection object in the same way
as an HttpConnection object. This makes for easy and transparent integration
into existing systems. We are able to create a secure tunnel by changing only
two lines of code in the existing openXdata client. The following snippet shows
openXdata client before the integration (no encryption is used):

HttpConnection con = (HttpConnection)Connector.open(URL);

((HttpConnection)con).setRequestMethod(POST);

This snippet shows openXdata client after integration with the secure API:



HttpConnection con = (HttpConnection)Connector.open(URL);

SecureHttpConnection secCon = new SecureHttpConnection(con,

SecureHttpConnection.RequestType);

secCon.setRequestMethod(POST);

By using the SecureHttpConnection class, the client can now provide a secure
data transfer for any project whether they can afford to use SSL certificates (and
therefore HTTPS) or not.

Initially we had thought to exploit the fact that data is encrypted on the
phone, and send it as it was, to avoid further encryption and decryption op-
erations. However, that could not be done without significant changes to the
existing client code, and without exposing many cryptographic operations to
the developers. Not to mention that the same key used for the storage would be
re-used for transmission, raising security concerns and key management issues.
Hence, even if this could give better performance, it could also affect the security
of the API and its usability. We chose, therefore, to simply wrap the data sent
from the client in a secure connection, which, despite some extra traffic, allows
also for a complete decoupling between the secure layer and the client requests.

Notice also the second parameter of the SecureHttpConnection construc-
tor: SecureHttpConnection.RequestType. When this parameter is specified,
our API can automatically generate some predefined requests that can be used
for various operations: user registration; password recovery and server authenti-
cation as described in [5].

2.4 Secure Storage

The storage has been designed to accommodate typical scenarios in mobile data
collection. In particular that multiple users should be allowed to use the same
mobile device, that the same user can use multiple mobile devices and that
Internet access might always not be available. This means that mobile devices
can no longer be considered private or personal to an user and that most of the
data collection might have to be done off-line. From a security perspective this
translates into the following concerns:

1. A mobile device must store some identification token to authenticate users
off-line.

2. If a user loses the password, other users on the same device and their data
should not be affected.

3. If users change their password on the server, possibly from a web application,
the access to the mobile device should not be compromised.

4. Even if the password is lost, it should always be possible to recover the
encrypted data stored on the mobile phone by some authorized entity.

A scheme that satisfies all the above requirements is described in [5] and
implemented in the API, which offers tools to register a new user so that a



new personal secure storage is initialized according to such scheme. The client
application simply needs to pass username and password to our registerUser()
method, and thereafter use our login() method to get access to a user’s data.
The login method authenticates the user and creates a session object with a user’s
key, that the API will use to handle the secure stores and secure HTTP sessions.
This is also independent from the authentication method used on the server. The
data is encrypted with symmetric encryption, and the encryption key is protected
by a password-based key. This means that losing the password does not prevent
access to the data if the data encryption key has been saved, for example, on
the server. Notice, however, that the overall security of the data still depends
on the strength of the password, and as long as off-line local authentication
is required on the mobile phone, and smart cards are not supported by the
phone, this is a problem that cannot be solved. When it comes to the actual
storage of data in the RMS analogue to the SecureHttpConnection class, we
offer a SecureRecordStore class, that can be used to wrap the data in a secure
way. Every write/read operation will, respectively, encrypt the input data before
writing it in the actual RecordStore object, and decrypt it before returning it
to the client. The API also takes care of checking whether the current user has
permissions to write in that storage and handles the corresponding keys. All of
this happens completely transparent way for the client.

The drawback of this approach is that the user has no control over the data
encryption, so, every time something is read or written from the secure store, a
cryptographic operation is performed. This can be a computational overhead if a
search must be done across the stored data, since several decryption operations
are required. This happens, for instance, when a menu must be generated to show
the users which form values have been saved in the record store. To mitigate this
problem, we offer to store the data with a label that describes it. All the labels
are stored as a list in a single encrypted record, so that only this list needs to
be decrypted to generate a menu, rather than all the records.

One advantage, instead, is that the client is not forced to pre-process the
data and store it in a specific format or in a dedicated record store. The only
assumption we make, is that each user has a dedicated record store, so that a
unique key can be assigned to it. This makes the key and permission management
much easier for the API.

An alternative solution we tested was to offer methods that took a byte
stream and returned an object containing the encrypted stream plus a set of
fields to manipulate it, so that the developer could have direct control over the
encrypted data. However this idea was discarded because it would have required
substantial refactoring in the existing client, and it could have potentially intro-
duced security issues if the data were manipulated incorrectly.

2.5 Modularity of the API

While designing the API we focused also on making it modular. We tried to make
the different packages that constitutes the API as independent as possible, so



that a client using only the secure communication, would not import the secure
storage libraries and vice-versa, thus minimizing the final size of the application.

2.6 API integration

Figure 1 shows how our API creates a secure layer on top of the existing appli-
cation layer, taking as example our work with the openXdata client.

CLIENT

SecureRecordStore SERVER

Secure API
openXdata

SecureHttpConnection

ENCRYPTION/
DECRYPTION 

SERVICES

READ / WRITE 
Data in Clear

READ / WRITE/
UDATE/DELETE 

Operation
Data in Clear

RMS

Secure Tunnel

Secure 
Storage

Se
cu

re
 

Co
m

m

Fig. 1. openXdata - secure API integration architecture.

3 Preliminary Performance Test

In this section we report the results of some preliminary tests we ran in order to
analyze the performance of the API on devices with different hardware specifica-
tions and price categories. The results are summarized in Table 1. Note that the
phones used for the benchmark are phones that are most likely to be deployed
on the field by openXdata. No smart phones are therefore considered. Also what
we define as ”powerful” phones, are only there to put the other results into per-
spective, since they are not likely to be used due to their high cost. It is clear
that with the given parameters the performance of the API is barely acceptable
on the least powerful phone (2760), but it already has a more than acceptable
performance compared to an equally cheap and only slightly more powerful de-
vice (2330c). It is interesting that the processor speed (3rd row in the table) is
not always the most important factor. The most expensive and powerful mobile
phone (E-63) we used in the test, has very poor performance due to the high
amount of time used to create new records in the record store (4th row in the



table). We have not tested our protocol when a HTTPS connection is used, but
a simple SSL handshake took on average 12 seconds on all the devices tested,
which is comparable with a complete Server Authentication step of the protocol
in [5] on the slowest phone. It is also clear that the bottle neck in the various
transactions is the RSA encryption, but no much optimization can be done in
this regard. The key cannot be reduced to less then 960 bits, i.e., the smallest
size required to guarantee that all protocol requests can be encrypted, and, in
general, it is not recommended to use less than 1024 bit anyway.

Phone model (Nokia) 2760 2330c-2 2730c 3120c E-63

Price ($) 50 <50 89 120 180

Processor speed (Mhz) 0,8 4,6 67,7 68,8 125,7

Time to create 20 records
120 49 16 6 2573,9

of 100 bytes on the phone (ms)

RSA Encryption with 1024
3702 562 92 79 265

bits key (ms)

16 bytes AES encryption
58 19 5 5 315

of a 100 bytes form (ms)

16 bytes AES decryption
28 22 5 11 333

of a 100 bytes form (ms)

PKCS-5 password-based-encryption
878 151 18 18 344

(100 iterations) (ms)

Processing time for
11611 6306 5470 5021 11297

Sever Authentication (ms)

Processing time for
9226 6153 5392 3523 4186

User Registration (ms)

Uploading 356 bytes of forms (ms) 3895 4989 5038 3295 1588

Downloading 2880 bytes of forms (ms) 4347 2868 4424 3023 1513

Table 1. Test results.

4 Related work and Conclusions

In general, all modern smart phones equipped with operative systems like Black-
berry, Android and iOS provide a crypto API to develop secure applications.
However, we are developing a secure solution for the Java ME platform, which
lacks support for any kind of data security [2, 10], and we target low-end phones,
so that solutions that might be adequate for high-end phone like smart phones,
are not an option for our context.

The solution we implemented is based on a custom protocol developed by
considering the specific constraints of MDCS [5], but it makes almost no assump-
tions about how or where data are stored, or how the communication layer of an
existing application is implemented. This guarantees wide compatibility. Besides,



the different secure solutions that it offers are very modular, and can be used
independently to fit the needs of MDCS with different security requirements. We
have also developed our own prototype MDCS using the API, and tested it on
various phones with different settings in order to collect experimental data on
the performance of the API. The results are encouraging, since the performance
with the default security settings was acceptable also on very low-end phones,
and the openXdata integration is proceeding smoothly.

Other approaches to secure applications having the Java ME platform as
their target have been proposed in the literature [8, 3, 9], but it is easy to see
that they are all tailored for specific target applications, and they are nowhere
as extensive and flexible as our API. Besides, as far as we know, the solutions
proposed in these works have not been employed in actual systems, while our
API is currently being used to develop a secure client for openXdata, that next
year will be deployed in the field and carefully tested in a real project. The results
from this test will be used to optimize the code and develop new features for
the API. For example, mechanisms for automatically configuring the security
settings on each device, in order to maximize security without compromising
usability, are currently being studied.

References

1. S. Crocker and J. Schiller. RFC 4086 - randomness requirements for security.
http://www.ietf.org/rfc/rfc4086.txt, 2005.

2. T. Egeberg. Storage of sensitive data in a Java enabled cell phone. Master’s thesis,
Høgskolen i Gjøvik, 2006.

3. W. Itani and A. Kayssi. J2ME application-layer end-to-end security for m-
commerce. Journal of Network and Computer Applications, 27(1):13–32, January
2004.

4. T. Legion Of the Bouncy Castle. http://www.bouncycastle.org/. Online, Accessed
Mars 2011.

5. F. Mancini, K. Mughal, S. Gejibo, and J. Klungsoyr. Adding security to mo-
bile data collection. In Proceedings of Healthcom 2011 - 13th IEEE International
Conference on e-Health Networking Applications and Services, pages 86 –89, june
2011.

6. openXdata. http://www.openxdata.org. Online, Accessed Mars 2011.
7. Oracle. Java ME. http://www.oracle.com/technetwork/java/javame/index.html.

Online, Accessed Mars 2011.
8. S. M. A. Shah, N. Gul, H. F. Ahmad, and R. Bahsoon. Secure storage and com-

munication in J2ME based lightweight multi-agent systems. In Proceedings of
KES-AMSTA’08 - the 2nd KES International conference on Agent and multi-agent
systems: technologies and applications, Incheon, Korea, pages 887–896. Springer-
Verlag.

9. Z. Wang, Z. Guo, and Y. Wang. Security research on j2me-based mobile payment.
IEEE Communication Society, 2(2):644–648, 2008.

10. B. Whitaker. Problems with mobile security #1.
http://www.masabi.com/2007/07/13/problems-with-mobile-security-1/, July
2007. Online, Accessed Mars 2011.


