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Abstract

We present an algorithm for multi-hop routing and schedudifrequests in wireless networks in
thesiINR model. The goal of our algorithm is to maximize the througigyumaximize the minimum
ratio between the flow and the demand.

Our algorithm partitions the links into buckets. Every beickonsists of a set of links that have
nearly equivalent reception powers. We denote the numbertgmpty buckets by. Our algorithm
obtains an approximation ratio 6f(o - log n), wheren denotes the number of nodes. For the case
of linear powersr = 1, hence the approximation ratio of the algorithn@iflog n). This is the first
practical approximation algorithm for linear powers with @pproximation ratio that depends only
onn (and not on the max-to-min distance ratio).

If the transmission power of each link is part of the inputd@mbitrary), there = O(logT" +
log A), wherel" denotes the ratio of the max-to-min power, ahdlenotes the ratio of the max-to-
min distance. Hence, the approximation rati®i@og n - (logT" + log A)).

Finally, we consider the case that the algorithm needs tgrag®wers to each link in a range
[Prin, Pmax]. An extension of the algorithm to this case achieves an agpation ratio ofO[(log n+
loglogT) - (logT" + log A)].

1 Introduction

In this paper we deal with the problem of maximizing througthim a wireless network. Throughput
is a major performance criterion in many applications, udalg: file transfer and video streaming. It
has been acknowledged that efficient utilization of netwagources requires so called cross layered
algorithms [[LSS06]. This means that the algorithm dealf ¥atks that customarily belong to different
layers of the network. These tasks include: routing, sclglumanagement of queues in the nodes,
congestion control, and flow control.

The problem we consider is formulated as follows. We arergveetV” of n nodes in the plane.
A link e is a pair(se,r.) of nodes with a power assignmeft. The nodes, is the transmitter and
the noder. is the receiver. In thsINR model,r. receives a signal from, with powerS, = P./dg,
whered, is the distance betweesy, andr. and « is the path loss exponent. The network is given
a set of request$R; }*_,. Each request is a-tuple R; = (3;,1;,b;), wheres; € V is the source,
t; € V is the destination, anbj is the requested packet rate. The output is a multi-commdidity
f=1(f1,..., fr) and ansiNR-scheduleS = {Lt}tT;Ol that supports’. EachL, is a subset of links that
can transmit simultaneouslgifiR-feasible). The goal is to maximize the total flofj = Zle | fil-
We also consider a version that maximizesy,—;._ |fi|/bi. Let A £ dyax/dmia iS the ratio between
the maximum and minimum length of a link, afid2 P, /P, the ratio between the maximum
and minimum transmission power. For the case in wiigkx, ./ 5—/ = O(1), the approximation ratio
achieved by the algorithm ©(logn). For arbitrary powers and Tink lengths, the approximatiatior
achieved by the algorithm i9(log n - (log I" 4 log A)).
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Previous Work. Gupta and Kumar [GK0OQ] studied the capacity of wireless pétw in theSINR-
model and the graph model for random instances in a squaessifR-model for wireless networks was
popularized in the algorithmic community by Moscibroda &vattenhofer [[MWO06]. NP-Completeness
for scheduling a set of links was proven by Goussevskaia [GZW

Algorithms for routing and scheduling in tlNR-model can be categorized by four main criteria:
maximum capacity with one round vs. scheduling, multi-hep single-hop, throughput maximization
vs. latency minimization, and the choice of transmitter pmw In the single-hop setting, routing is not
an issue, and the focus is on scheduling. If the objectivatenty minimization, then each request is
treated as a task, and the goal is to minimize the makespan.

The following problems are considered. @AP-1sLoT: find a subset of maximum cardinality that
is SINR-feasible. (2).AT-1HOP: find a shortest SINR-schedule for a set of links. (8)-PATHS: find a
shortest SINR-schedule for a set of paths.L@h)-ROUTE: find a routing and a shortest SINR-schedule
for a set of multi-hop requests. (BHROUGHPUTFROUTE: find a routing and maximum throughput
SINR-schedule for a set of multi-hop requests. We brieflyensxsome of the algorithmic results in this
area published in the last three years.

Chafekar et al. [CKM Q7] present an approximation algorithm foxtT-ROUTE. The approximation
ratio is O(logn - log A - log?T"). Fanghanel et al_[FKV10] improved this result@{log A - log® n).
Goussevskaia et al. [GWHWO09] pointed out that A can beQ2(n), and presented the first approxima-
tion algorithm whose approximation ratio is always noriglivin fact, the approximation ratio obtained
by Goussevskaia et al. [GWHWO09] 3(log n) for the case.AT-1HOP with uniform power transmis-
sions.

Halldorsson [[Hal09] presented algorithms foxT-1HOP with mean power assignments. He pre-
sented arO(log nlog log A)-approximation and a®(log A)-online algorithm that uses mean power
assignments with respect to OPT that can choose arbitravgeassignments (see also [Ton10]).

Halldorsson and Mitra [HM11a] presented a constant appration algorithm folcAP-1SLOT prob-
lem with uniform, linear and mean power assignments. Intamdiby using the mean power assignment,
the algorithm obtains @ (log n+1log log A)-approximation with respect to arbitrary power assignm.ent

Kesselheim and Vockingl [KV10] give a distributed randoedzlgorithm forLAT-1HOP that ob-
tains anO (log? n)-approximation using uniform and linear powers. Halldorsmd Mitra [HM11b]
improve the analysis to achieve &tlog n)-approximation.

Kesselheim[[Kes11] presents approximation results irsth&@-model: anO(1)-approximation for
CAP-1sLOT, an O(log n)-approximation forLAT-1HoP, an O(log? n)-approximation forLAT-PATHS
andLAT-ROUTE. In [Kes11] there is no limitation on power assignment ingmbeeither on the solution
nor on the optimal solution. In practice, power assignmargdimited, especially for mobile users with
limited power supply.

The most relevant work to our result is by Chafekar et al. [CKI] who presented approximation
algorithms forTHROUGHPUFROUTE. They present the following results, &log A)-approximation
for uniform power assignment and linear power assignmewtanO (log I" - log A) for arbitrary power
assignments.

For linear powers, Wan et al. [WEJ11] obtain a0 (log n)-approximation foTHROUGHPUFROUTE.
The algorithm is based on a reduction to the single-slotlprolusing the ellipsoid method. In [Wan09],
Wan writes that “this algorithm is of theoretical interestlyo but practically quite infeasible.” For the
case that the algorithm assigns powers from a limited rage, et al. [WFJ 11] achieve ar©(logn -
log I')-approximation ratio.

Our result. We present an algorithm forHROUGHPUFROUTE. Our algorithm partitions the links
into buckets. Every bucket consists of a set of links thathaearly equivalent reception powers. We
denote the number of nonempty buckets (also called thelsigreasity of the links) bys. Our algorithm
obtains an approximation ratio 6f(o - log n), wheren denotes the number of nodes.



For the case of linear power assignment the signal divessity= 1, hence the approximation ratio
of the algorithm isO(log n). This is the first practical approximation algorithm fordar powers that
obtains an approximation ratio that depends onlynofand not on ratio of the max-to-min distance).
This improves the (log A)-approximation of Chafekar et al. [CKM8] for linear power assignment.
As pointed out in[[GWHWO0S]log A can beQ2(n). The linear power assignment model makes a lot
of sense since it implies that, in absence of interferertcassmission powers are adjusted so that the
reception powers are uniform.

In the case of arbitrary given powers, the signal diversityyi= O(logT" + log A). Hence,
the approximation ratio i®(logn - (logI' + log A)). For arbitrary power assignments Chafekar et
al. [CKM™08] presented approximation algorithm that achieves agmiation ratio ofO(log T'-log A).

In this case, the approximation ratio of our algorithm is cainparable with the algorithm presented by
Chafekar et al. [CKM08] (i.e., in some cases it is smaller, in other cases it geldr

For the case of limited powers where the algorithm needsdigmpowers betweeR,,;, and Py ax,
we give a0[(logn + loglogT') - (log " 4 log A)]-approximation algorithm.

Our results apply both for maximizing the total throughpud or maximizing the minimum fraction
of supplied demand. Other fairness criteria apply as we# @sol[[Cha(9]).

Techniques. Similarly to [CKM™08] our algorithm is based on linear programming relaxaton
greedy coloring. The linear programming relaxation detae® the routing and the flow along each
route. Greedy coloring induces a schedule in which, in egdoy, every link issINR-feasible with
respect to longer links in the same slot.

We propose a new method of classifying the links.| In [CKO8, Hal09] the links are classified by
lengths and by transmitted powers. On the other hand, wsifyldke links by theireceived power

We present a new linear programming formulation for thrqughmaximization in thesiINrR-model.
This formulation uses novel symmetric interference casts, for every linke, that bound the interfer-
ence incurred by other links in the same bucket as well astieeférence that incurs to other links.
We show that this formulation is a relaxation due to our lifdssification method.

We then apply a greedy coloring procedure for rounding thedl&tion. This method follows [ABLC5,
CKMT08,/Wan09] and others (the greedy coloring is described atiG€6.3).

The schedule induced by the greedy coloring iss1aiR-feasible. Hence, we propose a refinement
technique that produces anNR-feasible schedule. We refine each color class using a bikirgac
procedure that is based on the symmetry of the interferepefficients in the LP. We believe this
method is of independent interest since it mitigates thélpro of bounding the interference created by
shorter links.

Organization. In Sec[2 we present the definitions and notation. The thqouigimaximization prob-
lem is defined in Se€l 3. In Ség. 4, we present necessary wgdior SINR-feasibility for links that are
in the same bucket. The results in 9dc. 4 are used for prokatghe linear programming formulation
presented in Setl 5 is indeed a relaxation of the throughpexmization problem. The algorithm for
linear powers is presented in SEE. 6 and analyzed i $ec.Sedh8 we extend the algorithm so that it
handles arbitrary powers. In Sé¢. 9 we extend the algoriththat it assigns limited powers.

2 Preliminaries

We briefly review definitions used in the literature for aifums in the SINR model (see[HWQ09,
CKM™T08)).

We consider a wireless network that consists of alseif n nodes in the plane. Each node is
equipped with a transmitter and a receiver. We denote therdie between nodesandv by d,,,.



A link is a3-tuplee = (se, ¢, P.), Wheres, € V' is the transmittery. € V' is the receiver, an®,
is the transmission power. In the general setting we alloalfed links with different powers. The set
of links is denoted by andm = |£|. We abbreviate and denote the distarige, by d.. Similarly, we
denote the distanag,,,, by d.... Note that according to this notatiofh,. # der.

We use the following radio propagation model. A transmis$iom points with powerP is received
at pointr with power P/d¢.. The exponent is called thepath loss exponerand is a constant. In most
practical situations? < « < 6; our algorithm works for any constant > 0. For linkse, ¢/, we use the
following notation: S, £ P./d® andSer. £ P/ /d%,.

A subset of linksL C L is sINR-feasible if Se/(N + >_.icpy ey Sere) = B, for everye € L.
This ratio is called theignal-to-noise-interference rati(sINR), where the constanV is positive and
models the noise in the system. The thresh®ld a positive constant. The ratif. /N is called the
signal-to-noise ratiqSNR).

Alink e can tolerate an accumulated interferehce S./. that is at mostS. — 5N) /3. This amount
can be considered to be the “interference budge®.dfet v, = (3S.)/(S. — SN). We define three
measures of how much of the interference budget is “constitned link ¢’.

ae’(e) £ 558,67

ae’(e) = Ye: &e’(e)v and ae’(e) = min{L ae’(e)}'

The value ot (e) is called theaffectancdHWOQ09] of the linke’ on the linke. The affectance is additive,
soforasell C L, letar(e) £ X e orpey Ger(€)-

Proposition 1 ([HWO09]). A setL C L is SINR-feasible iffay(e) < 1, for everye € L.

Following [HWO0S9], we define a set C L to be ap-signal, ifaz(e) < 1/p, for everye € L. Note
that L is SINR-feasible if L is al-signal. We also define a sétC L to be ap-signal, ifar(e) < 1/p,
for everye € L. Note thatL is SINR-feasible ifL is a(1 + ¢)-signal for some > 0.

By Shannon’s theorem on the capacity of a link in an additirtevGaussian noise channel [G&l68],
it follows that the capacity is a function of tteeNR. Since we use the same threshglébr all the links,
it follows that the Shannon capacity of a link is either zeifotlfe SINR is less thans) or a value
determined bys (if the SINR is at least3). We set the length of a time slot and a packet length so that,
if interferences are not too large, each link can deliver paeket in one time slot. By setting a unit of
flow to equal a packet-per-time-slot, all links have unitaeipes. We do not assume that> 1; in fact,
in communications systengsmay be smaller than one.

Multi-commodity flows. Recall that a functiory : £ — R=? is a flow froms to ¢, wheres,t € V,
if it satisfies capacity constraints (i.e(e) < 1, for everye € £) and flow conservation constraints in
every vertexo € V' \ {s,t} (.., > cin(w) 9(€) = X ceoutrw) 9(€))-

We use multi-commaodity flows to model multi-hop traffic in e&werk. The network consists of the
nodesV and the arc&, where each arc has a unit capacity. TherekatemmoditiesR; = (3;, £, b; ),
wheres; andt; are thesourceandsink, andb; is thedemandof theith commodity. Consider a vector
f = (f1,..., fr), where eachy; is a flow from 3; to ;. We use the following notation: (iY;(e)
denotes the flow of théth flow alonge, (i) |f;| equals the amount of flow shipped frofn to #;,
(i) fe) 2 K, file), (V) |fl 2 K, |fil. Avectorf = (f1,..., fx) is a multi-commodity flow if
f(e) <1, foreverye € L.

We denote byF the polytope of all multi-commodity flowg = (f1,..., fx) such that f;| < b;,
for everyi. For ap > 0, we denote byF, C F the polytope of all multi-commodity flows such that

| fil /bi > p.



Schedules and multi-commodity flows. We use periodic schedules to support a multi-commaodity
flow using packet routing as follows. We refer to a sequeficg /', whereL, C L for eachi, as a
schedule A schedule is used periodically to determine which linkes agtive in each time slot. Namely,
time is partitioned into disjoint equal time slots. In timets’, the links inL;, for ¢ = ¢ (mod T')
areactive namely, they transmit. Each active link transmits one ptaok fixed length in a time slot
(recall that all links have the same unit capacity). The naeindf time slotsT” is called theperiod of the
schedule. We sometimes represent a scheslute { Z;}/ ' by a multi-coloringr : £ — 2{0-T=1},
The setL; simply equals the preimage afnamely,L; = 7—1(t), wherer~1(t) 2 {e: t € n(e)}.

An SINR-schedulds a sequencéLt}tT:‘O1 such thatl, is sINR-feasible for every. Consider a multi-
commodity flowf = (fi,..., fx) and a schedul§ = {Lt}tTgol. We say that the schedufesupportsf
if

VeeL: T-f(e)<|{t€{0,...,T —1}:e€ L}|.

The motivation for this definition is as follows. Considettare-and-forward packet routing network
that schedules links according to the schedulld his network can deliver packets along each ket
an average rate gf(e) packets-per-time-slot.

Buckets and signal diversity. We patrtition the links into buckets by their received power. Let
Smin = mineer Se. Theith bucketB; is defined by

Bi2{e€L]2 Smin < Se <27 S}

For alinke € £, definei(e) £ [logy(Se/Smin)]. Then,e € By). Thesignal diversityo of £ is the
number of nonempty buckets.

Lemma 1.
o < Ja-logy A +log,T'|.

Proof. Recall thatS, £ P./d%. The signal diversity of is at mostiog, (Smax/Smin ), WhereSyax =
max{S. : e € L} and Sy, = min{S, : e € L}. Hence,

Pmax Pmin
log, (da /da )

min max

— 10g2(r . Aa) 5

IN

10g2(Smax/Smin)

where Py = min{P, : e € L}, Ppax = max{P, : ¢ € L}, dnax = max{d, : € € L}, dpin =
min{d, : e € L}, as required. O

Power assignments. In theuniform power assignmerill links transmit with the same power, namely,
P. = P, for every two linkse and¢’. In thelinear power assignmenall links receive with the same
power, namelyS, = S, for every two linkse ande’.

Assumption onsNR.  Our analysis requires that, for every linkS./N > (1 + ¢) - 3, for a constant

e > 0. Note that ifS./N = f, then the link cannot tolerate any interference at all, and= co.

Our assumption implies that. < (1 + ¢) - 3/e. This assumption can be obtained by increasing the
transmission power of links whosR almost equalgs. Namely, if S./N =~ j, thenP, < (1+¢) -

P.. A similar assumption is used in [CKM8], where it is stated in terms of a bi-criteria algorithm.
Namely, the algorithm uses transmission powers that a@gerey a factor of1 + ¢) compared to the
transmission power of the optimal solution.



Assumption 1. For every linke € £, S¢/N > (1 +¢) - 5.
Proposition 2. Under Assumptionl13 < 7. < (1 +¢) - §/e.

Proof. Recall thaty, £ %% = 1—6(%/56)' Assumptiori L implies thag, /N > 3. Hencey, > 3.
AssumptioriL implies that &~ < 1. Hence,

14+e
_ g
Ve = T aay
1- 5(N/Se)
< P I
-1z
= (I+¢) B/,
as required. O

3 Problem Definition

The problem MaX THROUGHPUTIS formulated as follows. The input consists of: (i) A set oldes
V in R? (i) A set of links £. The capacity of each link equals one packet per time-siiot.A(set of
requests{ R; }¥_,. Each request is &tuple R; = (§;,1;,b;), wheres; € V is the sourcef; € V is the
destination, and; is the requested packet rate. We assume that every requebecauted, hamely,
there is a path frong; to ;, for everyi € [1..k]. Since the links have unit capacities, we assume that the
requested packet rate satisftes< n. The output is a multi-commodity flowi = (f1,..., fxr) € F and
ansiNR-scheduleS = {L, tT:*Ol that supports. The goal is to maximize the total flojy|.

The Max-MIN THROUGHPUT problem has the same input and output. The goal, howevep, is t
maximizep, such thatf € F,. Namely, maximizenin;—; | fi|/b;.

4 Necessary ConditionssiNR-feasibility for links in the same bucket

In this section we formalize necessary conditions so thattabklinks in the same bucket BINR-
feasible. In Sectioh]5 we use these conditions to build adl&«ation for the problem.

We begin by expressing., (e2) in terms of the distanceg.,, d.,, dc,e,- Note thata., (es), with
respect to links that are in the same bucket, depends saiely, @ndd,, .,. On the other handi,, (e2),
with respect to the uniform power model, depends solelygrandd,,.,. The proof of the following
proposition is in AppendikA.

L ([ dey \* de, \*
ViVey, e € B;: §<—1> <5Le1(€2)<2-<—1> ’

d€1€2 d€1€2

Proposition 3.

de, \& . .
Vei,ea € L: Ge (e2) = ( 2 ) in the uniform power model.

e1e2

Throughout this section we assume the following. Le€ £ denote arsINR-feasible set of links
such that all the links it belong to same bucké?;. Lete € B; denote an arbitrary link (not necessarily
in L).

Notation. Define:
Lt {6/ el :ds < de’e}a and
LY 2{d el :dy>dy.}.



4.1 A Geometric Lemma

The following lemma claims that for everye B; (not necessarily irl), there exits a set of at most six
“guards” that “protect’e from interferences by transmitters Iif.

Lemma 2. There exists a s&¥ of at most six receivers of links ik’ such that
Ve € L'3g € G 1 duy <2 due.

Proof. The setG is found as follows (see Figute 1): (i) Partition the plan® isix sectors centered at
re, €ach with an angle df0°. Denote these sectors bgctorj), wherej € {1,...,6}. (ii) For every
sectol(j), lete; € L denote a link such that the transmitter is closest ta'. among the transmitters
in sector(j). (iii) Let g; denote a link inZ! such thatr,, is closest tas; (If sectol(j) lacks transmitters,

theng; is not defined). LeG = {rg, ?:1 denote the set of guards.

sector(6) sector(5)
Te,
€1 3
sector(1) e e sector(4)
Sey |
dﬁ'.’h ) i "
. T!h 3
\‘
3 S!Jl

sector(2) sector(3)

Figure 1: A depiction of the proof of Lemnia 2.

We first consider the case thet € L¢ is also a guarde( = g;). In this case choosg = ¢/, and
derg = der. Butde < dere sincee’ € L*, as required. We now consider the case that L* \ G. Given
¢’ € L'\ G, letj denote the sector that contaifs. We claim thatdery;, < 2-d... Consider first’ = e,
(i.e., s, is a closest sender tQ in sectory)). Sincer,, is a closest receiver to., we haved, ;, < d.;.
Sincee; € Lt we haved,; < de;e. Thus,de, g, < de,e, as required.



Consider now a link’ # e;. The following inequalities hold:

dere > deje, (se, is a closest sender 1Q) 1)
derg; < dsys.; + desg;, (triangle ineq. iNAserse;rg;) (2)
de,g; < de,e, (already proved foe;) 3)

ds,ys., < dere. (proved below) 4)

We now prove Ed.]4 (see Figuré 2). Letdenote the point along the segment fropto s such
thatds«,, = de,e. The triangleArs.;s* is an isosceles triangle. Sine&s.r.s* < 60°, it follows
that the base angléres.,;s* > 60°. HeNCe,Lrese;Ser > Lrese;s* > 60°. SinceLse,reser < 60°, it
follows thatdse,,sej < d.., as required.

Figure 2: The triangle\r.s.,s* is an isosceles triangle. The angle< 60°. The angled > 60°. The
anglew > 6 > 60°.

To complete the proof thak.,. < 2 - d.., observe that

J

eq2 eqs[E4 eqd
de’gj < dse/sej + dejgj < de’e + deje < 2 de’e-

4.2 Necessary Conditions

Recall that Let C £ is ansINR-feasible set of links that belong to same bucketLete € B; denote
an arbitrary link (not necessarily in).

Lemma 3.

> au(e) = 0().

e’eL?

Proof. By Lemmd 2, we find a set of “guards&s C LY, such that:
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) |G <6,
(i) Ve' € L* g€ G :1dery <2-dye.

First, let us boun@_. ¢ ;.r\ ¢ e (€),

Y awle) < Y 2-<5je>a

e'eL\G e'e LG

TNy Z(je’
e’y

)Q
!
e'eLO\G 9€G

< 202, Z are(g), ®)

geG

where the first line follows from Propositién 3. The secome [follows from Lemmal2. The third line,
again, follows from Propositionl 3.
Sincea.(e) < 1, we obtain

Y ae(e) < > aw(e)+1G|, (6)

e'eLt e'e LG
Hence,
Y oaule) <Y au(e) +|G]
e'eLt e'eL\G
= > eraele)+G]
e'eL\G

Ye - 207N Tape(g) + |G
geG

. 2a+2
< o (2 4)

MiNgeG Vg

1 .2a+2
< 6<%—|—1) 7

e

IN

where the first line follows from Equatidn 6 and the fact thate) < a./(e). The second line follows
from the fact thaty, - a.(e) = ae (e). The third line follows from Equationl5. The fourth line follis
sinceL’ is sINR-feasible, thatisg;.(g) < 1 anda«(g) < 1/v,, for everyg € G. The last line follows
from Propositiod 2, Lemmid 2, an@| < 6. Since,« ande are constants, the lemma follows. O

Lemma 4.

> aule) = O(1).

e'ely

Proof. Picke* to be a shortest link i9. It follows from Proposition 3 and the triangle inequaliseé
Figure(3) that

1 d/ (0% 1 d/ (0%
! Lg * D Qe * - - c > — . = .
ve € L9\ {e"} de(e”) > 5 <d> I (defe+de*e+de*>




Figure 3: The distancé, .« is depicted by a bold segment. We bouhd.- by applying the triangle
inequality, that is the dashed segments and the lengthloétind,-.

Sincee’, e* € LY, it follows thatde: > dere anddex > de+.. Sinced, > d it follows that

A(*)>1 de Ol>1 L
Qe (€ 2 3.de, 2 3CM'

Sincears(€*) = yer - ars(€e*), it follows:

1
aLs(€") = Yer -apo(€) > 5 o5 e - (IL7] = 1)

SinceL?Y is sINR-feasible, it follows thati;¢ (¢*) < 1. Hence,

1
-3—a-’ye*-(!Lg\—1) < 1=
|ILI| < 2-3%vex+1.

DN | =

Proposition 2 implies thaiy% = O(1). Sincea is a constant, it follows thatZ9| = O(1). Since
> wers Ge(€) < |L9], the lemma follows. O

Lemmag B anf]4 imply the following theorem.

Theorem 1. Let L denote an SINR-feasible set of linksLIfZ B;, then

Ve e B : Y de(e) < ale) +acle) = O(1).
{e’eL:d s >de}

The following theorem follows from [[Kes11, Thm 1]. The proaffthe following theorem is in Ap-
pendix(B.

Theorem 2. Let L denote an SINR-feasible set of linksLIfZ B;, then

Ve € B; : > a(e)=0().

{e'€L:d>de}

5 LP Relaxation

In this section we formulate the linear program for the MTHROUGHPUTand MaX-MIN THROUGHPUT
problems with arbitrary power assignments. The linear gaogformulation that we use for computing
the multi-commodity flowf is as follows.
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MAXTHzp : F* = maximize|f| subject to
feF (")

ViVeeB; fle)+ Y (Ge(e)t+ace)) fl€)<1  (8)

{eleBi:de/Zde}

MAXMINTHzp : R* =maximizep subject to
fer, )

ViYe€ Bi fle)+ Y.  (aw(e)+ac(e)) - f(e) <1 (10)

{e’€Bi:d s >de}

Recall that7 denotes the polytope of all multi-commodity flovis= (fi, ..., fx) such that f;| <
b;, for everyi. Also recall thatF, C F for p > 0 denotes the polytope of all multi-commodity flows
such that f;|/b; > p. Constraint$ 14,19 in MX TH;» and MAXMINTH p respectively require that the
f is a feasible multi-commodity flow with respectfoand.7,,.

Constraints [B[_10 in MXTH;p» and MAXMINTH,p respectively require that for every bucket
B; and for every linke € B; the amount of flowf(e) plus the amount of the weighted symmetric
interferences is bounded by one. Note that this symmetigcfarence constraint is with respect to links
that are longer thaa.

The objective function of MXTHy p is to maximize the total flowf|. The objective function of
MAXMINTHp is to maximizep, such thatf € F,. Namely, maximizenin,;—;_ |f;|/b;.

We prove on Section] 7 that the linear programsXMHzp and MAXMINTH, p are relaxations of
the MAX THROUGHPUTand MAX-MIN THROUGHPUTproblems.

6 Algorithm

6.1 Algorithm description

For simplicity, we assume in this section that all the links @ the same bucket, that 5 C B; for
somei. In Sectior 8 we show how to handle arbitrary power assighmienSectior ® we extend the
algorithm so that it assigns limited powers.

Algorithm overview. We overview the algorithm for the Mx THROUGHPUT problem. Assume for
simplicity that,£ C B; for somei. First, the optimal flowf* is obtained by solving the linear program
MAXTHp. We need to find asiNR-feasible schedule that supports a fractiorfaf Second, we color
the links using greedy multi-coloring. This coloring inesca preliminary schedule, in which every
color class is “almost’5sINR-feasible. This preliminary schedule is almastir-feasible since in every
color class and every link, the affectance of links that are longer thaon e is at most 1. However,
the affectance of shorter links @may be still unbounded. Finally, we refine this schedule deoto
obtain ansiNr-feasible schedule. Note that the returredr-feasible schedule supports a fraction of
the flow f*. We show in Sectioll 7 that this fraction is at le@$t / log n).

Algorithm description.  The algorithm for the MX THROUGHPUTproblem proceeds as follows.
1. Solve the linear program MK THy,p. Let f* denote the optimal solution.

2. Remove flow paths that traverse edges wiitte) < 1/(2nm). Let f denote the remaining flow.

11



3. SetT = 2nm. Apply the greedy multi-coloring algorithmreedy-coloring(see Sectiofi 613) on
the input((£, £2), f,d, w, T), where the pait£, £?) is a complete graph whose set of vertices is
L, for every link ine € £, d(e) = d., andw(e,€') £ a.(e’) + a.(e) is a weight function over
pair of links in£. Letr : £ — 210 T—1} denote the computed multi-coloring.

4. Apply procedureadisperseto each color clasér—!(t)), wheret € {0,...T — 1}. Let {Lt,i}fg
denote the dispersed subsets.

5. Return the schedulel: ; }—o..7—1,i=1..4¢+) @nd the flowf = (f1,..., fx), wheref = f’/(2-£(t)).

Clearly stepkll arid 5 are polynomial. In Sectkion 6.3 we shatstief) B is polynomial. In Section 6.4
we show thatlisperses polynomial. Therefore, the running time of the algoritfpolynomial.

Remark 1. The following changes are needed in order to obtain an atborifor theM AX-MIN THROUGHPUT
problem: (i) In ItenT1 solve the linear prograM AXMINTH p, (i) in Item[2 remove flow paths that
traverse edges withi*(e) < 1/(2n2km), (iii) in ltem[3 setT’ = 2n2km.

6.2 Removing Minuscule Flow Paths

The greedy multi-coloring algorithm cannot support flofige) < 1/(2nm). We mitigate this problem
simply by peeling off flow paths that traverse edges with a femaller thanl /(2nm). The formal
description of this procedure is as follows. (1) Initialife— f. (2) While there exists an edgewith
f(e) < 1/(2nm), remove flow fromf until f(e) = 0. This is done by computing flow paths for the
flow that traverses, and zeroing the flow along these paths.

6.3 Greedy Multi-Coloring

Let G = (V, E) denote an undirected graph with edge weights £ — [0,1] and node demands
x : V. — [0,1]. Assume an ordering of the nodes induced by distinct nodgthenl(v). For a set
V' cV, letw(V',u) £, oy w(v,u). Assume that

Vu eV :x(u)+ Z w(v,u) - z(v) <1. (11)
{veV:d(v)>d(u)}

Indeed, Constrain{s| 8, 110 in Ak TH,» and MAXMINTH p, respectively, imply that the input to
the greedy coloring algorithm satisfies the assumption umaign[11.

Lemma 5 (Greedy Coloring Lemma)For every integefT’, there is multi-coloringr : V — 210 T—1}
such that

1.Vee{0,...,T -1} Yuen1(c) : > weVidw)sdw) W u) <1,
2. YueV:|n(u)| > |z(u) - T|.

The running time of Algorithnill is at mo& (72 - |V| - | E|). SinceT, |E| and|V| are polynomial,
it follows that the running time is polynomial.

Proof. We apply a “first-fit” greedy multi-coloring listed in Algagiim[d. We now prove that this algo-
rithm succeeds.

12



Algorithm 1 greedy-coloring(V, E), z,d,w,T) - greedy multi-coloring ol

1. Scan the vertices in descendiéi@) length order, let: denote the current node.

(@ CPd fce{0,...,T -1} :w(n (c),u) > 1}.
(b) If |CPad > T — |z(u) - T|, then return “FAIL".
(c) m(u) <« first |z(u) - T| colors in{0,...,T —1}\ CP

2. Return(r).

Letb(u) £ |x(u) - T|. Assume, for the sake of contradiction that®% > 7' — b(u), hence,

T —b(u) + 1 |cPad

> wE (o))

ceChad

Y Ir)] - w(v,u)

{v:d(u)<d(v)}

= Z b(v) - w(v,u) . (12)

{vid(u)<d(v)}

<
<

IN

The third line follows from the fact that vertices are scahme a descending length order, and by a
rearrangement of the summation order. By addifig to both sides, we obtain:

T+1<|z(u)- -T]+ Z |z(v) - T] - w(v,u). (13)
{v:d(u)<d(v)}
We divide Eq[IB byrl" to obtain a contradiction to EG. 111, as required. We congltlui the greedy
coloring succeeds, and the lemma follows. O

6.4 The dispersion proceduredisperse

The input to the dispersion procedulisperseconsists of a sel. C L of links that are assigned the
same color by the multi-coloring procedure (see Algorifiim $ectior{ 6.B). This implies that

VeeL: > (ae(€) + ae(e)) < 1. (14)
{/eL\{e}:d 1 >dc}

The dispersion procedure works in two phases. In the firssgatais partitioned intol /3-signal
sets{L;};. Inthe second phase, each sulisgs further partitioned intd/6-signal sets{Li}fg. Recall
that a set of linkd.; is SINR-feasible ifL; is a(1 + ¢)-signal for some > 0. Since every set ilﬁLi}fg
is (7/6)-signal, it follows that every set ifiZ;}') is sINR-feasible.

In Algorithm 2, we list the first phase of the dispersion pehoe. Note that if a /3-signal set/’
is always found in Liné 2a, theh is dispersed into at mogig, | L| subsets. In Lemnid 8 we prove that
this is indeed possible.

The second phase follows [HWO09, Thm 1]. This phase is impiaatkby two first-fit bin packing
procedures. In the first procedure, opebins, scan the links in some order and assign each link to
the first bin in which its affectance is at mast7. In the second procedure, partition each bin into
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Algorithm 2 1-disperséL) : partition L C £ into O(log n) 1/3-signal sets.

1. i+ 0andL® « L.
2. while L? # () do

(a) find al/3-signal set/* C L‘ such tha.J?| > |L?|/2.
(b) Lit! « LP\ J*andi < i + 1.

sub-bins. Scan the links in the reverse order, and agaifgrnasach link to the first bin in which its
affectance is at most/7.

PropositiorL.¥ implies that stép 2 in Algoritim 2 terminatéieraO (log m) iterations. Each of these
iterations is polynomial. The second phase ofdispersealgorithms is clearly polynomial. Therefore,
the running time of thelispersealgorithm is polynomial.

7 Algorithm Analysis

In this section we analyze the algorithm presented in Sei@idrecall that it is assumed that all the links
are in the same bucket, that4sC B; for somei. First, we prove that the linear programaAMTH p

is a fractional relaxation of the Mx THROUGHPUT problem. We then show that the greedy coloring
computes a schedule that supports the flow given by the LRrtdimfately, this schedule is not an SINR-
feasible schedule. We then prove that the refinement proed@ted 4 of the algorithm) generates an
SINR-feasible schedule with an(log n) increase in the approximation ratio.

Let f* denote an optimal solution of the linear progranh¥TH p, i.e., F* = |f*|. The following
lemma shows that the linear programKTH . p is a relaxation of the MX THROUGHPUTproblem.

Lemma 6. There exists a constant > 1 such that, ifS = {Lt}tT;Ol is an sINR-feasible schedule that
supports a multi-commodity floy, then f /X is a feasible solution of the linear prograMAX THzp.
Hence,F™* > |f|/\.

Proof. Clearly f/\ € F. Thus, we only need to prove thAt ) satisfies the constraint in Ed. 8. Consider
ansiNR-feasible sef; and an arbitrary link. By, Theorem§ll and 2,
S (@ele) +ad) < 0Q).
{e’ELt:de/ zde}

It follows that

~
L

(@ (e) +ac(¢) < O(1). (15)
t=0 {e’€Ls:d s >de}

e

Sincef (') < % - |{t : ¢ € L;}|, We conclude that

T-1
1 _ _ _ _
k Y. @@+ale)= Y. (ae(e)+a) f().  (16)
t=0 {eleLt:de/Zde} {e’EE:dE/Zde}
Sincef(e) < 1, we conclude from Eg6.715 ahd]16 that

fle+ Y (aele)+ac(e)) - f(¢) <O(), (17)

{e'eL:d,>d.}
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Let A > 0 denote a constant that bounds the left-hand side il Eq. 1&h,FH\ satisfies the constraints
in Eq.[8, as required, and the lemma follows. O

Analogously, one could prove also that the linear programxM INTH p is a relaxation of the
MAX-MIN THROUGHPUTproblem.

Lemma 7. Supposes = {Lt}th‘Ol is an sINR-feasible schedule that supports a multi-commodity flow
M p = ming_y_p|fi|/bs, R* > p/\, for the same constark > 1 in Lemmd®.

The following proposition gives a lower bound on the optittebughput.
Proposition 4. F* > L and R* > ..

Proof. Without loss of generality, the source and destination @he@quest are connected. Pick a
requestR; and a pattp; from ; to ¢;. Consider the schedule that schedules the links; @ a round-
robin fashion. Clearly, this schedule supports a flow 1/|p| from 3, to ¢; alongp, where|p| denotes

the length ofp. This implies thatF™* > 1/n, as required. The second part of the proposition is proved
by concatenating: schedules, one schedule per request. The concatenatetlisckapports a flow
f=(f1,..., fx), wheref; = 1/(nk) along the patty;. Sinceb; < n, it follows that|f;|/b; > 1/(n?k),

and the proposition follows. O

Proposition 5. | f| > F*/2

Proof. Let us denote by the total flow that was removed in step 2. The contributionhte flow
amount|g| due to edges with small flow is less thaf(2nm). Since there aren edges, it follows that
lg| < 1/(2n). By Prop[4 we havé™ > 1, and the proposition follows. O

For the case of MXMINTH p, one can show a similar result, that f§ > R*/2.

Proposition 6. If 7" > 2nm, then the greedy multi-coloring algorithm computes a medloring =
that induces a schedule that suppoft&.

Proof. Recall that a scheduls = {Z,}/_' induced by a multi-coloringr : £ — 2{0T=1} is defined
by V¢ : Ly = 7 '(t), wherer~'(t) £ {e : t € 7(e)}. Also recall that a scheduls supportsf if
Vee L: T-f(e)<|{te€{0,...,T—1}:e€ L;}|. Lemmdb implies that the greedy multi-coloring
algorithm (see the listing in Algorithra] 1) computes mulblaring = such thatve € £ : |x(e)| >

| f(e) - T']. Hence, it suffices to prove thdt- f(e)/2 < |T - f(e)J, for every edges. Indeed, step]2
in the algorithm (see listing in Sed. 6) implies thaifife) > 0, thenf(e) > 1/T. Let us consider the
following two cases: (1) Iff(e) € [1/T,2/T), thenT - f(e)/2 < 1 = |T - f(e)], 2) if f(e) > 2/T,
thenT - f(e)/2 < T - (f(e) —1/T) < |T - f(e)], as required. O

For the case of MXMINTH; p, one can show the same resulfif> 2n2km.

Lemma 8. If L C L satisfies Eq._14, then there exists a subke&t L such that: (i)J is am-signal,
and (ii) |J| > |L|/2.

Proof. Define a square matri¥, the rows and columns of which are indexed bys follows: order
L in descending length order, so thétprecedes: if d. > d.. Let A(e,e’) 2 (@c(€’) + a.(e)) and
A(e,e) = 0. Note thatA is symmetric.

Let A2 denote the upper right triangular submatrixofEq.[14 implies that,

Z A€ e) < 1.

{e’:de/ Zde}
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Hence, the weight of every column i is bounded byl. This implies that the sum of the entries in
A is bounded byL|. By Markov’s Inequality, at most half the rows it"* have weight greater thah
Let.J C L denote the indexes of the rows.itf* whose weight is at mog Clearly,|.J| > |L|/2.

We claim that, for every € J, the weight of the columrl® is at mosB. Indeed) (.. ,>4.} A e) <
L Inaddition,3 - ..q, <q,} A(€'s€) = > (era,,<a.} Ale, €') < 2since this is the sum of the row indexed
ein A2, This implies thati;(e) < 3, for everye € J, and the lemma follows. O

Proposition 7. The dispersion procedure partitions every color class! () into O(logm) SINR-
feasible sets.

Proof. Recall that the dispersion procedutisperseconsists of two phases. The first phase isglfhe
dispersér—1(t)) algorithm (see the listing in Algorithiial 2), and the seconagehis implemented by
two first-fit packing procedures.

Let us consider the first phase. Note thét= 7~ (¢). Since|L™!| < |L!|/2, theni-dispersér—1(t))
requires at moslog, |[7~1(t)| iterations. Hence, it partitions—!(¢) into at mostlog, |7~ (t)| sets,
where each set is/3-signal set.

Now, in the second phase each of these sets is partitioneddrgubsets. The lemma follows. [

Theorem 3. If Assumptiofi]l holds, and all the links are in the same budken there exists af(log n)-
approximation algorithm for thiax THRouGHPuUTand theMAX-MIN THROUGHPUTproblems.

Proof. Let opT denote the maximum total throughput. By Lemm&®, > opT/A = Q(0PT). Recall
that f* denotes an optimal solution of Ak THy p. By Prop[5|f| > |f*|/2, and by PropJ6, the multi-
coloring 7 supportsf/Q. By Prop.[7, the dispersion procedure reduces the throudhpa factor
of O(logm). Since there are no parallel edgésgm = O(logn). Thus, the final throughput is
|/1/O(log n) = oPT/O(logn), and the theorem follows. O

Since in the linear power assignment all links receive watims power, all the links are in the same
bucket. We conclude with the following result for the lingamwer assignment.

Corollary 4. If Assumptiori Il holds, then there exists @flogn)-approximation algorithm for the
MAX THROUGHPUTand theMAXx-MIN THROUGHPUTproblems in the linear power assignment.

8 Given Arbitrary Transmission Powers

In this section we show how to apply the algorithm presenteSiectior b to the case in which transmis-
sion powerP, of each linke is part of the input. Note tha®. may be arbitrary.

Theorem 5. If Assumptioii ]l holds, then there exists@fiog n - (log A 4 log I'))-approximation algo-
rithm for theMAX THRoOuGHPUTand theMAXx-MIN THROUGHPUTproblems when the link transmis-
sion powers are part of the input.

Proof sketch: We construct arsINR-feasible schedule and its supported flow. The construgiion
ceeds as follows: (1) solve the matching LP, (2) remove theusuule flow paths as described in Iteim 2,
(3) run Itemd4 B-b for every bucket separately, (4) concaéetiee output schedules, to obtain @nR-
feasible schedule of all the links v Step (3) of this construction reduces the flow by a factot aof@st
O(logn). Step (4) of this construction reduces the flow by an addMiexctor of at most the number of
nonempty buckets, that 8(log A + logI"). O
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9 Limited Powers

In this section we consider the case in which the algorithedsdo assign a powe?. to each link.
The assigned powers must satighpin, < P. < Puax. To simplify the description, assume that
logs (Prmax/ Pmin) iS an integer, denoted iy

We reduce this problem to the case of given arbitrary powsr®lows. For each pair of nodes
(u,v), define + 1 parallel links, where the transmission power of ttiecopy equal®’ - P;y.

Theorem 6. Assume that, for every link (Ppin/d%)/N > (1+¢)- 5. Then, there exists af((logn+
log log I')-(log A+log I') )-approximation algorithm for tht/Ax THRouGHPUTand theMAX-MIN THROUGHPUT
problems when the link transmission powers are in the rd&yg,, Pnax]-

Proof sketch: Note that the number of links increases by a factoO¢fog I'). This implies that the
log n factor increases t@og n + log log I').

The important observation is that there exists a solutia tises the discrete power assignments
2¢ . P, and achieves a throughput that is a constant fraction of piienal throughput. The theorem
follows then from Theoreml5.

The proof of this observation proceeds as follows. Giveng@intal schedule, refine each time slot
so that it is gp-signal forp = 2. This reduces the throughput only by a constant factor (3&&/09,
Thm 1]). Round up each transmission power to the smallestatis power that satisfies Assumptidn 1.
This increases the affectance by at most a factor of two, ttmeisesulting schedule sINR-feasible.
Moreover, the schedule uses links with powers that satisfyufptior L. O
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A Proofs

Proposition[3.
. 1 dey \* . de, \*
ViVei, e € B;: s \7 - < Gy (e2) <2 | —— ,

del €9 d€1€2

de, \“ . .
Vey,ea € L: Gele2) = ( 2 ) in the uniform power model.

del es
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Proof. Recall thati. () = SS S. £ P./d%, andS.. = P.//d%,. Note that every two links;, ez €
B, satisfy thatS,, /S., € (1/2,2). Hence,
~ _ 58162 _ 56162 Sel
ael (62) - 582 - Sel
Pel /da Se

€i1e2

Pel /dgl SeQ
- (@) &
d€1€2 SEQ 7
as required.
On the other hand, in the uniform power model assignmenlin&l transmit with the same power,

namelyP, = P., for every two linkse ande’. Hence,

Seleg
Se,
P, /d¢

&61 (62) =

€1€e2

P€2/dgg

)
d61€2 ’
as required. O

Theorem[2 LetL denote an SINR-feasible set of linksLIfZ B;, then

Ve € B; : > a(e) =0().

{e’'eL:d i >d.}

Proof. Theorem 1 in [[Kes11] implies that

s (S, 5 ()
{e’€L:d >de} e/ Te

{e’eL:d i >de}

It follows that,

o) = Z min

{e’€L:d,>d.}

{
> win
{

v

{e’'eL:d i >d.}

= g min

{e’'eL:d,>d.}

e

> > min{l,m'ae(e/)} ,

{e’'eL:d i >d.}

where the second line follows sinéeC B; and Propositionl3. The third line follows from the definition
of a.(¢’). The last line follows from Propositidd 2. The theorem folin sincem = O(1) and

sinced. (e) = min{1, ac (e)}. O
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