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Summary. A key problem in the deployment of sensor networks is that of determin-
ing the location of each sensor such that subsequent data gathered can be registered.
We would also like the network to provide localization for mobile entities, allowing
them to navigate and explore the environment. In this paper, we present a thorough
evaluation of our algorithm for localizing and mapping the mobile and stationary
nodes in a sparsely connected sensor network using range-only measurements and
odometry from the mobile node. Our approach utilizes an Extended Kalman Filter
(EKF) in polar space allowing us to model the nonlinearities within the range-only
measurements using Gaussian distributions. We demonstrate the e�ectiveness of our
approach using extensive real-world experiments with sparse connectivity and little
to no prior information about the node locations.

1 Introduction

The growing trend of wireless communication and sensing technologies have
emphasized the importance and applicability of sensor networks for a wide
variety of application domains. Here we focus on the problem of estimating
the node positions of a sensor network given only range data between nodes
in the network. Previous work have shown that, given su�cient connectivity
between the nodes in the network, it is possible to acquire an accurate esti-
mate of the node positions [1, 2]. However, existing strategies assume fairly
simplistic scenarios, where the nodes operate within a large open area with
little impedance to their measurements. In contrast, we explore more chal-
lenging and realistic scenarios, where the network is sparsely connected, has
noisy measurements and has mobile nodes.

In this article, we present a comprehensive method to solve the network
SLAM problem that is robust to problems of noisy, sparse and nonlinear
measurements. We present experimental results on data that are particularly
challenging to range-only estimation due to the amount of measurement noise,
multi-path and outlier measurements present in the system. The experiments



were conducted outdoors, with the nodes distributed around several buildings
with no clear line-of-sight between many of the nodes.

The experiments address two distinct cases of network SLAM. First, the
�static" network mapping problem is tackled. Here, it is assumed that the
nodes are sparsely connected and remain stationary. The particular challenge
in this case is to accurately model the nonlinear uncertainty distributions that
arise while estimating a sparsely connected node's position in the presence of
noise (such as multi-path or other outlier measurements). Next, we extend
the static network mapping problem to deal with moving nodes. This general
problem of localizing a network of both stationary and mobile nodes is called
the network SLAM problem. The addition of mobile nodes provides further
constraints to overcome the ambiguities due to sparse connectivity between
the nodes. However, the challenge here is to actively fold in the measurements
and noisy odometry from the mobile node while maintaining an accurate
estimate of the nonlinear uncertainty distributions of all the nodes' positions.
We show through our experiments that the proposed method is robust, reliable
and accurate even in challenging scenarios.

2 Related Work

In sensor networks the problem of mapping the locations of all the nodes in
the network is also known as self-calibration or self-localization. Most sensor
networks are capable of measuring relative bearing, range or in some cases
both range and bearing between nodes within the environment. Of particular
interest to us are those that use range to localize the network. For instance,
the RADAR system, developed by Bahl and Padmanabhan, utilizes signal
strength of packets in the commonly available 802.11b wireless networks for
localization of network devices [3]. However, signal strength measurements
are often erratic and can be a�ected by slight changes in the environment.
Alternately, �xed ultrasound emitters and embedded receivers have also been
used to measure range between nodes in a network [4, 5, 1]. Our system utilizes
a new commercially available ranging radio system, the nanoLOC ranging
system from Nanotron Technologies [6]. These sensors use radio frequency
(RF) signals to measure range between two nodes in the network.

Some of the early work in localizing a sensor network with range-only infor-
mation relied on solving a least-squares optimization problem. Methods such
as Multi-dimensional Scaling (MDS) provide a good solution if the network is
fully connected [7]. For a less connected network with su�cient connections
to provide �rigidity" to the network, it is still possible to determine the map
of the network. Moore et al. introduced the idea of the robust quadrilaterals
as a way to avoid ambiguities in the solution [8]. In practice, however, rigid-
ity is not easy to achieve a high degree of connectivity between nodes of the
network.



While most research in sensor networks have focused on static nodes (net-
work localization), work in SLAM has focused on the incorporation of motion
from mobile robots into the estimation of static and mobile nodes. Olson et
al. presented an EKF-based SLAM algorithm that reliably dealt with noisy
measurements and required no priori information [9]. Their method utilizes
an initial pre-�ltering step to approximately locate the landmarks/nodes thus
making the linearization feasible. However, the performance of the pre-�lter is
highly dependent on its input data. Previously, we have presented a method
based on an EKF that jointly estimates location of the static and mobile nodes
[1, 2, 10]. But, the experiments presented in these works were limited due to
their assumption that the nodes was deployed within an open area with high
connectivity between them and that there is little multi-path/outlier measure-
ments. In most applications, it is rare that a sensor network can be deployed
within an open area where line-of-sight between the nodes can be guaranteed
or that the sensor measurements contain minimal erroneous measurements. In
this article we demonstrate that the proposed approach, designed to provide
a better approximation of the nonlinear measurement distributions, is better
suited to deal with sparsely connected networks deployed within an obstacle
�lled environment (which introduce multi-path and other sources of noise).

3 Technical Approach

We model the network localization problem as a linear dynamical system. At
each time step, t, the state of node i is represented by Xi,t = [cx

i , cy
i , ri, θi]T .

Each node's estimate is represented in a polar coordinates [10], where (cx
i , cy

i )
are the center of the polar coordinate frame and (ri, θi) are the corresponding
range and angle values. The use of this parameterization derives motivation
from the polar coordinate system, where annuli, crescents and other ring-like
shapes can be easily modeled. In addition, for each mobile node within the
system, an additional term that represents the current heading of the node,
φi, is also maintained within the state. The complete state vector at time t is
represented as:

Xt = [X1,t, φ1, ..., XM,t, φM , XM+1,t, XM+2,t, ..., XN,t]T .

where M is the number of mobile nodes and N is the total number of nodes.
At each time step, we get some set of motion and range observations, ut and
zt respectively. The belief state at time t is de�ned as p(Xt|z1:t, u1:t). Our
�ltering algorithm iteratively computes the belief state at time t+1 using the
previous belief state at time t. Speci�cally, in our implementation the belief
state is represented by a mean vector µt and a covariance matrix Σt, and it
is computed using an Extended Kalman Filter (EKF).



3.1 Measurement Model

When two nodes, i and j, are within a given range and sensor F.O.V. to each
other, a range observation is generated which is represented by, zi,j

t . This
observation depends on the position of the two nodes i and j:

zi,j
t = ẑi,j

t (Xi,t, Xj,t) + δ.

ẑi,j
t =

√
(mx

i,t −mx
j,t)2 + (my

i,t −my
j,t)2.

mx
k,t = cx

k,t + rk,t · cos(θk,t).
my

k,t = cy
k,t + rk,t · sin(θk,t).

(1)

where δ is zero-mean Gaussian noise and (mx
k,t,m

y
k,t) is the projection of the

estimate for node k from the polar parameterization into Cartesian xy-space.
The belief state is then conditioned on the observations of the current time
step by computing:

p(Xt+1|z1:t+1, u1:t+1) = ηp(Xt+1|z1:t, u1:t+1) · p(zt+1|Xt+1). (2)

p(zt+1|Xt+1) =
∏

k

p(zk
t+1|Xi∈g(zk

t+1),t+1). (3)

where η is the normalization constant. The second term in the r.h.s of Eq.2 is
the likelihood of the current observations. Eq.3 shows how this likelihood can
be decomposed under the assumption that observations are independent given
the locations of the nodes that made the observation. Note that each obser-
vation depends only upon the locations of the nodes in the set g(zk

t+1), which
is the set of nodes that made the observation, and not the joint state vector.
The range observations are augmented into the belief state by multiplying
into the belief state a likelihood for each observation.

Upon the �rst observation of a particular node, the true distribution of
the node is best represented as an annulus, see Figure 1(a). While an an-
nulus is extremely non-Gaussian and di�cult to model within the Cartesian
xy-space, using the polar parameterization it is possible to approximate the
annulus by an elongated Gaussian in polar coordinates (rθ-space). This Gaus-
sian approximation is given an arbitrary mean in θ (within the range [0, 2π))
with a large variance term, such that the probability along the θ dimension
is near uniform, see Figure 1(b). Figure 1(c) shows the Gaussian ellipse (blue
ellipse) overlaid on top of the true distribution (green shaded rectangle) in
polar coordinates. By using this polar parameterization, a simple ellipse in
polar coordinates transforms into an nonlinear annulus when projected into
the xy-space. It must also be noted that the elongated ellipse in the polar
coordinate extends past the range of the true distribution. This extended tail
of the Gaussian ellipse, when projected into the xy-space appears curled up
within the estimated annulus, as can be seen in Figure 1(b).



3.2 Multi-Hypothesis Filter

Fig. 1. Blue squares represent observing
nodes, whose location is known. Red dia-
monds represent the true location of the
observed node, whose position is being es-
timated and green circles represent the
mean(s) for each mode of the estimated
node. Green shaded regions represent the
true uncertainty distribution and blue el-
lipses represent the estimated uncertainty
distribution. The dashed gray lines and
circles represent the observed range mea-
surements. (a-c) Shows various represen-
tation of the annulus-like distribution. (d-
f) Shows various representation of the
dual modal ��ip-ambiguous" distribution.

Thus far, we have assumed an
unimodal Gaussian model, capable
of approximating the non-linearities
within single range observations. We
have also presented a probabilistic
�ltering method that is well suited
for an EKF-based network localiza-
tion system. While this approach
deals with non-linearities of an an-
nulus, it fails to adequately deal with
the multi-modal distribution of the
system ((Figure 1(d))). Thus, when-
ever an annulus is split into separate
modes, we simply duplicate the �lter
and adjust the mean of each �lter to
represent the two distinct intersec-
tion points. Then, by performing a
measurement update using the new
mean, we are able to appropriately
update the covariance terms within
the �lter. The simple case of split-
ting a single annulus into two sepa-
rate modes given a new range obser-
vation is depicted in Figure 1(d-f).

Given an annulus-like prior distribution, a new range observation that
intersects the annulus at two distinct locations leads to a multi-modal dis-
tribution with two distinct modes (peaks/local maxima in the distribution).
We refer to this as the �ip ambiguity in range-only estimation tasks. These
multi-modal distribution can be modeled using separate �lters/hypotheses for
each mode. To elaborate, whenever an annulus is split into separate modes,
we simply duplicate the �lter and adjust the mean of each hypothesis to rep-
resent the two distinct intersection points. It should be noted here that this
duplication only occurs if the new measurement is �novel", compared to the
initial measurement that initialized the robot to an annulus-like distribution.
Novelty of measurements, in this case, is directly correlated to the di�erence
in the locations of the stationary nodes making the two range observations.
Thus, if the distance between the node that made the new observation and
the original observation is larger than a threshold, the new observation is used
to generate a hypothesis. If the distance between the two nodes is less than
the threshold, the measurement is used only to perform an EKF measurement
update on the existing hypothesis.

Upon duplicating the �lter and creating a second hypothesis, it is neces-
sary to adjust the mean of both the hypotheses. The new mean for each of



the two hypotheses are calculated by triangulation, using the locations of the
two stationary nodes that made the observation. Then, by performing a mea-
surement update using the new mean, we are able to appropriately update
the covariance terms within the �lter. The simple case of splitting a single
annulus into two separate modes given a new range observation is shown in
Figure 1(d) and (e). Figure 1(f) shows the Gaussian ellipses (blue ellipses) for
the dual-modes overlaid on top of the true distribution (green shaded rect-
angles) in polar coordinates. The mean of the two modes can be determined
easily using triangulation, given the location of the two observing nodes, as
described in [11]. At the end of each update, we check the (normalized) like-
lihood of each hypothesis, given all the measurements, and retain hypotheses
with likelihoods above a certain threshold (relative to the likelihoods of all
existing hypotheses). Additionally, in our implementation, we remove any du-
plicate hypotheses. A hypothesis is considered duplicate, when it has a mean
and covariance similar to another hypothesis. This can be checked using a
distribution comparison metric such as the Kullback-Leibler distance (KL-
distance). Finally, it should be noted here that in the localization case, the
hypothesis count for the system will be never greater than two. Thus, imple-
menting a multi-hypothesis �lter is fairly straight forward and e�cient.

The ROP parameterization and multi-hypothesis �lter proposed here are
design to accurately represent the nonlinear distributions that are generated
by range-only observations. However, it is important to remember that while
the distributions generated by the parameterization is still a linearized version
of the true distribution. In other words, the proposed method, while capable of
more accurately representing the nonlinear distributions (such as an annulus
or crescent), still uses a Gaussian distribution to represent the distribution.
It is for this reason that when creating a second hypothesis, the mean of both
the hypotheses need to be adjusted. The adjustment, usually only in the θr

t

parameter, highlights the point around which the linearization takes place.
Failing to properly adjust the means of the two hypotheses could cause the
�lter to take longer to converge or even diverge. While this drawback has
little e�ect in the performance of the �lter when addressing the localization
problem, we will tackle other more challenging problems in the next few chap-
ters where special care needs to be taken to avoid the linearization e�ects to
drastically a�ect the quality of the �lter's estimate.

Furthermore, the proposed approach lends itself to a decentralized im-
plementation that runs separate EKFs on each node in the network. The
decentralized approach would require an additional step that gathers the in-
formation from neighboring nodes in the network and merges them into each
node's own belief using a belief propagation algorithm (we refer the reader to
our prior work for further details on this decentralized approach [2]). Addi-
tionally, when dealing with a mobile node, care needs to be taken to properly
model the motion of the moving node. Whether odometry information is avail-
able or if a random walk model is assumed, it needs to be incorporated into
the �lter correctly [12].



4 Experiments

We demonstrate the e�ectiveness of our proposed network mapping algorithm
on two types of experiments. The �rst experiment is the �static" mapping
experiment where all the nodes are stationary. Here, we assume the knowledge
of a few nodes' true position (ie. anchors) to help provide a rigid reference to
the global coordinate frame and to reduce the ambiguities within the system.
The second experiment extends the �static" mapping experiment to include a
single mobile node to the network. The mobile node moves within the limits
of the stationary nodes but rarely has line-of-sight to more than a couple
stationary nodes at a time. Here, given the information provided by the mobile
node, we show that it is possible to accurately estimate the nodes' position
with even fewer anchors.

4.1 Experimental Setup

In our experiments we deployed the nodes in an outdoor environment between
and around several buildings. Figure 2 shows the �oor plan of the environ-
ment where the nodes were deployed. The nodes have a maximum range of
120m in an open area with line-of-sight (LOS), however, in our experimen-
tal environment their maximum range was limited due to the occlusions and
obstacles within the environment. However, the nodes provide range mea-
surements even through some obstacles like thin walls (usually noisier than
LOS measurements). The presence of such �unmodeled" noise in our measure-
ments introduces an additional challenge to the network SLAM problem. Our
experiments were conducted using an autonomous wheelchair equipped with
a ranging radio and wheel encoders. The robot was also equipped with a laser
scanner to enable it perform simple obstacle avoidance and gather laser scan
information about the environment. In addition to ranging radio equipped on
the mobile robot, several other stationary ranging radio nodes were arbitrar-
ily deployed within the environment. The connectivity among a network of
nodes within the environment, which directly corresponds to the ability to
range between a pair of connect nodes, is shown in Figure 3.

4.2 Static Mapping

In most real-world applications where pre-deployed infrastructures are avail-
able, it is often the case that the infrastructure is already operational before
any mobile agent (such as a robot) enters the environment. In these cases,
it is desirable if the pre-deployed nodes can themselves begin to solve the
network SLAM problem immediately after their initial deployment. Figure 3
presents the results of our proposed method on a static network of nodes with-
out the assistance of any mobile agents. The network consists of 16 nodes that
are sparsely connected due to the obstacles in the environment. Additionally,



Fig. 2. The blue shaded region indi-
cate the free-space and the red dots
indicate the locations of the station-
ary nodes placed within the environ-
ment. The size of the workspace is 55m
x 70m.

Fig. 3. Estimated node positions for the
static mapping scenario. The nodes are
plotted with their estimate uncertainties.
The true positions of the four anchors
nodes are known a priori to provide rigid-
ity to the solution.

some of the range measurements are extremely noisy due to environmental
e�ects such as multi-path.

A particular challenge with static network mapping in sparse networks is
determining if a given measurement is either a good, multi-path, non-LOS
(through thin obstacles) or outlier measurement and then dealing with it
properly. A standard measurement gating technique, chi-square gate, com-
bined with the proposed polar parameterization is employed to reduce the
e�ects of such noisy data on the �lter's estimate. As can be seen from our
results, the proposed approach was able to accurately reason about and reject
the noisy measurements it encounters due to its improved representation of
the nonlinearities in the estimate uncertainty.

4.3 Mapping with a Mobile Node

To test the in�uence of mobile nodes on the network mapping problem, we
introduced a mobile node into the static network. In addition to the mobile
node, there were 11 other stationary nodes deployed for this experiment. Fig-
ure 5 shows the estimated node positions and path of the mobile node using
our proposed method. As can be seen, the resultant laser map that is generated
by overlaying the laser scans from the mobile node on top of the estimated
path is very similar to the true �oor plan map shown in Figure 2. Note that
the map generated by overlaying the laser scans on the estimated robot path
provides a good visual evaluation of the accuracy of the estimate provided by
the �lter. In addition to revealing any errors in estimating the mobile node's
position, the map overlay also highlights errors in estimating the heading of
the mobile node. It can be observed that much of the error in the resultant



Fig. 4. The laser map generated by the
scan matching algorithm within CAR-
MEN robotics toolkit [13]. Scan match-
ing fails due to the lack of features visi-
ble in the short-sighted laser scans (max
range 8m).

Fig. 5. The laser map generated by
overlaying the laser scans from the mo-
bile node on top of the estimated path
of the mobile node using our proposed
method. The proposed method assumes
only two anchors, whose positions were
known a priori. The resulting map looks
closer to the true map and highlights the
proposed method's position and heading
accuracy.

Method Avg. Node Err. Avg. Laser Map Err.
Dead Reckoning - 9.62m
Scan Matching - 12.27m
Static Mapping
(4 Anchors) 1.89m -

SLAM Initialized w/
Static Mapping Result 0.92m 1.86m

SLAM
(2 Anchors) 1.19m 2.62m

SLAM
(All 11 Anchors) 0.00m 0.87m

Table 1. Average node mapping error and average error in the corner features of
the laser map generated using the mobile node's estimated position.

map (e.g. blurring of wall edges) is due to errors in estimating mobile node's
heading correctly. This is because, in general, heading is di�cult to estimate
given range-only data. It should be noted here that the laser scans, used to
generate the map in Figures 5, are only used to visualize the accuracy of the
estimated position and heading of the mobile node (ie. the laser scans are not
used to improved the estimate).



Additionally, we can compare the result of our approach to the laser map
generated by a simple scan matching algorithm (available in CARMEN [13]),
Figure 4. The scan matching algorithm fails in this environment due to the lack
of features in each scan. This is because the laser scanner had a maximum
range of 8m and in certain areas was only able to see one wall within the
environment. Note that the use of a laser scanner with a maximum range of
8m is not ideal for this environment, and comparing the result of using such
a sensor (clearly unsuited for this environment) against our proposed method
is most de�nitely unfair. However, it is also equally important to note that
utilizing a laser scanner with a short range in the small environment shown
here is analogous to using a laser scanner with a large range in a much larger
environment. And as such, comparing the proposed ranging radio-based map
against the laser scan matching based map highlights the bene�ts and utility
of using ranging radios as a complimentary sensor to other more commonly
used sensors, such as laser scanners.

Table 1 presents the numeric results comparing the proposed method
against several other strategies, including an initialized version of SLAM,
where the static mapping result (shown in Figure 3) is used to initialize the
state of the nodes when performing SLAM with a mobile node. The node er-
rors reported in the table above were calculated based on manually surveyed
ground truth node locations. The �laser map" errors reported in the table were
calculated based on extracting corner features from the estimated map and
comparing it against the locations of those same features within the ground
truth �oor plan, supplemented with manual measurement of those corner fea-
tures within the actual environment. For this environment, a total of 23 corner
features and 11 node positions were examined to produce the results shown
in the above table. In the cases when a corner feature was blurred within the
estimated laser map, the worse case position of the corner was used. In other
words, if the corner in an estimated map is blurry (i.e. the multiple laser scans
of the corner are not properly aligned), the corner extracted from the laser
scan that was the farthest from the true corner location was used to compute
the error. As can be seen in the table, the average node position error for per-
forming SLAM with only 2 anchors is similar to performing SLAM initialized
with the static mapping solution (which used 4 anchors).

Figure 6 shows the performance of our algorithms as the number of anchors
in the environment is varied. As can be expected, when the number of anchors
increases, the error in the position of the nodes in the environment decreases.
In particular, looking at the e�ect of adding a single mobile node to the
network, it can be observed that the addition information provided by the
odometry of the mobile node signi�cantly helps improve the overall node
mapping error.
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Fig. 6. Plots revealing the e�ects of varying the number of anchors in the environ-
ment is shown. As can be expected, in both the static network mapping case with
16-nodes (blue squares) and the 11-node network mapping case with a mobile node
(red circles), as the number of anchors is increased, the over all error in mapping the
node locations decreases. However, as can be seen, given the additional information
from the odometry of a mobile node, the network can be better localized with much
few number of anchors.

5 Conclusions

In this paper, we examined the problem of motion-aided network SLAM. The
method we proposed o�ers an alternate polar parameterization that is better
suited for dealing with the nonlinear measurement distributions evident in
range-only data. We show that through the use of this improved parameter-
ization, and standard measurement �ltering techniques, it is possible achieve
improved localization and mapping of a sparsely connected network of nodes
in the presence of noisy range-only measurements. The bene�ts of employing
range sensors and a proper representation of the state, to provide good lo-
calization and mapping results in an environment where laser scanners might
fail was demonstrated. Comparing the results of our approach to laser based
scan matching techniques, our experiments reveals that while the proposed
range-based mapping solution has di�culty estimating heading, in some cases
it o�ers a good complimentary solution to traditional laser based mapping
techniques. Lastly, our results also revealed that by adding a single mobile
node into an otherwise static network of nodes, the overall node mapping
error can be reduced considerably.
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