Skip to main content

Abstract

Criteria of normality of the cardiac fibers are important in cardiomyopathies. In this paper, we investigate the differences in the cardiac fiber structures between 10 hearts classified as healthy and 6 hearts classified as abnormal, and determine if properties of the cardiac fiber structures can be discriminants for abnormality. We compare the variability of the fiber directions from abnormal hearts to an atlas of healthy hearts. The human atlas of the cardiac fiber structures is built with an automated framework based on symmetric Log-domain diffeomorphic demons. We study the angular variability of the different fiber structures. Our preliminary results might suggest that a higher variability of the fiber structure directions could possibly characterize abnormality of a heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)

    Article  Google Scholar 

  2. Becker, A.E., Caruso, G.: Myocardial disarray. a critical review. British Heart Journal 47(6), 527–538 (1982)

    Article  Google Scholar 

  3. Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Costa, K.D., Holmes, J.W., Mcculloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Mathematical, Physical and Engineering Sciences 359(1783), 1233–1250 (2001)

    Article  MATH  Google Scholar 

  5. Frindel, C., Robini, M., Croisille, P., Zhu, Y.-M.M.: Comparison of regularization methods for human cardiac diffusion tensor MRI. Med. Im. An. 13(3) (2009)

    Google Scholar 

  6. Grajek, S., Lesiak, M., Pyda, M., Zajac, M., Paradowski, S., Kaczmarek, E.: Hypertrophy or hyperplasia in cardiac muscle. post-mortem human morphometric study. European Heart Journal 14(1), 40–47 (1993)

    Article  Google Scholar 

  7. Guimond, A., Meunier, J., Thirion, J.P.: Average Brain Models: A Convergence Study. In: Computer Vision and Image Understanding, pp. 192–210 (2000)

    Google Scholar 

  8. Hooks, D.A., Tomlinson, K.A., Marsden, S.G., LeGrice, I.J., Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart. Circulation Research 91(4), 331–338 (2002)

    Article  Google Scholar 

  9. Karsner, H.T., Saphir, O., Todd, T.W.: The state of the cardiac muscle in hypertrophy and atrophy. The American Journal of Pathology 1(4) (July 1925)

    Google Scholar 

  10. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.. The American Journal of Physiology 269(2) (1995)

    Google Scholar 

  11. Lexell, J., Taylor, C.C.: Variability in muscle fibre areas in whole human quadriceps muscle: effects of increasing age. Journal of Anatomy 174, 239–249 (1991)

    Google Scholar 

  12. Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., Ayache, N.: Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 171–179. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Lombaert, H., Peyrat, J.-M., Rapacchi, S., Fanton, L., Delingette, H., Croisille, P., Clarysse, P., Ayache, N.: In: ISMRM (2011)

    Google Scholar 

  14. Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A Demons-Based registration algorithm for tracking incompressible elastic biological tissues. International Journal of Computer Vision, 1–20 (2010)

    Google Scholar 

  15. Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts. IEEE Transactions on Medical Imaging 26(11), 1500–1514 (2007)

    Article  Google Scholar 

  16. Rapacchi, S., Croisille, P., Pai, V., Grenier, D., Viallon, M., Kellman, P., Mewton, N., Wen, H.: Reducing motion sensitivity in free breathing DWI of the heart with localized Principal Component Analysis. In: ISMRM (2010)

    Google Scholar 

  17. Silver, M., Gotlieb, A.I., Schoen, F.R.: Cardiovascular Pathology, 3rd edn. Churchill Livingstone (2001)

    Google Scholar 

  18. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circulatory Research 24(3), 339–347 (1969)

    Article  Google Scholar 

  19. Tezuka, F.: Muscle fiber orientation in normal and hypertrophied hearts. The Tohoku Journal of Experimental Medicine 117(3), 289–297 (1975)

    Article  Google Scholar 

  20. Thom, T., Haase, N., Rosamond, W., Howard, V.J., Rumsfeld, J., Manolio, T., Zheng, Z.-J., Flegal, K., Odonnell, C., Kittner, S., Lloyd-Jones, D., Goff, D.C., Hong, Y.: Heart disease and stroke statistics–2006 update. Circulation 113, 85–151 (2006)

    Article  Google Scholar 

  21. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  23. Wu, M.-T., Tseng, W.-Y.I., Su, M.-Y.M., Liu, C.-P., Chiou, K.-R., Wedeen, V.J., Reese, T.G., Yang, C.-F.: Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium After Infarction: Correlation With Viability and Wall Motion. Circulation 114(10), 1036–1045 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lombaert, H. et al. (2012). Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2011. Lecture Notes in Computer Science, vol 7085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28326-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28326-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28325-3

  • Online ISBN: 978-3-642-28326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics