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Abstract. In this paper we propose a novel learning–based CBIR method
for fast content–based retrieval of similar 3D images based on the intrin-
sic Random Forest (RF) similarity. Furthermore, we allow the combina-
tion of flexible user–defined semantics (in the form of retrieval contexts
and high–level concepts) and appearance–based (low–level) features in
order to yield search results that are both meaningful to the user and
relevant in the given clinical case. Due to the complexity and clinical
relevance of the domain, we have chosen to apply the framework to the
retrieval of similar 3D CT hepatic pathologies, where search results based
solely on similarity of low–level features would be rarely clinically mean-
ingful. The impact of high–level concepts on the quality and relevance
of the retrieval results has been measured and is discussed for three dif-
ferent set–ups. A comparison study with the commonly used canonical
Euclidean distance is presented and discussed as well.

Keywords: CBIR, distance learning, liver lesion, random forest, context–
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1 Introduction

Possible causes for liver lesions are varied; they may originate from both ma-
lignant (e.g. metastases) or benign (e.g. cysts or hemangiomas) pathologies [1].
The characterization of these abnormal masses constitutes an essential task on
which both diagnosis and the eventual treatment of the patient are based. Fac-
tors such as size, number, shape, margin definition or enhancement pattern in
different contrast phases have a strong impact on the subsequent decisions.

A contrast agent is often administered to the patient, and several consecutive
CT scans are then acquired within some minutes. The degree of contrast agent
present in the liver at each acquisition’s time (i.e., the contrast agent phase) can
have a severe impact on the appearance of abnormal masses. While the same
lesion may look radically different in each of these consecutive CT images, two
lesions originated by very different pathologies that pose different risks for the
patient may have almost identical appearance in some of them (see Figure 1).
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Fig. 1: While the two leftmost lesions have similar appearance, the leftmost is malignant
(metastasis) while the one in the center is benign (cyst). The rightmost image shows
the varying appearance of the same lesion in 4 different contrast agent phases. In such
scenarios, a search relying solely on image–based similarity criteria (i.e. appearance)
would probably fail to yield meaningful results.

While similar lesion retrieval can be a powerful decision support tool, searches
based solely on appearance criteria would seriously limit the clinical meaningful-
ness of the retrieved results. Much more relevant results can be produced if the
retrieval system is able to respond to user requests such as ”Find lesions with
comparable benignancy, given that the input lesion is in Portal Venous phase” or
”Find lesions that are likely to be of the same type given that the input lesion is
located in liver segment 4a and that it has a defined margin”. The possibility to
specify a desired context (i.e. similarity criterion, e.g. ”comparable benignancy”
or ”similar margin definition”) as well as additional semantic (i.e. high–level)
features or concepts (e.g. ”given that the input lesion is in Portal Venous phase”
or ”given that the input lesion is located in liver segment 4a”) play an important
role when tailoring the results to the user expectations.

Towards this goal, we introduce a fast, flexible, learning–based semantic
CBIR framework that can accommodate combinations of appearance–based and
user–defined semantic similarity criteria in order to retrieve the lesions most rele-
vant in the given clinical context. Furthermore, once the learning phase has been
completed, the method does not rely on previously annotated volumes, which
allows for a fast and simple addition of new volumes to the search database if
needed.

The outline of our method (the application phase) is as follows:

1. ROI selection
The user selects a region of interest within an image, containing a structure
(e.g. liver lesion) that he wishes to use as input for the search.

2. Specification of semantic context(s) and additional features
The desired relevance/similarity context(s) that are to be used for the search
are specified (e.g. benignancy criterion, lesion type criterion, etc.). The user
may also choose to add semantic information as input to further characterize
the structure of interest (e.g. margin enhancement or location within the
liver).

3. Image–based feature computation
A set of appearance–based features is computed on the selected region.
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4. Distance/Similarity computation
A set of Random Forest classifiers associated with the chosen similarity con-
text(s) computes distances (i.e. similarity measures) between the input lesion
(characterized by the given high–level concepts and low–level features com-
puted) and the samples contained in an image database.

5. Ranking and presentation of results
Results are grouped and ordered based on the desired combination of criteria.
A tailored, ranked list of retrieval results is finally produced in the form of
an html report.

The complete workflow has been tested in three different context scenarios:
lesion density, lesion benignancy, and lesion type, and the impact of additional
input semantic concepts has been measured, with promising results.

2 Related Work

According to Akgül et al. [2], radiology images pose specific challenges compared
with images in the consumer domain; they contain varied, rich, and often sub-
tle features that need to be recognized in assessing image similarity. Moreover,
radiology images also provide rich opportunities for CBIR: rich metadata about
image semantics are often provided by radiologists, and this information is not
yet being used to its fullest advantage in CBIR systems.

In a closely related work, Napel et al. [3] study how low–level computer–
generated features can be combined with semantic annotations in order to im-
prove automatic retrieval of CT images of liver lesions. Combining the features
has been shown to improve the overall performance in terms of discriminating
lesion types. The study has been carried out on 10 cystic and 13 metastatic
volumes to evaluate one context (lesion type); 95% mean retrieval accuracy is
reported. We, on the other hand, use 1103 annotated metastases and 98 cysts in
our study, and test 2 additional contexts, obtaining comparable accuracy results.

Automated decision support and lesion characterization are important in
particular for small indeterminate lesions where uncertainty in characterization
and treatment planning may remain even after collective discussion in a multi-
disciplinary setting [4]. In comparison to [3], we also consider the performance
with small sub–centimeter lesions separately.

A measure of image similarity can be improved through the use of classifica-
tion models that categorize new instances using a training set of instances with
high–level semantic annotations, which constitutes a promising attempt to close
the so–called semantic gap between the content–based description of an image
and its meaning [5]. Segal et al [6] demonstrate that high–level information ex-
tracted from imaging for liver lesions may include valuable information, and in
particular may reconstruct as much as 78% of the global gene expression profiles,
revealing cell proliferation, liver synthetic function, and patient prognosis.

Seifert et al. [7] propose a learning–based ”search by scribble” system and
apply it to the retrieval of similar liver lesions in 3D CT scans. In this case,
the search context is fixed and based on pairwise similarity scores annotated
for 160 hepatic lesions, with the similarity criterion left to the discretion of the
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annotator. Additional information about the lesion’s anatomical location (i.e. the
liver) is used to eliminate retrieval results that are located in other structures
(e.g. in the spleen). The reported mean average precision is of 88%.

Although most statistical pattern recognition techniques are based on the
Euclidean distance, one often requires non-Euclidean and non-metric similar-
ity especially when contours, spectra or shapes are compared, for robust object
matching [8]. Two non-metric distance measures based on discriminative dis-
tance learning has been introduced in [9]; the intrinsic Random Forest similar-
ity and learning from equivalence constraints, with an application to anatomy
surface mesh retrieval for decision support, among other applications including
retrieval of clinical records, microarray gene expression and mass spectroscopy
data.

The intrinsic RF similarity can be used for different tasks related to the
classification problem. Thus, Shi et al. [10, 11] successfully use it for hierarchi-
cal clustering of tissue microarray data. First, the unlabeled original data are
expanded with a synthetic class of evenly distributed instances, then an RF is
trained to discriminate the original instances and the synthetic class, so that the
intrinsic RF similarities can be determined and instances clustered. The resulting
clusters are shown to be clinically more meaningful than the Euclidean distance
based clustering with regard to post-operative patient survival. Hudak et al. [12]
use the RF similarity for nearest neighbour imputation on forestry sensor data.
They conclude that the RF distance based imputation is the most robust and
flexible among the imputation techniques tested. It is interesting that using this
similarity for the most immediate task, case retrieval and nearest neighbour clas-
sification or regression, is rather uncommon compared with its use for clustering.
In one of related works, Qi et al. [13] use it for protein–protein interaction predic-
tion, and the results compare favourably with all previously suggested methods
for this task. In one imaging application, Vitanovski et al. [14] study the use of
RF similarity–based regression for similar pulmonary trunk model retrieval in
order to reconstruct the full surface of pulmonary trunk from incomplete sparse
MRI data.

RF has been successfully applied to a number of different imaging tasks over
the last several years. However, to the best of our knowledge, we are the first to
consider the intrinsic RF similarity in the context of CBIR in this paper.

3 Method

3.1 Intrinsic RF similarity

For a Random Forest trained for a certain classification problem, the proportion
of the trees where two instances appear together in the same leaves can be used
as a measure of similarity between them [15]. For a given forest f the similarity
between two instances xi and xj is calculated as follows. The instances are
propagated down all K trees within f and their terminal positions z in each of
the trees (zi = (zi1, , ziK) for xi, similarly zj for xj) are recorded. The similarity
between the two instances then equals to:
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S(xi, xj) =
1
K

K∑
k=1

I(zik = zjk) (1)

where I is the indicator function. When dissimilarity or distance is needed and
not a similarity (e.g., for clustering or multi-dimensional scaling) it is normally
calculated as suggested by Breiman [15]:

D(xi, xj) =
√

1− S(xi, xj) (2)

The intrinsic RF dissimilarity (equation 2) is known not to be metric [9], as
the triangular inequality (equation 3) is often violated:

∀xi, xj , xk : D(xi, xj) ≤ D(xi, xk) + D(xk, xj) (3)

Several reasons motivate the choice of learning algorithm in our framework.
First, RF was demonstrated to work well with and be robust to high-dimensional
data with many weakly relevant, redundant and noisy features, without the need
for additional data pre-processing and feature selection. Next, RF-based models
are relatively fast to train and to apply comparing for example with Support
Vector Machines. Then, RFs can be trained both for classification and regression
problems, support supervised learning from multiple categories, and can easily
handle missing values. Last but not least, they are able to provide the intrinsic
RF similarity, which helps to combine the discriminative power and robustness of
RFs with the transparency of case retrieval and nearest neighbour classification
or regression.

Thanks to the appealing properties of RF, the RF similarity (1) can be eas-
ily calculated for different tasks, including classification and regression problems,
tasks with heterogeneous feature vectors with possible missing values, and mul-
ticlass tasks.

3.2 Online RF

In order to speed up our extensive experiments, make it possible to validate
more trends and make the models adaptive to learn from new samples we imple-
ment an incrementalization of RF similar to Saffari [16]. While successful lossless
incrementalizations exist for many learning algorithms, most strong techniques
applied in real applications are still difficult to incrementalize, and among them
perhaps the most prominent example that received considerable attention lately
is the ensemble of randomized decision trees, the most famous representative
of which is the Random Forest algorithm [15]. A few algorithms for online en-
sembles of randomized decision trees have been recently proposed, and their
application to vision tasks (in particular tracking) have been considered, despite
the fact that they are not lossless and often require considerably more training
cases than the corresponding batch technique in order to converge.

In particular, the online RF of Saffari et al. [16] trains decision trees of fixed
depth and has a fixed structure which does not change with the observation
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of new cases once the tree depth limit is reached. We address this issue in our
online RF algorithm with

– The use of primed off-line learning to speed up convergence to a reasonable
accuracy.

– Different sources of randomness (including bagging modeled with Poisson
distribution of instance weights, and a random sample of observed features
at each node).

– Memory management to avoid exceeding a specified memory limit for the
model.

– Restructuring of the trees according to observed changes in the data distri-
bution.

The training process starts with constructing a canonical RF [15] with 100
trees. Each decision tree is subsequently refined using online training. Online
learning allows the framework to be scalable to the number of training instances.
For each tree, a random sample of 200 lesions with even class distribution is
used for the primed training. Primed off-line training is a simple but effective
technique to improve the predictive performance of the final model (see [17] for
an example).

We exploit the memory management scheme proposed before for online Ho-
effding trees that dynamically activates most promising nodes, for tracking fea-
ture distributions and a split attempt, and deactivates and removes the less
promising ones [18]. Similar to Saffari et al. [16] and different to the Hoeffding
tree, a split is simply generated after observing a certain specified number of
instances (40 is the default value normally leading to best performance). For
each feature, Gaussian distribution is assumed and is tracked online, and a split
threshold value which maximizes the Gini Index value is selected.

3.3 Low–level liver lesion descriptors

Each liver lesion in our experimental setting is described by a set of low–level
computer–generated imaging features as follows:

– Relative frequency histogram and four first central normalized moments on
it for the Hounsfield Units (HU) distribution in the bounding box for the
lesion;

– The set of eight invariant Hu moments of order up to 3 [19];
– Six invariant Zernike moments [20];
– HU histogram and the four first central moments for the whole liver;

The first three feature types describe the lesion itself, while the last one
describes the image of the whole liver. Inclusion of whole liver features has been
shown to always lead to an improved discrimination performance in our set of
experiments.

We use 2D Hu and Zernike invariant moments [19, 20]. In order to adapt
them to the 3D liver lesion, for each lesion we generate 3 orthogonal 2D cuts
intersecting at the center of the lesion ROI. The invariant moments are then
calculated for each cut, and the feature vector includes both the moment for
each separate cut and the averaged moments.
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3.4 High–level concepts

Each liver lesion in a CT scan has been also annotated by 2 clinical experts with
a set of 20 semantic labels. Some of these descriptors correspond to or are similar
to features identified in Segal et al. [6] and Napel et al. [3]. Semantic features
identified in these two studies were used as inspiration during our meetings with
the clinical partners.

While some features are relatively inter–observer stable (lesion margin, rim
continuity), some discrepancies arise concerning mostly lesion type (i.e. diag-
nosis). In such cases, information from additional studies (e.g. MRI reports or
biopsies) has been used to resolve differences.

The semantic features used in our studies are as follows:

– Contrast agent phase (Native, Arterial, Portal Venous, Late, N/A);
– Lesion focality (Single, Multiple, N/A);
– Lesion surrounding (Complete, Incomplete, Absent, N/A);
– Rim continuity (Continuous Bright Rim, Discontinuous Bright Rim, Con-

tinuous Dark Rim, Discontinuous Dark Rim, N/A);
– Margin (Regular, Irregular, N/A);
– Margin definition (Defined, Diffuse, N/A);
– Lesion density (Hypodense, Hyperdense, N/A);
– Benignancy (Benign, Rather Benign, Malignant, Rather Malignant, N/A);
– Lesion type (Cyst, HCC, Hemangioma, Metastasis, N/A);

While benignancy, lesion type and density annotations were used as class
labels to train the RFs associated with each search context, the other annotated
high–level features were tested as additional semantic input during the training
phase of the models. After the models have been trained, at the retrieval stage,
both the low–level features computed for the given lesion ROI and the high–level
feature(s) are provided as input to the RF. Figure 2 in the next section shows a
simple example illustrating the system workflow.

4 Framework Application to Similar Hepatic Lesion Re-
trieval

We apply the proposed retrieval framework to the search of similar hepatic le-
sions. The scheme shown in Figure 2 illustrates the search for hepatic lesions
that have comparable benignancy given that the lesion specified in the ROI is
known to have a defined margin.

In Figure 2, the input sample is represented by both a set of low–level features
computed from the given ROI and by the given additional high–level concepts
(in the example ”Defined Margin”). The input sample is then run through the
RF associated to (and trained for) the desired context (”Benignancy”). The
database samples that occur in the same terminal nodes as the input sample
will be noted and later ranked according to the frequency of co–occurrence with
the input sample.

For hepatic lesion retrieval, three search contexts have been tested: lesion
density, benignancy and type. For each of them, an associated Random Forest
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Fig. 2: Overview of the framework with an example application to the search of hepatic
lesions with comparable benignancy (context), given that the lesion specified in the ROI
has a defined margin (semantic concept or high–level feature).

has been trained with the following annotated lesions from 523 3D CT scans
corresponding to 244 patients:

Density (Hypodense, Hyperdense): 1948 hypodense and 358 hyperdense.
Benignancy (Benign, Malignant): 761 malignant and 93 benign.
Type (Cyst, Metastasis): 1103 metastases and 98 cysts.

Our experimental setting is flexible enough to accommodate any combina-
tion of high–level and low–level features, and has been tested in the 3 aforemen-
tioned contexts in a Leave–One–Patient–Out (LOPO) evaluation. We assess the
retrieval results in the next section.

5 Empirical Study

We evaluate the retrieval performance of our framework in the three specified
contexts, in terms of discrimination accuracy of the RF–based distance learnt.
We use LOPO ROC AUC (Area Under the Curve) values to evaluate the ulti-
mate performance. The intrinsic RF similarity is compared with the canonical
Euclidean distance. Both for the intrinsic RF similarity and the Euclidean met-
ric, predictive performance is measured via k -nearest neighbor classification,
with k=7 and with weighting the votes of the neighbors proportional to the RF
similarity or inversely proportional to the Euclidean distance. This parameter
setting has been shown to always lead to competitive results. For the Euclidean
distance all feature values were also scaled to lie in the same range [0,1].

For each of the 3 search criteria and each representation of the input sam-
ple (ROI), Table 1 shows the ROC AUC measure of the retrieval results with
the RF similarity, and Table 2 shows similar results for the Euclidean metric.
The ROC curves pertaining to RFs trained in the three different contexts are
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shown in Figure 3. Table 3 shows semantic feature importance, i.e., the average
appearence of a semantic feature given as input in a RF tree. Figure 4 illustrates
the top 5 ranked results for 2 different input lesions.

Fig. 3: ROCs for the training of the RFs for each context. From left to right, Density,
Benignancy and Type context ROCs of the corresponding trained classifiers. In each
case, the grey line shows the curve with the low–level features only, while the black line
shows the curve when additional high–level features are included as input.

An additional high–level feature was tested in all three contexts: the location
of the lesion (i.e. the segment number within the liver) was given as additional
input to the framework. However, in all 3 contexts the feature had little or no
influence on the results, which seems to suggest that the location of a lesion has
little influence on its benignancy, density or type (a reasonable assumption).

Table 1: Quantitative evaluation of retrieval results in the three contexts: Lesion Den-
sity, Benignancy and Type using, in each case, low–level features alone or a combination
of low– and high–level features. The table shows the results for all lesion sizes combined,
and sub–centimeter lesions are studied in the two rightmost columns.

All Lesions Lesions≤ 1000mm3

context low l. (low+high) l. low l. (low+high) l.

Density 0.94 0.933 0.959 0.955
Benignancy 0.854 0.891 0.732 0.855
Type 0.872 0.906 0.755 0.838

Average 0.889 0.91 0.828 0.8827

Table 2: Retrieval results with the Euclidean distance metric. Table has the same struc-
ture as Table 1.

All Lesions Lesions≤ 1000mm3

context low l. (low+high) l. low l. (low+high) l.

Density 0.55 0.543 0.525 0.542
Benignancy 0.72 0.713 0.655 0.655
Type 0.675 0.650 0.625 0.618

Average 0.648 0.635 0.601 0.605

Table 1 shows the results obtained using the intrinsic RF similarity. It is
interesting to observe that the low–level features alone produce very reasonable
retrieval results in the lesion density context, which is an inherently ”low–level”
task. High–level features seem indeed to have less impact in this context. How-
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ever, when higher level clinical contexts such as benignancy or lesion type are
considered, the positive impact of the additional high–level features given as in-
put becomes more prominent, and results in a better accuracy and more relevant
retrieval results. This benefit is particularly visible in the case of sub–centimeter
lesions, which are often very hard to characterize even for the expert eye. In this
case, the addition of one or more high–level features has a significant influence on
the accuracy and meaningfulness of the results. The difference in performance in
these cases (low–level features versus low- plus high-level features in the benig-
nancy and lesion type contexts) is always significant according to the McNemar’s
test on difference between two proportions conducted for the specificity of in-
terest (0.9). In a clinical setting where small lesions are difficult to assess, the
proposed framework has great potential to become a significant decision support
tool.

In the same 3 contexts we have also evaluated the Euclidean distance metric.
The obtained results, shown in Table 2, are clearly inferior to those produced
by the intrinsic RF similarity (the difference is always significant). Moreover,
the Euclidean distance is not able to benefit from the addition of the high–level
features, as opposed to the RF similarity, and the performance is often even
worse after the addition of high–level features. The performance is especially
poor in the lesion density context.
Table 3: Importance of the input high–level concepts for retrieval.

High–level feature given as additional input

Context Contrast Agent Phase Focality Surrounding Rim Margin Margin Definition Average

Density 1.358 1.393 1.443 1.081 1.052 0.964 1.215
Benignancy 1.801 1.641 1.771 1.091 2.293 1.89 1.749
Type 1.501 1.371 1.559 0.936 1.926 1.641 1.489

Average 1.553 1.468 1.591 1.0359 1.757 1.50

The time required for retrieval, from low–level feature computation to run-
ning the instance through the appropriate RF to similarity calculations and
lesion sorting to the output of the ranked list of lesions, is less than a second
on a standard PC. Although we consider three isolated user–specified search
contexts in this study, a certain number of them can be easily combined when
needed, for instance in order to address a query ”Find lesions that are likely to
be of same lesion type and have comparable density”.

6 Conclusion and Future Work

We have presented a fast, flexible framework for semantic CBIR based on dis-
criminative distance learning. The speed of retrieval, promising retrieval perfor-
mance especially for difficult, small lesions, and the flexibility to define relevance
criteria combinations with a considerable positive impact on the quality of the
results open the door for higher level searches that yield results that are mean-
ingful to the the user in any given context. The addition of semantic features as
input for search consistently improves the retrieval results, with a particularly
positive impact on small lesions, making results for all lesion sizes comparable
in terms of quality and meaningfulness to the user.

We believe the framework presented in this paper has a large potential, as
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Fig. 4: Results of the search for similar lesions in the benignancy similarity context.
Top row: A malignant lesion used as input (leftmost image), and the top 5 retrieved
lesions, all of which are malignant as well, even though their appearances are not al-
ways comparable. Bottom row: Input benign lesion (leftmost image) and top 5 retrieval
results, 4 of which are benign as well.

well as room for improvement. It would be interesting to allow not only the
manual input of semantic features by the user, but also their automatic predic-
tion, before they are used for retrieval. Using RF for regression tasks as well as
multiclass–classification would allow the inclusion, for instance, of more lesion
types to the similarity search. The presentation of results in the html report can
also be complemented with more detailed statistics on the quality of the search
results, which would allow the user to use the tool in a more informed way when
making decisions.

Benefits of this framework include inconsistency checks in radiology reports
(i.e. as a second opinion with respect to the reported diagnosis, benignancy, or
any other lesion characteristics) and abnormality or relevance pointers highlight-
ing critical lesions. In the future, the system will be combined with automatic
lesion detection as a preprocessing step. This allows presenting the detected
lesions to the radiologist in the form of a ranked list upon opening the case,
prioritizing, for instance, the most likely malignant lesions. This will render di-
agnostic reading even more efficient by speeding up the experts review of the
ever increasing amount of image data.
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