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Multi-Hop Routing and Scheduling in Wireless Networks in the
SINR Model

Guy Even∗ Yakov Matsri∗ Moti Medina∗

Abstract

We present an algorithm for multi-hop routing and scheduling of requests in wireless networks in
theSINR model. The goal of our algorithm is to maximize the throughput or maximize the minimum
ratio between the flow and the demand.

Our algorithm partitions the links into buckets. Every bucket consists of a set of links that have
nearly equivalent reception powers. We denote the number ofnonempty buckets byσ. Our algorithm
obtains an approximation ratio ofO(σ · logn), wheren denotes the number of nodes. For the case
of linear powersσ = 1, hence the approximation ratio of the algorithm isO(log n). This is the first
practical approximation algorithm for linear powers with an approximation ratio that depends only
onn (and not on the max-to-min distance ratio).

If the transmission power of each link is part of the input (and arbitrary), thenσ = O(log Γ +
log∆), whereΓ denotes the ratio of the max-to-min power, and∆ denotes the ratio of the max-to-
min distance. Hence, the approximation ratio isO(log n · (log Γ + log∆)).

Finally, we consider the case that the algorithm needs to assign powers to each link in a range
[Pmin, Pmax]. An extension of the algorithm to this case achieves an approximation ratio ofO[(log n+
log log Γ) · (log Γ + log∆)].

1 Introduction

In this paper we deal with the problem of maximizing throughput in a wireless network. Throughput
is a major performance criterion in many applications, including: file transfer and video streaming. It
has been acknowledged that efficient utilization of networkresources requires so called cross layered
algorithms [LSS06]. This means that the algorithm deals with tasks that customarily belong to different
layers of the network. These tasks include: routing, scheduling, management of queues in the nodes,
congestion control, and flow control.

The problem we consider is formulated as follows. We are given a setV of n nodes in the plane.
A link e is a pair(se, re) of nodes with a power assignmentPe. The nodese is the transmitter and
the nodere is the receiver. In theSINR model,re receives a signal fromse with powerSe = Pe/d

α
e ,

wherede is the distance betweense, andre andα is the path loss exponent. The network is given
a set of requests{Ri}

k
i=1. Each request is a3-tuple Ri = (ŝi, t̂i, bi), where ŝi ∈ V is the source,

t̂i ∈ V is the destination, andbi is the requested packet rate. The output is a multi-commodity flow
f = (f1, . . . , fk) and anSINR-scheduleS = {Lt}

T−1
t=0 that supportsf . EachLt is a subset of links that

can transmit simultaneously (SINR-feasible). The goal is to maximize the total flow|f | =
∑k

i=1 |fi|.
We also consider a version that maximizesmini=1...k |fi|/bi. Let ∆ , dmax/dmin is the ratio between
the maximum and minimum length of a link, andΓ , Pmax/Pmin the ratio between the maximum
and minimum transmission power. For the case in whichmaxe 6=e′

Se

Se′
= O(1), the approximation ratio

achieved by the algorithm isO(log n). For arbitrary powers and link lengths, the approximation ratio
achieved by the algorithm isO(log n · (log Γ + log∆)).
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Previous Work. Gupta and Kumar [GK00] studied the capacity of wireless networks in theSINR-
model and the graph model for random instances in a square. TheSINR-model for wireless networks was
popularized in the algorithmic community by Moscibroda andWattenhofer [MW06]. NP-Completeness
for scheduling a set of links was proven by Goussevskaia [GOW07].

Algorithms for routing and scheduling in theSINR-model can be categorized by four main criteria:
maximum capacity with one round vs. scheduling, multi-hop vs. single-hop, throughput maximization
vs. latency minimization, and the choice of transmitter powers. In the single-hop setting, routing is not
an issue, and the focus is on scheduling. If the objective is latency minimization, then each request is
treated as a task, and the goal is to minimize the makespan.

The following problems are considered. (1)CAP-1SLOT: find a subset of maximum cardinality that
is SINR-feasible. (2)LAT-1HOP: find a shortest SINR-schedule for a set of links. (3)LAT-PATHS: find a
shortest SINR-schedule for a set of paths. (4)LAT-ROUTE: find a routing and a shortest SINR-schedule
for a set of multi-hop requests. (5)THROUGHPUT-ROUTE: find a routing and maximum throughput
SINR-schedule for a set of multi-hop requests. We briefly review some of the algorithmic results in this
area published in the last three years.

Chafekar et al. [CKM+07] present an approximation algorithm forLAT-ROUTE. The approximation
ratio isO(log n · log ∆ · log2 Γ). Fanghänel et al. [FKV10] improved this result toO(log∆ · log2 n).
Goussevskaia et al. [GWHW09] pointed out thatlog∆ can beΩ(n), and presented the first approxima-
tion algorithm whose approximation ratio is always nontrivial. In fact, the approximation ratio obtained
by Goussevskaia et al. [GWHW09] isO(log n) for the caseLAT-1HOP with uniform power transmis-
sions.

Halldorsson [Hal09] presented algorithms forLAT-1HOP with mean power assignments. He pre-
sented anO(log n log log∆)-approximation and anO(log∆)-online algorithm that uses mean power
assignments with respect to OPT that can choose arbitrary power assignments (see also [Ton10]).

Halldorsson and Mitra [HM11a] presented a constant approximation algorithm forCAP-1SLOT prob-
lem with uniform, linear and mean power assignments. In addition, by using the mean power assignment,
the algorithm obtains aO(log n+log log∆)-approximation with respect to arbitrary power assignments.

Kesselheim and Vöcking [KV10] give a distributed randomized algorithm forLAT-1HOP that ob-
tains anO(log2 n)-approximation using uniform and linear powers. Halldorson and Mitra [HM11b]
improve the analysis to achieve anO(log n)-approximation.

Kesselheim [Kes11] presents approximation results in theSINR-model: anO(1)-approximation for
CAP-1SLOT, an O(log n)-approximation forLAT-1HOP, anO(log2 n)-approximation forLAT-PATHS

andLAT-ROUTE. In [Kes11] there is no limitation on power assignment imposed neither on the solution
nor on the optimal solution. In practice, power assignmentsare limited, especially for mobile users with
limited power supply.

The most relevant work to our result is by Chafekar et al. [CKM+08] who presented approximation
algorithms forTHROUGHPUT-ROUTE. They present the following results, anO(log∆)-approximation
for uniform power assignment and linear power assignment, and anO(log Γ · log∆) for arbitrary power
assignments.

For linear powers, Wan et al. [WFJ+11] obtain aO(log n)-approximation forTHROUGHPUT-ROUTE.
The algorithm is based on a reduction to the single-slot problem using the ellipsoid method. In [Wan09],
Wan writes that “this algorithm is of theoretical interest only, but practically quite infeasible.” For the
case that the algorithm assigns powers from a limited range,Wan et al. [WFJ+11] achieve anO(log n ·
log Γ)-approximation ratio.

Our result. We present an algorithm forTHROUGHPUT-ROUTE. Our algorithm partitions the links
into buckets. Every bucket consists of a set of links that have nearly equivalent reception powers. We
denote the number of nonempty buckets (also called the signal diversity of the links) byσ. Our algorithm
obtains an approximation ratio ofO(σ · log n), wheren denotes the number of nodes.
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For the case of linear power assignment the signal diversityis σ = 1, hence the approximation ratio
of the algorithm isO(log n). This is the first practical approximation algorithm for linear powers that
obtains an approximation ratio that depends only onn (and not on ratio of the max-to-min distance).
This improves theO(log∆)-approximation of Chafekar et al. [CKM+08] for linear power assignment.
As pointed out in [GWHW09],log ∆ can beΩ(n). The linear power assignment model makes a lot
of sense since it implies that, in absence of interferences,transmission powers are adjusted so that the
reception powers are uniform.

In the case of arbitrary given powers, the signal diversity is σ = O(log Γ + log∆). Hence,
the approximation ratio isO(log n · (log Γ + log∆)). For arbitrary power assignments Chafekar et
al. [CKM+08] presented approximation algorithm that achieves approximation ratio ofO(log Γ · log ∆).
In this case, the approximation ratio of our algorithm is notcomparable with the algorithm presented by
Chafekar et al. [CKM+08] (i.e., in some cases it is smaller, in other cases it is larger).

For the case of limited powers where the algorithm needs to assign powers betweenPmin andPmax,
we give aO[(log n+ log log Γ) · (log Γ + log∆)]-approximation algorithm.

Our results apply both for maximizing the total throughput and for maximizing the minimum fraction
of supplied demand. Other fairness criteria apply as well (see also [Cha09]).

Techniques. Similarly to [CKM+08] our algorithm is based on linear programming relaxationand
greedy coloring. The linear programming relaxation determines the routing and the flow along each
route. Greedy coloring induces a schedule in which, in everyslot, every link isSINR-feasible with
respect to longer links in the same slot.

We propose a new method of classifying the links. In [CKM+08, Hal09] the links are classified by
lengths and by transmitted powers. On the other hand, we classify the links by theirreceived power.

We present a new linear programming formulation for throughput maximization in theSINR-model.
This formulation uses novel symmetric interference constraints, for every linke, that bound the interfer-
ence incurred by other links in the same bucket as well as the interference thate incurs to other links.
We show that this formulation is a relaxation due to our link classification method.

We then apply a greedy coloring procedure for rounding the LPsolution. This method follows [ABL05,
CKM+08, Wan09] and others (the greedy coloring is described in Section 6.3).

The schedule induced by the greedy coloring is notSINR-feasible. Hence, we propose a refinement
technique that produces anSINR-feasible schedule. We refine each color class using a bin packing
procedure that is based on the symmetry of the interference coefficients in the LP. We believe this
method is of independent interest since it mitigates the problem of bounding the interference created by
shorter links.

Organization. In Sec. 2 we present the definitions and notation. The throughput maximization prob-
lem is defined in Sec. 3. In Sec. 4, we present necessary conditions forSINR-feasibility for links that are
in the same bucket. The results in Sec. 4 are used for proving that the linear programming formulation
presented in Sec. 5 is indeed a relaxation of the throughput maximization problem. The algorithm for
linear powers is presented in Sec. 6 and analyzed in Sec. 7. InSec. 8 we extend the algorithm so that it
handles arbitrary powers. In Sec. 9 we extend the algorithm so that it assigns limited powers.

2 Preliminaries

We briefly review definitions used in the literature for algorithms in theSINR model (see [HW09,
CKM+08]).

We consider a wireless network that consists of a setV of n nodes in the plane. Each node is
equipped with a transmitter and a receiver. We denote the distance between nodesu andv by duv.
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A link is a3-tuplee = (se, re, Pe), wherese ∈ V is the transmitter,re ∈ V is the receiver, andPe

is the transmission power. In the general setting we allow parallel links with different powers. The set
of links is denoted byL andm , |L|. We abbreviate and denote the distancedsere by de. Similarly, we
denote the distancedser′e by dee′ . Note that according to this notation,dee′ 6= de′e.

We use the following radio propagation model. A transmission from pointswith powerP is received
at pointr with powerP/dαsr. The exponentα is called thepath loss exponentand is a constant. In most
practical situations,2 ≤ α ≤ 6; our algorithm works for any constantα ≥ 0. For linkse, e′, we use the
following notation:Se , Pe/d

α
e andSe′e , Pe′/d

α
e′e.

A subset of linksL ⊆ L is SINR-feasible ifSe/(N +
∑

e′∈L\{e} Se′e) ≥ β, for everye ∈ L.
This ratio is called thesignal-to-noise-interference ratio(SINR), where the constantN is positive and
models the noise in the system. The thresholdβ is a positive constant. The ratioSe/N is called the
signal-to-noise ratio(SNR).

A link e can tolerate an accumulated interference
∑

e′ Se′e that is at most(Se−βN)/β. This amount
can be considered to be the “interference budget” ofe. Let γe , (βSe)/(Se − βN). We define three
measures of how much of the interference budget is “consumed” by a link e′.

âe′(e) ,
Se′e

Se
, ae′(e) , γe · âe′(e), and āe′(e) , min{1, ae′(e)}.

The value ofae′(e) is called theaffectance[HW09] of the linke′ on the linke. The affectance is additive,
so for a setL ⊆ L, let aL(e) ,

∑

{e′∈L:e′ 6=e} ae′(e).

Proposition 1 ([HW09]). A setL ⊆ L is SINR-feasible iffaL(e) ≤ 1, for everye ∈ L.

Following [HW09], we define a setL ⊆ L to be ap-signal, ifaL(e) ≤ 1/p, for everye ∈ L. Note
thatL is SINR-feasible ifL is a1-signal. We also define a setL ⊆ L to be ap̄-signal, if āL(e) ≤ 1/p,
for everye ∈ L. Note thatL is SINR-feasible ifL is a(1 + ε)-signal for someε > 0.

By Shannon’s theorem on the capacity of a link in an additive white Gaussian noise channel [Gal68],
it follows that the capacity is a function of theSINR. Since we use the same thresholdβ for all the links,
it follows that the Shannon capacity of a link is either zero (if the SINR is less thanβ) or a value
determined byβ (if the SINR is at leastβ). We set the length of a time slot and a packet length so that,
if interferences are not too large, each link can deliver onepacket in one time slot. By setting a unit of
flow to equal a packet-per-time-slot, all links have unit capacities. We do not assume thatβ ≥ 1; in fact,
in communications systemsβ may be smaller than one.

Multi-commodity flows. Recall that a functiong : L → R
≥0 is a flow froms to t, wheres, t ∈ V ,

if it satisfies capacity constraints (i.e.,g(e) ≤ 1, for everye ∈ L) and flow conservation constraints in
every vertexv ∈ V \ {s, t} (i.e.,

∑

e∈in(v) g(e) =
∑

e∈out(v) g(e)).
We use multi-commodity flows to model multi-hop traffic in a network. The network consists of the

nodesV and the arcsL, where each arc has a unit capacity. There arek commoditiesRi = (ŝi, t̂i, bi),
whereŝi and t̂i are thesourceandsink, andbi is thedemandof the ith commodity. Consider a vector
f = (f1, . . . , fk), where eachfi is a flow from ŝi to t̂i. We use the following notation: (i)fi(e)
denotes the flow of theith flow alonge, (ii) |fi| equals the amount of flow shipped from̂si to t̂i,
(iii) f(e) ,

∑k
i=1 fi(e), (iv) |f | ,

∑k
i=1 |fi|. A vectorf = (f1, . . . , fk) is a multi-commodity flow if

f(e) ≤ 1, for everye ∈ L.
We denote byF the polytope of all multi-commodity flowsf = (f1, . . . , fk) such that|fi| ≤ bi,

for everyi. For aρ > 0, we denote byFρ ⊆ F the polytope of all multi-commodity flows such that
|fi|/bi ≥ ρ.

4



Schedules and multi-commodity flows. We use periodic schedules to support a multi-commodity
flow using packet routing as follows. We refer to a sequence{Lt}

T−1
t=0 , whereLt ⊆ L for eachi, as a

schedule. A schedule is used periodically to determine which links are active in each time slot. Namely,
time is partitioned into disjoint equal time slots. In time slot t′, the links inLt, for t = t′ (mod T )
areactive, namely, they transmit. Each active link transmits one packet of fixed length in a time slot
(recall that all links have the same unit capacity). The number of time slotsT is called theperiodof the
schedule. We sometimes represent a scheduleS = {Lt}

T−1
t=0 by a multi-coloringπ : L → 2{0,...,T−1}.

The setLt simply equals the preimage oft, namely,Lt = π−1(t), whereπ−1(t) , {e : t ∈ π(e)}.
An SINR-scheduleis a sequence{Lt}

T−1
t=0 such thatLt is SINR-feasible for everyt. Consider a multi-

commodity flowf = (f1, . . . , fk) and a scheduleS = {Lt}
T−1
t=0 . We say that the scheduleS supportsf

if

∀e ∈ L : T · f(e) ≤ |{t ∈ {0, . . . , T − 1} : e ∈ Lt}| .

The motivation for this definition is as follows. Consider a store-and-forward packet routing network
that schedules links according to the scheduleS. This network can deliver packets along each linke at
an average rate off(e) packets-per-time-slot.

Buckets and signal diversity. We partition the links into buckets by their received powerSe . Let
Smin , mine∈L Se. Theith bucketBi is defined by

Bi ,
{

e ∈ L | 2i · Smin ≤ Se < 2i+1 · Smin

}

.

For a linke ∈ L, definei(e) , ⌊log2(Se/Smin)⌋. Then,e ∈ Bi(e). Thesignal diversityσ of L is the
number of nonempty buckets.

Lemma 1.
σ ≤ ⌈α · log2 ∆+ log2 Γ⌉ .

Proof. Recall thatSe , Pe/d
α
e . The signal diversity ofL is at mostlog2(Smax/Smin), whereSmax =

max{Se : e ∈ L} andSmin = min{Se : e ∈ L}. Hence,

log2(Smax/Smin) ≤ log2

(

Pmax

dαmin

/
Pmin

dαmax

)

= log2(Γ ·∆
α) ,

wherePmin = min{Pe : e ∈ L}, Pmax = max{Pe : e ∈ L}, dmax = max{de : e ∈ L}, dmin =
min{de : e ∈ L}, as required.

Power assignments. In theuniform power assignment, all links transmit with the same power, namely,
Pe = Pe′ for every two linkse ande′. In the linear power assignment, all links receive with the same
power, namely,Se = Se′ for every two linkse ande′.

Assumption on SNR. Our analysis requires that, for every linke, Se/N ≥ (1 + ε) · β, for a constant
ε > 0. Note that ifSe/N = β, then the link cannot tolerate any interference at all, andγe = ∞.
Our assumption implies thatγe ≤ (1 + ε) · β/ε. This assumption can be obtained by increasing the
transmission power of links whoseSNR almost equalsβ. Namely, ifSe/N ≈ β, thenPe ← (1 + ε) ·
Pe. A similar assumption is used in [CKM+08], where it is stated in terms of a bi-criteria algorithm.
Namely, the algorithm uses transmission powers that are greater by a factor of(1 + ε) compared to the
transmission power of the optimal solution.

5



Assumption 1. For every linke ∈ L, Se/N ≥ (1 + ε) · β.

Proposition 2. Under Assumption 1,β < γe ≤ (1 + ε) · β/ε.

Proof. Recall thatγe ,
βSe

Se−βN = β
1−β(N/Se)

. Assumption 1 implies thatSe/N > β. Hence,γe > β.

Assumption 1 implies thatβ N
Se
≤ 1

1+ε . Hence,

γe =
β

1− β(N/Se)

≤
β

1− 1
1+ε

= (1 + ε) · β/ε ,

as required.

3 Problem Definition

The problem MAX THROUGHPUT is formulated as follows. The input consists of: (i) A set of nodes
V in R

2 (ii) A set of linksL. The capacity of each link equals one packet per time-slot. (iii) A set of
requests{Ri}

k
i=1. Each request is a3-tupleRi = (ŝi, t̂i, bi), whereŝi ∈ V is the source,̂ti ∈ V is the

destination, andbi is the requested packet rate. We assume that every request can be routed, namely,
there is a path from̂si to t̂i, for everyi ∈ [1..k]. Since the links have unit capacities, we assume that the
requested packet rate satisfiesbi ≤ n. The output is a multi-commodity flowf = (f1, . . . , fk) ∈ F and
anSINR-scheduleS = {Lt}

T−1
t=0 that supportsf . The goal is to maximize the total flow|f |.

The MAX -M IN THROUGHPUT problem has the same input and output. The goal, however, is to
maximizeρ, such thatf ∈ Fρ. Namely, maximizemini=1...k |fi|/bi.

4 Necessary Conditions:SINR-feasibility for links in the same bucket

In this section we formalize necessary conditions so that a set of links in the same bucket isSINR-
feasible. In Section 5 we use these conditions to build a LP-relaxation for the problem.

We begin by expressinĝae1(e2) in terms of the distancesde1 , de2 , de1e2 . Note thatâe1(e2), with
respect to links that are in the same bucket, depends solely on de1 andde1e2. On the other hand,̂ae1(e2),
with respect to the uniform power model, depends solely onde2 andde1e2. The proof of the following
proposition is in Appendix A.

Proposition 3.

∀i ∀ e1, e2 ∈ Bi :
1

2
·

(

de1
de1e2

)α

< âe1(e2) < 2 ·

(

de1
de1e2

)α

,

∀ e1, e2 ∈ L : âe1(e2) =

(

de2
de1e2

)α

in the uniform power model.

Throughout this section we assume the following. LetL ⊆ L denote anSINR-feasible set of links
such that all the links inL belong to same bucketBi. Lete ∈ Bi denote an arbitrary link (not necessarily
in L).

Notation. Define:

Lℓ , {e′ ∈ L : de′ ≤ de′e}, and

Lg , {e′ ∈ L : de′ > de′e}.
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4.1 A Geometric Lemma

The following lemma claims that for everye ∈ Bi (not necessarily inL), there exits a set of at most six
“guards” that “protect”e from interferences by transmitters inLℓ.

Lemma 2. There exists a setG of at most six receivers of links inLℓ such that

∀e′ ∈ Lℓ ∃g ∈ G : de′g ≤ 2 · de′e.

Proof. The setG is found as follows (see Figure 1): (i) Partition the plane into six sectors centered at
re, each with an angle of60◦. Denote these sectors bysector(j), wherej ∈ {1, . . . , 6}. (ii) For every
sector(j), let ej ∈ Lℓ denote a link such that the transmittersej is closest tore among the transmitters
in sector(j). (iii) Let gj denote a link inLℓ such thatrgj is closest tosej (If sector(j) lacks transmitters,
thengj is not defined). LetG , {rgj}

6
j=1 denote the set of guards.

sg1

re

re1

e1

60◦

sector(1) sector(4)

sector(5)

sector(2) sector(3)

sector(6)

de′g1

de′e

e′

se′

re′

se1

rg1

g1

Figure 1: A depiction of the proof of Lemma 2.

We first consider the case thate′ ∈ Lℓ is also a guard (e′ = gj). In this case chooseg = e′, and
de′g = de′ . But de′ ≤ de′e sincee′ ∈ Lℓ, as required. We now consider the case thate′ ∈ Lℓ \G. Given
e′ ∈ Lℓ \G, let j denote the sector that containsse′ . We claim thatde′gj ≤ 2 ·de′e. Consider firste′ = ej
(i.e.,sej is a closest sender tore in sector(j)). Sincergj is a closest receiver tosej , we havedejgj ≤ dej .
Sinceej ∈ Lℓ, we havedej ≤ deje. Thus,dejgj ≤ deje, as required.

7



Consider now a linke′ 6= ej . The following inequalities hold:

de′e ≥ deje, (sej is a closest sender tore) (1)

de′gj ≤ dse′sej + dejgj , (triangle ineq. in△se′sejrgj ) (2)

dejgj ≤ deje, (already proved forej) (3)

dse′sej ≤ de′e. (proved below). (4)

We now prove Eq. 4 (see Figure 2). Lets∗ denote the point along the segment fromre to se′ such
that ds∗re = deje. The triangle△resejs

∗ is an isosceles triangle. Since∠sejres
∗ ≤ 60◦, it follows

that the base angle∠resejs
∗ ≥ 60◦. Hence,∠resejse′ ≥ ∠resejs

∗ ≥ 60◦. Since∠sejrese′ ≤ 60◦, it
follows thatdse′ ,sej ≤ de′e, as required.

ds
e
′se1

se′

re

δ

se1

s
∗

ω

τ

de′e

sector(1)

Figure 2: The triangle△resejs
∗ is an isosceles triangle. The angleτ ≤ 60◦. The angleδ ≥ 60◦. The

angleω ≥ δ ≥ 60◦.

To complete the proof thatde′gj ≤ 2 · de′e, observe that

de′gj
eq. 2
≤ dse′sej + dejgj

eqs. 3,4
≤ de′e + deje

eq. 1
≤ 2 · de′e.

4.2 Necessary Conditions

Recall that LetL ⊆ L is anSINR-feasible set of links that belong to same bucketBi. Let e ∈ Bi denote
an arbitrary link (not necessarily inL).

Lemma 3.
∑

e′∈Lℓ

āe′(e) = O(1).

Proof. By Lemma 2, we find a set of “guards”G ⊆ Lℓ, such that:
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(i) |G| ≤ 6,

(ii) ∀e′ ∈ Lℓ ∃g ∈ G : de′g ≤ 2 · de′e.

First, let us bound
∑

e′∈Lℓ\G âe′(e),

∑

e′∈Lℓ\G

âe′(e) <
∑

e′∈Lℓ\G

2 ·

(

de′

de′e

)α

≤ 2α+1 ·
∑

e′∈Lℓ\G

∑

g∈G

(

de′

de′g

)α

≤ 2α+2 ·
∑

g∈G

âLℓ(g) , (5)

where the first line follows from Proposition 3. The second line follows from Lemma 2. The third line,
again, follows from Proposition 3.

Sinceāe′(e) ≤ 1, we obtain

∑

e′∈Lℓ

āe′(e) ≤
∑

e′∈Lℓ\G

āe′(e) + |G| , (6)

Hence,
∑

e′∈Lℓ

āe′(e) ≤
∑

e′∈Lℓ\G

ae′(e) + |G|

=
∑

e′∈Lℓ\G

γe · âe′(e) + |G|

≤ γe · 2
α+2 ·

∑

g∈G

âLℓ(g) + |G|

≤ |G| ·

(

γe · 2
α+2

ming∈G γg
+ 1

)

≤ 6

(

(1 + ε) · 2α+2

ε
+ 1

)

,

where the first line follows from Equation 6 and the fact thatāe′(e) ≤ ae′(e). The second line follows
from the fact thatγe · âe′(e) = ae′(e). The third line follows from Equation 5. The fourth line follows
sinceLℓ is SINR-feasible, that is,aLℓ(g) ≤ 1 andâLℓ(g) ≤ 1/γg, for everyg ∈ G. The last line follows
from Proposition 2, Lemma 2, and|G| ≤ 6. Since,α andε are constants, the lemma follows.

Lemma 4.
∑

e′∈Lg

āe′(e) = O(1).

Proof. Pick e∗ to be a shortest link inLg. It follows from Proposition 3 and the triangle inequality (see
Figure 3) that

∀e′ ∈ Lg \ {e∗} : âe′(e
∗) >

1

2
·

(

de′

de′e∗

)α

≥
1

2
·

(

de′

de′e + de∗e + de∗

)α

.

9



e
∗

de∗e

de′e
e
′

de′e∗

e

Figure 3: The distancede′e∗ is depicted by a bold segment. We boundde′e∗ by applying the triangle
inequality, that is the dashed segments and the length of link e∗, de∗ .

Sincee′, e∗ ∈ Lg, it follows thatde′ > de′e andde∗ > de∗e. Sincede′ ≥ d∗e it follows that

âe′(e
∗) >

1

2
·

(

de′

3 · de′

)α

>
1

2
·
1

3α
.

SinceaLg(e∗) = γe∗ · âLg (e∗), it follows:

aLg (e∗) = γe∗ · âLg(e∗) >
1

2
·
1

3α
· γe∗ · (|L

g| − 1) .

SinceLg is SINR-feasible, it follows thataLg (e∗) ≤ 1. Hence,

1

2
·
1

3α
· γe∗ · (|L

g| − 1) < 1⇒

|Lg| < 2 · 3α/γe∗ + 1 .

Proposition 2 implies that1γe∗ = O(1). Sinceα is a constant, it follows that|Lg| = O(1). Since
∑

e′∈Lg āe′(e) ≤ |L
g|, the lemma follows.

Lemmas 3 and 4 imply the following theorem.

Theorem 1. LetL denote an SINR-feasible set of links. IfL ⊆ Bi, then

∀e ∈ Bi :
∑

{e′∈L:de′≥de}

āe′(e) ≤ āL(e) + āe(e) = O(1).

The following theorem follows from [Kes11, Thm 1]. The proofof the following theorem is in Ap-
pendix A.

Theorem 2. LetL denote an SINR-feasible set of links. IfL ⊆ Bi, then

∀e ∈ Bi :
∑

{e′∈L:de′≥de}

āe(e
′) = O(1).

5 LP Relaxation

In this section we formulate the linear program for the MAX THROUGHPUTand MAX -M IN THROUGHPUT

problems with arbitrary power assignments. The linear program formulation that we use for computing
the multi-commodity flowf is as follows.

10



MAX THLP : F ∗ = maximize|f | subject to

f ∈ F (7)

∀i ∀e ∈ Bi f(e) +
∑

{e′∈Bi:de′≥de}

(āe′(e) + āe(e
′)) · f(e′) ≤ 1 (8)

MAX M INTHLP : R∗ =maximizeρ subject to

f ∈ Fρ (9)

∀i ∀e ∈ Bi f(e) +
∑

{e′∈Bi:de′≥de}

(āe′(e) + āe(e
′)) · f(e′) ≤ 1 (10)

Recall thatF denotes the polytope of all multi-commodity flowsf = (f1, . . . , fk) such that|fi| ≤
bi, for everyi. Also recall thatFρ ⊆ F for ρ > 0 denotes the polytope of all multi-commodity flows
such that|fi|/bi ≥ ρ. Constraints 7, 9 in MAX THLP and MAX M INTHLP respectively require that the
f is a feasible multi-commodity flow with respect toF andFρ.

Constraints 8, 10 in MAX THLP and MAX M INTHLP respectively require that for every bucket
Bi and for every linke ∈ Bi the amount of flowf(e) plus the amount of the weighted symmetric
interferences is bounded by one. Note that this symmetric interference constraint is with respect to links
that are longer thane.

The objective function of MAX THLP is to maximize the total flow|f |. The objective function of
MAX M INTHLP is to maximizeρ, such thatf ∈ Fρ. Namely, maximizemini=1...k |fi|/bi.

We prove on Section 7 that the linear programs MAX THLP and MAX M INTHLP are relaxations of
the MAX THROUGHPUTand MAX -M IN THROUGHPUTproblems.

6 Algorithm

6.1 Algorithm description

For simplicity, we assume in this section that all the links are in the same bucket, that isL ⊆ Bi for
somei. In Section 8 we show how to handle arbitrary power assignment. In Section 9 we extend the
algorithm so that it assigns limited powers.

Algorithm overview. We overview the algorithm for the MAX THROUGHPUTproblem. Assume for
simplicity that,L ⊆ Bi for somei. First, the optimal flowf∗ is obtained by solving the linear program
MAX THLP . We need to find anSINR-feasible schedule that supports a fraction off∗. Second, we color
the links using greedy multi-coloring. This coloring induces a preliminary schedule, in which every
color class is “almost”SINR-feasible. This preliminary schedule is almostSINR-feasible since in every
color class and every linke, the affectance of links that are longer thane on e is at most 1. However,
the affectance of shorter links one may be still unbounded. Finally, we refine this schedule in order to
obtain anSINR-feasible schedule. Note that the returnedSINR-feasible schedule supports a fraction of
the flowf∗. We show in Section 7 that this fraction is at leastΩ(1/ log n).

Algorithm description. The algorithm for the MAX THROUGHPUTproblem proceeds as follows.

1. Solve the linear program MAX THLP . Let f∗ denote the optimal solution.

2. Remove flow paths that traverse edges withf∗(e) < 1/(2nm). Let f̂ denote the remaining flow.
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3. SetT = 2nm. Apply the greedy multi-coloring algorithmgreedy-coloring(see Section 6.3) on
the input((L,L2), f̂ , d, w, T ), where the pair(L,L2) is a complete graph whose set of vertices is
L, for every link ine ∈ L, d(e) = de, andw(e, e′) , āe(e

′) + āe′(e) is a weight function over
pair of links inL. Letπ : L → 2{0,...T−1} denote the computed multi-coloring.

4. Apply proceduredisperseto each color class(π−1(t)), wheret ∈ {0, . . . T − 1}. Let {Lt,i}
ℓ(t)
i=1

denote the dispersed subsets.

5. Return the schedule{Lt,i}t=0..T−1,i=1..ℓ(t) and the flowf = (f1, . . . , fk), wheref = f̂/(2 ·ℓ(t)).

Clearly steps 1 and 5 are polynomial. In Section 6.3 we show that step 3 is polynomial. In Section 6.4
we show thatdisperseis polynomial. Therefore, the running time of the algorithmis polynomial.

Remark 1. The following changes are needed in order to obtain an algorithm for theMAX -M IN THROUGHPUT

problem: (i) In Item 1 solve the linear programMAX M INTHLP , (ii) in Item 2 remove flow paths that
traverse edges withf∗(e) < 1/(2n2km), (iii) in Item 3 setT = 2n2km.

6.2 Removing Minuscule Flow Paths

The greedy multi-coloring algorithm cannot support flowsf∗(e) < 1/(2nm). We mitigate this problem
simply by peeling off flow paths that traverse edges with a flowsmaller than1/(2nm). The formal
description of this procedure is as follows. (1) Initializêf ← f . (2) While there exists an edgee with
f̂(e) < 1/(2nm), remove flow fromf̂ until f̂(e) = 0. This is done by computing flow paths for the
flow that traversese, and zeroing the flow along these paths.

6.3 Greedy Multi-Coloring

Let G = (V,E) denote an undirected graph with edge weightsw : E → [0, 1] and node demands
x : V → [0, 1]. Assume an ordering of the nodes induced by distinct node lengthsd(v). For a set
V ′ ⊂ V , letw(V ′, u) ,

∑

v∈V ′ w(v, u). Assume that

∀u ∈ V : x(u) +
∑

{v∈V :d(v)>d(u)}

w(v, u) · x(v) ≤ 1 . (11)

Indeed, Constraints 8, 10 in MAX THLP and MAX M INTHLP , respectively, imply that the input to
the greedy coloring algorithm satisfies the assumption in Equation 11.

Lemma 5 (Greedy Coloring Lemma). For every integerT , there is multi-coloringπ : V → 2{0,...,T−1},
such that

1. ∀c ∈ {0, . . . , T − 1} ∀u ∈ π−1(c) :
∑

{v∈V :d(v)>d(u)} w(v, u) ≤ 1,

2. ∀u ∈ V : |π(u)| ≥ ⌊x(u) · T ⌋.

The running time of Algorithm 1 is at mostO(T 2 · |V | · |E|). SinceT, |E| and|V | are polynomial,
it follows that the running time is polynomial.

Proof. We apply a “first-fit” greedy multi-coloring listed in Algorithm 1. We now prove that this algo-
rithm succeeds.
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Algorithm 1 greedy-coloring((V,E), x, d, w, T ) - greedy multi-coloring ofV .

1. Scan the vertices in descendingd(v) length order, letu denote the current node.

(a) Cbad
u ← {c ∈ {0, . . . , T − 1} : w(π−1(c), u) > 1}.

(b) If |Cbad
u | > T − ⌊x(u) · T ⌋, then return “FAIL”.

(c) π(u)← first ⌊x(u) · T ⌋ colors in{0, . . . , T − 1} \ Cbad
u .

2. Return(π).

Let b(u) , ⌊x(u) · T ⌋. Assume, for the sake of contradiction that,|Cbad
u | > T − b(u), hence,

T − b(u) + 1 ≤ |Cbad
u |

≤
∑

c∈Cbad
u

w(π−1(c), u)

≤
∑

{v:d(u)<d(v)}

|π(v)| · w(v, u)

=
∑

{v:d(u)<d(v)}

b(v) · w(v, u) . (12)

The third line follows from the fact that vertices are scanned in a descending length order, and by a
rearrangement of the summation order. By addingb(u) to both sides, we obtain:

T + 1 ≤ ⌊x(u) · T ⌋+
∑

{v:d(u)<d(v)}

⌊x(v) · T ⌋ · w(v, u). (13)

We divide Eq. 13 byT to obtain a contradiction to Eq. 11, as required. We conclude, that the greedy
coloring succeeds, and the lemma follows.

6.4 The dispersion proceduredisperse

The input to the dispersion proceduredisperseconsists of a setL ⊆ L of links that are assigned the
same color by the multi-coloring procedure (see Algorithm 1in Section 6.3). This implies that

∀e ∈ L :
∑

{e′∈L\{e}:de′≥de}

(āe(e
′) + āe′(e)) ≤ 1. (14)

The dispersion procedure works in two phases. In the first phase,L is partitioned into1/3-signal

sets{Li}i. In the second phase, each subsetLi is further partitioned into7/6-signal sets{Li}
ℓ(t)
i=1. Recall

that a set of linksLi is SINR-feasible ifLi is a(1 + ε)-signal for someε > 0. Since every set in{Li}
ℓ(t)
i=1

is (7/6)-signal, it follows that every set in{Li}
ℓ(t)
i=1 is SINR-feasible.

In Algorithm 2, we list the first phase of the dispersion procedure. Note that if a1/3-signal setJ i

is always found in Line 2a, thenL is dispersed into at mostlog2 |L| subsets. In Lemma 8 we prove that
this is indeed possible.

The second phase follows [HW09, Thm 1]. This phase is implemented by two first-fit bin packing
procedures. In the first procedure, open7 bins, scan the links in some order and assign each link to
the first bin in which its affectance is at most3/7. In the second procedure, partition each bin into7
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Algorithm 2 1
3 -disperse(L) : partitionL ⊆ L into O(log n) 1/3-signal sets.

1. i← 0 andL0 ← L.

2. whileLi 6= ∅ do

(a) find a1/3-signal setJ i ⊆ Li such that|J i| ≥ |Li|/2.

(b) Li+1 ← Li \ J i andi← i+ 1.

sub-bins. Scan the links in the reverse order, and again, assign each link to the first bin in which its
affectance is at most3/7.

Proposition 7 implies that step 2 in Algorithm 2 terminates after O(logm) iterations. Each of these
iterations is polynomial. The second phase of thedispersealgorithms is clearly polynomial. Therefore,
the running time of thedispersealgorithm is polynomial.

7 Algorithm Analysis

In this section we analyze the algorithm presented in Section 6. Recall that it is assumed that all the links
are in the same bucket, that isL ⊆ Bi for somei. First, we prove that the linear program MAX THLP

is a fractional relaxation of the MAX THROUGHPUTproblem. We then show that the greedy coloring
computes a schedule that supports the flow given by the LP. Unfortunately, this schedule is not an SINR-
feasible schedule. We then prove that the refinement procedure (Step 4 of the algorithm) generates an
SINR-feasible schedule with anO(log n) increase in the approximation ratio.

Let f∗ denote an optimal solution of the linear program MAX THLP , i.e.,F ∗ = |f∗|. The following
lemma shows that the linear program MAX THLP is a relaxation of the MAX THROUGHPUTproblem.

Lemma 6. There exists a constantλ ≥ 1 such that, ifS = {Lt}
T−1
t=0 is an SINR-feasible schedule that

supports a multi-commodity flowf , thenf/λ is a feasible solution of the linear programMAX THLP .
Hence,F ∗ ≥ |f |/λ.

Proof. Clearlyf/λ ∈ F . Thus, we only need to prove thatf/λ satisfies the constraint in Eq. 8. Consider
anSINR-feasible setLt and an arbitrary linke. By, Theorems 1 and 2,

∑

{e′∈Lt:de′≥de}

(āe′(e) + āe(e
′)) ≤ O(1).

It follows that

1

T
·
T−1
∑

t=0

∑

{e′∈Lt:de′≥de}

(āe′(e) + āe(e
′)) ≤ O(1). (15)

Sincef(e′) ≤ 1
T · |{t : e

′ ∈ Lt}|, We conclude that

1

T
·
T−1
∑

t=0

∑

{e′∈Lt:de′≥de}

(āe′(e) + āe(e
′)) ≥

∑

{e′∈L:de′≥de}

(āe′(e) + āe(e
′)) · f(e′). (16)

Sincef(e) ≤ 1, we conclude from Eqs. 15 and 16 that

f(e) +
∑

{e′∈L:de′≥de}

(āe′(e) + āe(e
′)) · f(e′) ≤ O(1). (17)
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Let λ > 0 denote a constant that bounds the left-hand side in Eq. 17. Then,f/λ satisfies the constraints
in Eq. 8, as required, and the lemma follows.

Analogously, one could prove also that the linear program MAX M INTHLP is a relaxation of the
MAX -M IN THROUGHPUTproblem.

Lemma 7. SupposeS = {Lt}
T−1
t=0 is an SINR-feasible schedule that supports a multi-commodity flow

f . If ρ , mini=1...k |fi|/bi, R∗ ≥ ρ/λ, for the same constantλ ≥ 1 in Lemma 6.

The following proposition gives a lower bound on the optimalthroughput.

Proposition 4. F ∗ ≥ 1
n andR∗ ≥ 1

n2k .

Proof. Without loss of generality, the source and destination of each request are connected. Pick a
requestRi and a pathpi from ŝi to t̂i. Consider the schedule that schedules the links ofpi in a round-
robin fashion. Clearly, this schedule supports a flowf = 1/|p| from ŝi to t̂i alongp, where|p| denotes
the length ofp. This implies thatF ∗ ≥ 1/n, as required. The second part of the proposition is proved
by concatenatingk schedules, one schedule per request. The concatenated schedule supports a flow
f = (f1, . . . , fk), wherefi = 1/(nk) along the pathpi. Sincebi ≤ n, it follows that|fi|/bi ≥ 1/(n2k),
and the proposition follows.

Proposition 5. |f̂ | ≥ F ∗/2

Proof. Let us denote byg the total flow that was removed in step 2. The contribution to the flow
amount|g| due to edges with small flow is less than1/(2nm). Since there arem edges, it follows that
|g| ≤ 1/(2n). By Prop. 4 we haveF ∗ ≥ 1

n , and the proposition follows.

For the case of MAX M INTHLP , one can show a similar result, that is|f̂ | ≥ R∗/2.

Proposition 6. If T ≥ 2nm, then the greedy multi-coloring algorithm computes a multi-coloring π
that induces a schedule that supportsf̂ /2.

Proof. Recall that a scheduleS = {Lt}
T−1
t=0 induced by a multi-coloringπ : L → 2{0,...,T−1} is defined

by ∀t : Lt = π−1(t), whereπ−1(t) , {e : t ∈ π(e)}. Also recall that a scheduleS supportsf̂ if
∀e ∈ L : T · f̂(e) ≤ |{t ∈ {0, . . . , T − 1} : e ∈ Lt}|. Lemma 5 implies that the greedy multi-coloring
algorithm (see the listing in Algorithm 1) computes multi-coloring π such that∀e ∈ L : |π(e)| ≥

⌊f̂(e) · T ⌋. Hence, it suffices to prove thatT · f̂(e)/2 ≤ ⌊T · ˆf(e)⌋, for every edgee. Indeed, step 2
in the algorithm (see listing in Sec. 6) implies that iff̂(e) > 0, thenf̂(e) ≥ 1/T . Let us consider the
following two cases: (1) Iff̂(e) ∈ [1/T, 2/T ), thenT · ˆf(e)/2 < 1 = ⌊T · ˆf(e)⌋, (2) if f̂(e) ≥ 2/T ,
thenT · ˆf(e)/2 ≤ T · (f̂(e)− 1/T ) ≤ ⌊T · f̂(e)⌋, as required.

For the case of MAX M INTHLP , one can show the same result ifT ≥ 2n2km.

Lemma 8. If L ⊆ L satisfies Eq. 14, then there exists a subsetJ ⊆ L such that: (i)J is a 1/3-signal,
and (ii) |J | ≥ |L|/2.

Proof. Define a square matrixA, the rows and columns of which are indexed byL as follows: order
L in descending length order, so thate′ precedese if de′ > de. Let A(e, e′) , (āe(e

′) + āe′(e)) and
A(e, e) = 0. Note thatA is symmetric.

LetA∆ denote the upper right triangular submatrix ofA. Eq. 14 implies that,

∑

{e′:de′≥de}

A(e′, e) ≤ 1.
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Hence, the weight of every column inA∆ is bounded by1. This implies that the sum of the entries in
A∆ is bounded by|L|. By Markov’s Inequality, at most half the rows inA∆ have weight greater than2.
Let J ⊆ L denote the indexes of the rows inA∆ whose weight is at most2. Clearly,|J | ≥ |L|/2.

We claim that, for everye ∈ J , the weight of the columnAe is at most3. Indeed,
∑

{e′:de′≥de}
A(e′, e) ≤

1. In addition,
∑

{e′:de′<de}
A(e′, e) =

∑

{e′:de′<de}
A(e, e′) ≤ 2 since this is the sum of the row indexed

e in A∆. This implies that̄aJ(e) ≤ 3, for everye ∈ J , and the lemma follows.

Proposition 7. The dispersion procedure partitions every color classπ−1(t) into O(logm) SINR-
feasible sets.

Proof. Recall that the dispersion proceduredisperseconsists of two phases. The first phase is the1
3 -

disperse(π−1(t)) algorithm (see the listing in Algorithm 2), and the second phase is implemented by
two first-fit packing procedures.

Let us consider the first phase. Note thatL0 = π−1(t). Since|Li+1| ≤ |Li|/2, then1
3 -disperse(π−1(t))

requires at mostlog2 |π
−1(t)| iterations. Hence, it partitionsπ−1(t) into at mostlog2 |π

−1(t)| sets,
where each set is a1/3-signal set.

Now, in the second phase each of these sets is partitioned into 49 subsets. The lemma follows.

Theorem 3. If Assumption 1 holds, and all the links are in the same bucket, then there exists anO(log n)-
approximation algorithm for theMAX THROUGHPUTand theMAX -M IN THROUGHPUTproblems.

Proof. Let OPT denote the maximum total throughput. By Lemma 6,F ∗ ≥ OPT/λ = Ω(OPT). Recall
thatf∗ denotes an optimal solution of MAX THLP . By Prop. 5|f̂ | ≥ |f∗|/2, and by Prop. 6, the multi-
coloring π supportsf̂/2. By Prop. 7, the dispersion procedure reduces the throughput by a factor
of O(logm). Since there are no parallel edges,logm = O(log n). Thus, the final throughput is
|f̂ |/O(log n) = OPT/O(log n), and the theorem follows.

Since in the linear power assignment all links receive with same power, all the links are in the same
bucket. We conclude with the following result for the linearpower assignment.

Corollary 4. If Assumption 1 holds, then there exists anO(log n)-approximation algorithm for the
MAX THROUGHPUTand theMAX -M IN THROUGHPUTproblems in the linear power assignment.

8 Given Arbitrary Transmission Powers

In this section we show how to apply the algorithm presented in Section 6 to the case in which transmis-
sion powerPe of each linke is part of the input. Note thatPe may be arbitrary.

Theorem 5. If Assumption 1 holds, then there exists anO(log n · (log∆+ log Γ))-approximation algo-
rithm for theMAX THROUGHPUTand theMAX -M IN THROUGHPUTproblems when the link transmis-
sion powers are part of the input.

Proof sketch: We construct anSINR-feasible schedule and its supported flow. The constructionpro-
ceeds as follows: (1) solve the matching LP, (2) remove the minuscule flow paths as described in Item 2,
(3) run Items 3-5 for every bucket separately, (4) concatenate the output schedules, to obtain anSINR-
feasible schedule of all the links inL. Step (3) of this construction reduces the flow by a factor of at most
O(log n). Step (4) of this construction reduces the flow by an additional factor of at most the number of
nonempty buckets, that isO(log∆ + log Γ).
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9 Limited Powers

In this section we consider the case in which the algorithm needs to assign a powerPe to each link.
The assigned powers must satisfyPmin ≤ Pe ≤ Pmax. To simplify the description, assume that
log2(Pmax/Pmin) is an integer, denoted byℓ.

We reduce this problem to the case of given arbitrary powers as follows. For each pair of nodes
(u, v), defineℓ+ 1 parallel links, where the transmission power of theith copy equals2i · Pmin.

Theorem 6. Assume that, for every linke, (Pmin/d
α
e )/N ≥ (1+ε) ·β. Then, there exists anO((log n+

log log Γ)·(log ∆+log Γ))-approximation algorithm for theMAX THROUGHPUTand theMAX -M IN THROUGHPUT

problems when the link transmission powers are in the range[Pmin, Pmax].

Proof sketch: Note that the number of links increases by a factor ofO(log Γ). This implies that the
log n factor increases to(log n+ log log Γ).

The important observation is that there exists a solution that uses the discrete power assignments
2i · Pe and achieves a throughput that is a constant fraction of the optimal throughput. The theorem
follows then from Theorem 5.

The proof of this observation proceeds as follows. Given an optimal schedule, refine each time slot
so that it is ap-signal forp = 2. This reduces the throughput only by a constant factor (see [HW09,
Thm 1]). Round up each transmission power to the smallest discrete power that satisfies Assumption 1.
This increases the affectance by at most a factor of two, thusthe resulting schedule isSINR-feasible.
Moreover, the schedule uses links with powers that satisfy Assumption 1.
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A Proofs

Proposition 3.

∀i ∀ e1, e2 ∈ Bi :
1

2
·

(

de1
de1e2

)α

< âe1(e2) < 2 ·

(

de1
de1e2

)α

,

∀ e1, e2 ∈ L : âe1(e2) =

(

de2
de1e2

)α

in the uniform power model.
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Proof. Recall that̂ae′(e) ,
Se′e

Se
, Se , Pe/d

α
e , andSe′e = Pe′/d

α
e′e. Note that every two linkse1, e2 ∈

Bi, satisfy thatSe1/Se2 ∈ (1/2, 2). Hence,

âe1(e2) =
Se1e2

Se2

=
Se1e2

Se1

·
Se1

Se2

=
Pe1/d

α
e1e2

Pe1/d
α
e1

·
Se1

Se2

=

(

de1
de1e2

)α

·
Se1

Se2

,

as required.
On the other hand, in the uniform power model assignment, alllinks transmit with the same power,

namelyPe = Pe′ for every two linkse ande′. Hence,

âe1(e2) =
Se1e2

Se2

=
Pe1/d

α
e1e2

Pe2/d
α
e2

=

(

de2
de1e2

)α

,

as required.

Theorem 2 LetL denote an SINR-feasible set of links. IfL ⊆ Bi, then

∀e ∈ Bi :
∑

{e′∈L:de′≥de}

āe(e
′) = O(1).

Proof. Theorem 1 in [Kes11] implies that

∑

{e′∈L:de′≥de}

min

{

1,

(

de
dee′

)α}

+
∑

{e′∈L:de′≥de}

min

{

1,

(

de
dse′re

)α}

= O(1).

It follows that,

O(1) =
∑

{e′∈L:de′≥de}

min

{

1,

(

de
dee′

)α}

≥
∑

{e′∈L:de′≥de}

min

{

1,
1

2
· âe(e

′)

}

=
∑

{e′∈L:de′≥de}

min

{

1,
1

2 · γe′
· ae(e

′)

}

≥
∑

{e′∈L:de′≥de}

min

{

1,
ε

2 · (1 + ε) · β
· ae(e

′)

}

,

where the second line follows sinceL ⊆ Bi and Proposition 3. The third line follows from the definition
of ae(e′). The last line follows from Proposition 2. The theorem follows, since ε

2·(1+ε)·β = O(1) and

sinceāe′(e) , min{1, ae′(e)}.
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