Skip to main content

On Computation of Approximate Joint Block-Diagonalization Using Ordinary AJD

  • Conference paper
Book cover Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

Approximate joint block diagonalization (AJBD) of a set of matrices has applications in blind source separation, e.g., when the signal mixtures contain mutually independent subspaces of dimension higher than one. The main message of this paper is that certain ordinary approximate joint diagonalization (AJD) methods (which were originally derived for “degenerate” subspaces of dimension 1) can also be used successfully for AJBD, but not all are suitable equally well. In particular, we prove that when the set is exactly jointly block-diagonalizable, perfect block-diagonalization is attainable by the recently proposed AJD algorithm “U-WEDGE” (uniformly weighted exhaustive diagonalization with Gaussian iteration) - but this basic consistency property is not shared by some other popular AJD algorithms. In addition, we show using simulation, that in the more general noisy case, the subspace identification accuracy of U-WEDGE compares favorably to competitors.

This work was supported by Ministry of Education, Youth and Sports of the Czech Republic through the project 1M0572 and by Grant Agency of the Czech Republic through the project 102/09/1278.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afsari, B.: Sensitivity analysis for the problem of matrix joint diagonalization. SIMAX 30(3), 1148–1171 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afsari, B.: Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 1–7. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Abed-Meraim, K., Belouchrani, A.: Algorithms for Joint Block Diagonalization. In: Proc. of EUSIPCO 2004, Vienna, Austria, pp. 209–212 (2004)

    Google Scholar 

  4. de Lathauwer, L.: Decomposition of higher-order tensor in block terms - Part II: definitions and uniqueness. SIAM J. Matrix Anal. and Appl. 30(3), 1033–1066 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Févotte, C., Theis, F.J.: Pivot Selection Strategies in Jacobi Joint Block-Diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 177–184. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Ghennioui, H., et al.: A Nonunitary Joint Block Diagonalization Algorithm for Blind Separation of Convolutive Mixtures of Sources. IEEE Signal Processing Letters 14(11), 860–863 (2007)

    Article  Google Scholar 

  7. Koldovský, Z., Tichavský, P.: A Comparison of Independent Component and Independent Subspace Analysis Algorithms. In: EUSIPCO 2009, Glasgow, Scotland, April 24-28, pp. 1447–1451 (2009)

    Google Scholar 

  8. Koldovský, Z., Tichavský, P.: Time-domain blind separation of audio sources based on a complete ICA decomposition of an observation space. IEEE Tr. Audio, Speech, and Language Processing 19(2), 406–416 (2011)

    Article  Google Scholar 

  9. Li, X.-L., Zhang, X.D.: Nonorthogonal joint diagonalization free of degenerate solutions. IEEE Tr. Signal Processing 55(5), 1803–1814 (2007)

    Article  MathSciNet  Google Scholar 

  10. Nion, D.: A Tensor Framework for Nonunitary Joint Block Diagonalization. IEEE Tr. Signal Processing  59(10), 4585–4594 (2011)

    Article  MathSciNet  Google Scholar 

  11. Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. and Appl. 22(4), 1136–1152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Szabó, Z., Póczos, B., Lörincz, A.: Separation theorem for independent subspace analysis and its consequences. Pattern Recognition 45(4), 1782–1791 (2012)

    Article  MATH  Google Scholar 

  13. Tichavský, P.: Matlab code for U-WEDGE, WEDGE, BG-WEDGE and WASOBI, http://si.utia.cas.cz/Tichavsky.html

  14. Tichavský, P., Yeredor, A.: Fast Approximate Joint Diagonalization Incorporating Weight Matrices. IEEE Tr. Signal Processing 57(3), 878–891 (2009)

    Article  MathSciNet  Google Scholar 

  15. Vollgraf, R., Obermayer, K.: Quadratic optimization for simultaneous matrix diagonalization. IEEE Tr. Signal Processing 54(9), 3270–3278 (2006)

    Article  Google Scholar 

  16. Ziehe, A., Laskov, P., Nolte, G., Müller, K.-R.: A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its application to Blind Source Separation. Journal of Machine Learning Research 5, 777–800 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tichavský, P., Yeredor, A., Koldovský, Z. (2012). On Computation of Approximate Joint Block-Diagonalization Using Ordinary AJD. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics